基于传播矩阵法改进的SS及其前驱波合成算法

王培锋, 周勇, 徐敏. 2022. 基于传播矩阵法改进的SS及其前驱波合成算法. 地球物理学报, 65(10): 3900-3911, doi: 10.6038/cjg2022P0649
引用本文: 王培锋, 周勇, 徐敏. 2022. 基于传播矩阵法改进的SS及其前驱波合成算法. 地球物理学报, 65(10): 3900-3911, doi: 10.6038/cjg2022P0649
WANG PeiFeng, ZHOU Yong, XU Min. 2022. An improved algorithm for simulating waveforms of SS and its precursors based on propagation matrix method. Chinese Journal of Geophysics (in Chinese), 65(10): 3900-3911, doi: 10.6038/cjg2022P0649
Citation: WANG PeiFeng, ZHOU Yong, XU Min. 2022. An improved algorithm for simulating waveforms of SS and its precursors based on propagation matrix method. Chinese Journal of Geophysics (in Chinese), 65(10): 3900-3911, doi: 10.6038/cjg2022P0649

基于传播矩阵法改进的SS及其前驱波合成算法

  • 基金项目:

    国家自然科学基金项目(91858207, 42104104), 南方海洋科学与工程广东省实验室(广州)项目(GML2019ZD0205), 广东省自然科学基金项目(2021B1515020023)资助

详细信息
    作者简介:

    王培锋, 男, 1997年生, 硕士研究生, 主要从事地震学研究. E-mail: wangpeifeng19@mails.ucas.ac.cn

    通讯作者: 周勇, 助理研究员, 主要从事海洋地震学研究. E-mail: zhouyong@scsio.ac.cn
  • 中图分类号: P315

An improved algorithm for simulating waveforms of SS and its precursors based on propagation matrix method

More Information
  • 410 km和660 km地幔间断面在地球内部动力学研究中具有重要意义. 在研究地幔间断面的方法中, SS前驱波由于具有全球采样优势得以广泛应用. SS及其前驱波模拟可利用有限差分和谱元法等数值模拟方法, 它们在模拟全球尺度地震波传播时具有高精度的特点, 但往往计算量很大. 因此, 该类方法难以应用于反射点广泛分布的情形. 而基于传播矩阵发展的SS及其前驱波模拟方法在保持高精度计算的同时, 可大幅提高计算效率. 本文针对SS及其前驱波的传播特征, 改进了基于传播矩阵方法的波形合成算法FASHSHWF. 通过简单层状模型对该算法进行了测试, 验证了算法及相应程序的正确性. 计算效率测试表明改进算法相较常规传播矩阵算法可节约50%以上的计算时间. 通过与AxiSEM计算的波形对比, 验证了FASHSHWF用于SS及其前驱波模拟的有效性. 在上述工作的基础上, 本文进一步探讨了新算法在研究全球近地表结构对地幔间断面复杂性探测影响中的应用.

  • 加载中
  • 图 1 

    SS及其前驱波(S410S和S660S)射线路径示意图

    Figure 1. 

    Schematic diagram of the ray paths of SS and its precursors (S410S and S660S)

    图 2 

    分层模型和坐标系

    Figure 2. 

    Layered model configuration and coordinate system

    图 3 

    入射波形与反射波形

    Figure 3. 

    Incident and reflected waveforms

    图 4 

    基于FASHSHWF程序合成不同位置的SS及其前驱波波形

    Figure 4. 

    Synthetic SS and its precursors simulated by FASHSHWF

    图 5 

    地震事件波形(实线)与FASHSHWF合成波形(虚线)对比图

    Figure 5. 

    Comparison diagram of seismic event waveform (solid line) and FASHSHWF synthetic waveform (dashed line)

    图 6 

    使用CRUST1.0与PREM合成地球模型的示意图

    Figure 6. 

    Schematic diagram of synthetic earth model using CRUST1.0 and PREM

    图 7 

    基于CRUST1.0与PREM合成地球模型计算得到的全球走时差TSS-SdS和振幅比SdS/SS分布

    Figure 7. 

    Global distribution of the differential traveltimes TSS-SdS and the amplitude ratios SdS/SS calculated from synthetic earth model using CRUST1.0 and PREM

    图 8 

    FASHSHWF(红线)和AxiSEM(黑线)计算的合成地震图对比

    Figure 8. 

    Comparison of synthetic seismograms computed from FASHSHWF (red line) and AxiSEM(black line)

    图 9 

    本文改进算法(虚线)和常规算法(实线) 计算耗时随模型层数的变化

    Figure 9. 

    Comparison of the computational time between the improved algorithm (dashed line) and the regular algorithm (solid line)

    图 10 

    410 km间断面过渡区宽度的影响

    Figure 10. 

    Effects of the transition zone width of 410 km discontinuity

    图 11 

    410 km间断面顶部低速带的影响

    Figure 11. 

    Effects of the low-velocity layer atop of 410 km discontinuity

    表 1 

    简单层状模型参数

    Table 1. 

    Parameters of a simple layered model

    厚度/km VP/(km·s-1) VS/(km·s-1) ρ/(g·cm-3)
    海水 3.00 1.45 0.00 1.02
    上地壳 12.00 5.80 3.20 2.60
    下地壳 9.40 6.80 3.90 2.90
    下载: 导出CSV

    表 2 

    合成波形到时和振幅的测量值与理论计算值的比较

    Table 2. 

    Comparison of measured arrival times and amplitudes from synthetic waveform and corresponding theoretical values

    波峰(谷)编号 测量到时/s 理论到时/s 绝对误差/s 测量振幅 理论振幅 相对误差/%
    1 0.00 0.00 0.00 0.15232 0.15232 0.000
    2 7.48 7.50 0.02 0.97504 0.97680 0.180
    3 15.00 15.00 0.00 -0.14878 -0.14878 0.000
    4 22.48 22.50 0.02 0.02262 0.02266 0.177
    下载: 导出CSV
  •  

    Bai L, Ritsema J. 2013. The effect of large-scale shear-velocity heterogeneity on SS precursor amplitudes. Geophysical Research Letters, 40(23): 6054-6058, doi: 10.1002/2013GL058669.

     

    Bai Y M, Ai Y S, Jiang M M, et al. 2018. Structure of the mantle transition zone beneath the southeastern Tibetan plateau revealed by P-wave receiver functions. Chinese Journal of Geophysics (in Chinese), 61(2): 570-583, doi: 10.6038/cjg2018L0182.

     

    Benz H M, Vidale J E. 1993. Sharpness of upper-mantle discontinuities determined from high-frequency reflections. Nature, 365(6442): 147-150, doi: 10.1038/365147a0.

     

    Bercovici D, Karato S I. 2003. Whole-mantle convection and the transition-zone water filter. Nature, 425(6953): 39-44, doi: 10.1038/nature01918.

     

    Bina C R, Helffrich G. 1994. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research: Solid Earth, 99(B8): 15853-15860, doi: 10.1029/94JB00462.

     

    Chaljub E, Tarantola A. 1997. Sensitivity of SS precursors to topography on the upper-mantle 660-km discontinuity. Geophysical Research Letters, 24(21): 2613-2616, doi: 10.1029/97GL52693.

     

    Chaljub E, Capdeville Y, Vilotte J P. 2003. Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids. Journal of Computational Physics, 187(2): 457-491, doi: 10.1016/S0021-9991(03)00119-0.

     

    Chen Y F, Chen J H, Guo B, et al. 2019. Denoising the receiver function through curvelet transforming and migration imaging. Chinese Journal of Geophysics (in Chinese), 62(6): 2027-2037, doi: 10.6038/cjg2019M0248.

     

    Chu R S, Schmandt B, Helmberger D V. 2012. Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms. Geochemistry, Geophysics, Geosystems, 13(2): Q0AK04, doi: 10.1029/2011GC003818.

     

    Courtier A M, Revenaugh J. 2007. Deep upper-mantle melting beneath the Tasman and Coral Seas detected with multiple ScS reverberations. Earth and Planetary Science Letters, 259(1): 66-76, doi: 10.1016/j.epsl.2007.04.027.

     

    Deuss A. 2009. Global observations of mantle discontinuities using SS and PP precursors. Surveys in Geophysics, 30(4-5): 301-326, doi: 10.1007/s10712-009-9078-y.

     

    Dunkin J W. 1965. Computation of modal solutions in layered, elastic media at high frequencies. Bulletin of the Seismological Society of America, 55(2): 335-358.

     

    Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4): 297-356, doi: 10.1016/0031-9201(81)90046-7.

     

    Fee D, Dueker K. 2004. Mantle transition zone topography and structure beneath the Yellowstone hotspot. Geophysical Research Letters, 31(18): L18603, doi: 10.1029/2004GL020636.

     

    Flanagan M P, Shearer P M. 1998. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. Journal of Geophysical Research: Solid Earth, 103(B2): 2673-2692, doi: 10.1029/97jb03212.

     

    Frost D J. 2008. The upper mantle and transition zone. Elements, 4(3): 171-176, doi: 10.2113/GSELEMENTS.4.3.171.

     

    Gao Z Y, Zhang R Q, Wu Q J, et al. 2015. A study on 660 km discontinuity beneath northeast China. Acta Seismologica Sinica (in Chinese), 37(5): 711-721, doi: 10.11939/jass.2015.05.001.

     

    Haskell N A. 1953. The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43(1): 17-34, doi: 10.1785/BSSA0430010017.

     

    Haskell N A. 1960. Crustal reflection of plane SH waves. Journal of Geophysical Research, 65(12): 4147-4150, doi: 10.1029/JZ065i012p04147.

     

    He J, Wu Q J. 2020. Mantle transition zone structure beneath the Central Asian Orogenic Belt. Science China Earth Sciences, 63(4): 548-560, doi: 10.1007/s11430-018-9429-3.

     

    Helffrich G. 2000. Topography of the transition zone seismic discontinuities. Reviews of Geophysics, 38(1): 141-158, doi: 10.1029/1999RG000060.

     

    Hier-Majumder S, Tauzin B. 2017. Pervasive upper mantle melting beneath the western US. Earth and Planetary Science Letters, 463: 25-35, doi: 10.1016/j.epsl.2016.12.041.

     

    Houser C, Masters G, Flanagan M, et al. 2008. Determination and analysis of long-wavelength transition zone structure using SS precursors. Geophysical Journal International, 174(1): 178-194, doi: 10.1111/j.1365-246X.2008.03719.x.

     

    Huang H, Shen X Z, Liu X Z, et al. 2020. Constraining the characters of the upper mantle discontinuities beneath the NE margin of the Tibetan Plateau with a dense broadband seismic array. Science China Earth Sciences, 63(3): 425-438, doi: 10.1007/s11430-018-9476-x.

     

    Igel H, Weber M. 1995. SH-wave propagation in the whole mantle using high-order finite differences. Geophysical Research Letters, 22(6): 731-734, doi: 10.1029/95GL00312.

     

    Igel H, Weber M. 1996. P-SV wave propagation in the Earth's mantle using finite differences: Application to heterogeneous lowermost mantle structure. Geophysical Research Letters, 23(5): 415-418, doi: 10.1029/96GL00422.

     

    Igel H, Nissen-Meyer T, Jahnke G. 2002. Wave propagation in 3D spherical sections: effects of subduction zones. Physics of the Earth and Planetary Interiors, 132(1-2): 219-234, doi: 10.1016/S0031-9201(02)00053-5.

     

    Igel H. 2017. Computational Seismology: A Practical Introduction. Oxford: Oxford University Press.

     

    Ita J, Stixrude L. 1992. Petrology, elasticity, and composition of the mantle transition zone. Journal of Geophysical Research: Solid Earth, 97(B5): 6849-6866, doi: 10.1029/92JB00068.

     

    Jasbinsek J J, Dueker K G, Hansen S M. 2010. Characterizing the 410 km discontinuity low-velocity layer beneath the LA RISTRA array in the North American Southwest. Geochemistry, Geophysics, Geosystems, 11(3): Q03008, doi: 10.1029/2009GC002836.

     

    Kennett B L N. 2009. Seismic Wave Propagation in Stratified Media. New York: ANU Press.

     

    Knopoff L. 1964. A matrix method for elastic wave problems. Bulletin of the Seismological Society of America, 54(1): 431-438.

     

    Komatitsch D, Ritsema J, Tromp J. 2002. The spectral-element method, beowulf computing, and global seismology. Science, 298(5599): 1737-1742, doi: 10.1126/science.1076024.

     

    Komatitsch D, Tromp J. 2002a. Spectral-element simulations of global seismic wave propagation-I. Validation. Geophysical Journal International, 149(2): 390-412, doi: 10.1046/j.1365-246X.2002.01653.x.

     

    Komatitsch D, Tromp J. 2002b. Spectral-element simulations of global seismic wave propagation-II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150(1): 303-318, doi: 10.1046/j.1365-246X.2002.01716.x.

     

    Lai Y J, Chen L, Wang T, et al. 2019. Mantle transition zone structure beneath Northeast Asia from 2-D triplicated waveform modeling: Implication for a segmented stagnant slab. Journal of Geophysical Research: Solid Earth, 124(2): 1871-1888, doi: 10.1029/2018JB016642.

     

    Laske G, Masters G, Ma Z T, et al. 2013. Update on CRUST1.0-A 1-degree global model of Earth's crust. //EGU General Assembly Conference Abstracts. Vienna: EGU.

     

    Li J, Yuen D A. 2014. Mid-mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity. Earth and Planetary Science Letters, 385: 137-144, doi: 10.1016/j.epsl.2013.10.042.

     

    Li W L, Wei R Q, Cui Q H, et al. 2018. Velocity structure around the 410 km discontinuity beneath the East China Sea area based on the waveform fitting method. Chinese Journal of Geophysics (in Chinese), 61(1): 150-160, doi: 10.6038/cjg2018L0370.

     

    Liu Z, Tian X B, Nie S T, et al. 2016. The complex 660 km discontinuity beneath eastern of North China. Chinese Journal of Geophysics (in Chinese), 59(6): 2039-2046, doi: 10.6038/cjg20160610.

     

    Ma Y Y, Ge Z X. 2018. Topography of upper mantle discontinuities beneath Nazca plate and its surrounding area reveals from SS precursor and its tectonic significance. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 54(6): 1186-1194, doi: 10.13209/j.0479-8023.2017.179.

     

    Mark H F, Collins J A, Lizarralde D, et al. 2021. Constraints on the depth, thickness, and strength of the G discontinuity in the central Pacific from S receiver functions. Journal of Geophysical Research: Solid Earth, 126(4): e2019JB019256, doi: 10.1029/2019JB019256.

     

    Morgan J P, Shearer P M. 1993. Seismic constraints on mantle flow and topography of the 660-km discontinuity: evidence for whole-mantle convection. Nature, 365(6446): 506-511, doi: 10.1038/365506a0.

     

    Nissen-Meyer T, van Driel M, Stähler S C, et al. 2014. AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth, 5(1): 425-445, doi: 10.5194/se-5-425-2014.

     

    Ohtani E. 2005. Water in the mantle. Elements, 1(1): 25-30, doi: 10.2113/gselements.1.1.25.

     

    Priestley K, Cipar J, Egorkin A, et al. 1994. Upper-mantle velocity structure beneath the Siberian platform. Geophysical Journal International, 118(2): 369-378, doi: 10.1111/j.1365-246X.1994.tb03968.x.

     

    Pugh S, Jenkins J, Boyce A, et al. 2021. Global receiver function observations of the X-discontinuity reveal recycled basalt beneath hotspots. Earth and Planetary Science Letters, 561: 116813, doi: 10.1016/j.epsl.2021.116813.

     

    Ronchi C, Iacono R, Paolucci P S. 1996. The "Cubed Sphere": A new method for the solution of partial differential equations in spherical geometry. Journal of Computational Physics, 124(1): 93-114, doi: 10.1006/jcph.1996.0047.

     

    Schaeffer A J, Bostock M G. 2010. A low-velocity zone atop the transition zone in northwestern Canada. Journal of Geophysical Research: Solid Earth, 115(B6): B06302, doi: 10.1029/2009JB006856.

     

    Shearer P M, Flanagan M P. 1999. Seismic velocity and density jumps across the 410-and 660-kilometer discontinuities. Science, 285(5433): 1545-1548, doi: 10.1126/science.285.5433.1545.

     

    Shearer P M. 2000. Upper mantle seismic discontinuities. //Karato S I, Forte A, Liebermann R, et al eds. Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. Washington, D.C. : American Geophysical Union, 115-132.

     

    Smith W D. 1975. The application of finite element analysis to body wave propagation problems. Geophysical Journal International, 42(2): 747-768, doi: 10.1111/j.1365-246X.1975.tb05890.x.

     

    Song T R A, Helmberger D V, Grand S P. 2004. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature, 427(6974): 530-533.

     

    Thomson W T. 1950. Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics, 21(2): 89-93, doi: 10.1063/1.1699629.

     

    Vinnik L, Ravi Kumar M, Kind R, et al. 2003. Super-deep low-velocity layer beneath the Arabian plate. Geophysical Research Letters, 30(7): 1415, doi: 10.1029/2002GL016590.

     

    Vinnik L, Ren Y, Stutzmann E, et al. 2010. Observations of S410p and S350p phases at seismograph stations in California. Journal of Geophysical Research: Solid Earth, 115(B5): B05303, doi: 10.1029/2009JB006582.

     

    Vinnik L, Deng Y F, Kosarev G, et al. 2020. Sharpness of the 410-km discontinuity from the P410s and P2p410s seismic phases. Geophysical Journal International, 220(2): 1208-1214, doi: 10.1093/gji/ggz507.

     

    Wang B Y, Chen L, Ai Y S, et al. 2013. Crustal structure and mantle transition zone thickness beneath the northeastern area of the North China Craton and adjacent region. Chinese Journal of Geophysics (in Chinese), 56(1): 60-68, doi: 10.6038/cjg20130107.

     

    Wang C Y, Huang J L. 2012. Mantle transition zone structure around Hainan by receiver function analysis. Chinese Journal of Geophysics (in Chinese), 55(4): 1161-1167, doi: 10.6038/j.issn.0001-5733.2012.04.012.

     

    Wang X J, Han G J, Li J. 2018. Low-velocity layer atop the upper mantle transition zone in Northwest Pacific subduction zone. Chinese Journal of Geophysics (in Chinese), 61(3): 819-831, doi: 10.6038/cjg2018L0484.

     

    Wei S S, Shearer P M. 2017. A sporadic low-velocity layer atop the 410 km discontinuity beneath the Pacific Ocean. Journal of Geophysical Research: Solid Earth, 122(7): 5144-5159, doi: 10.1002/2017JB014100.

     

    Wessel P, Luis J F, Uieda L, et al. 2019. The generic mapping tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564, doi: 10.1029/2019GC008515.

     

    Wu W B, Ni S D, Irving J C E. 2019. Inferring Earth's discontinuous chemical layering from the 660-kilometer boundary topography. Science, 363(6428): 736-740, doi: 10.1126/science.aav0822.

     

    Xiao Y, Zhang R Q, Kuang C L. 2021. Mantle transition zone structure beneath the Alaska-Aleutian subduction zone and its surroundings. Chinese Journal of Geophysics (in Chinese), 64(3): 838-850, doi: 10.6038/cjg2021O0085.

     

    Yu C, Day E A, de Hoop M V, et al. 2017. Mapping mantle transition zone discontinuities beneath the central pacific with array processing of SS precursors. Journal of Geophysical Research: Solid Earth, 122(12): 10364-10378, doi: 10.1002/2017jb014327.

     

    Zhang H, Ni S D, Chu R S, et al. 2017. An algorithm for computing synthetic body waves due to underside conversion on an undulating interface and application to the 410 km discontinuity. Geophysical Journal International, 210(3): 1858-1871, doi: 10.1093/gji/ggx271.

     

    Zhang H, Schmandt B. 2019. Application of Ps scattering kernels to imaging the mantle transition zone with receiver functions. Journal of Geophysical Research: Solid Earth, 124(1): 709-728, doi: 10.1029/2018JB016274.

     

    Zhang J S, Bass J D. 2016. Sound velocities of olivine at high pressures and temperatures and the composition of Earth's upper mantle. Geophysical Research Letters, 43(18): 9611-9618, doi: 10.1002/2016GL069949.

     

    Zhang R Q, Wu Q J, Li Y H, et al. 2011. Differential patterns of SH and P wave velocity structures in the transition zone beneath northwestern Tibet. Science China Earth Sciences, 54(10): 1551-1562, doi: 10.1007/s11430-011-4228-8.

     

    Zhang W, Chen X F. 2006. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation. Geophysical Journal International, 167(1), 337-353, doi: 10.1111/j.1365-246X.2006.03113.x.

     

    Zhang Z, Dueker K G, Huang H H. 2018. Ps mantle transition zone imaging beneath the Colorado Rocky Mountains: Evidence for an upwelling hydrous mantle. Earth and Planetary Science Letters, 492(197-205), doi: 10.1016/j.epsl.2018.03.044.

     

    Zhou Y, Chen X, Yuen D, et al. 2020. Effects of near-surface complexities on differential travel times and amplitude ratios between PP and its precursors. Journal of Geophysical Research: Solid Earth, 125(8): e2019JB019139, doi: 10.1029/2019jb019139.

     

    白一鸣, 艾印双, 姜明明等. 2018. 利用P波接收函数研究青藏高原东南缘地幔转换带结构. 地球物理学报, 61(2): 570-583, doi: 10.6038/cjg2018L0182. http://www.geophy.cn/article/doi/10.6038/cjg2018L0182

     

    陈一方, 陈九辉, 郭飚等. 2019. 接收函数曲波变换去噪与偏移成像. 地球物理学报, 62(6): 2027-2037, doi: 10.6038/cjg2019M0248. http://www.geophy.cn/article/doi/10.6038/cjg2019M0248

     

    高占永, 张瑞青, 吴庆举等. 2015. 中国东北地区下方660km间断面研究. 地震学报, 37(5): 711-721, doi: 10.11939/jass.2015.05.001.

     

    何静, 吴庆举. 2020. 利用接收函数研究中亚造山带中部地区的地幔转换带结构. 中国科学: 地球科学, 50(3): 391-403, doi: 10.1360/N072018-00217.

     

    黄河, 沈旭章, 刘旭宙等. 2020. 利用密集宽频带台阵资料研究青藏高原东北缘上地幔间断面性质. 中国科学: 地球科学, 50(3): 418-431, doi: 10.1360/N072018-00292.

     

    蒋志勇, 臧绍先, 周元泽. 2003. 鄂霍次克海下间断面的起伏及俯冲带的穿透. 科学通报, 48(4): 320-327. doi: 10.3321/j.issn:0023-074X.2003.04.003

     

    李文兰, 魏荣强, 崔清辉等. 2018. 基于波形拟合的中国东海地区410 km间断面附近速度结构研究. 地球物理学报, 61(1): 150-160, doi: 10.6038/cjg2018L0370. http://www.geophy.cn/article/doi/10.6038/cjg2018L0370

     

    刘震, 田小波, 聂仕潭等. 2016. 华北东部复杂的660km相变界面. 地球物理学报, 59(6): 2039-2046, doi: 10.6038/cjg20160610. http://www.geophy.cn/article/doi/10.6038/cjg20160610

     

    马宇岩, 盖增喜. 2018. 利用SS前驱波研究纳斯卡-南美俯冲带周边上地幔间断面起伏及其动力学意义. 北京大学学报(自然科学版), 54(6): 1186-1194, doi: 10.13209/j.0479-8023.2017.179.

     

    沈旭章, 周蕙兰. 2009. 接收函数CCP-PWS偏移方法探测中国东北地区620km深处低速层. 科学通报, 54(2): 215-223. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200902016.htm

     

    王炳瑜, 陈凌, 艾印双等. 2013. 华北克拉通东北部及邻区地壳和地幔转换带厚度研究. 地球物理学报, 56(1): 60-68, doi: 10.6038/cjg20130107. http://www.geophy.cn/article/doi/10.6038/cjg20130107

     

    王晨阳, 黄金莉. 2012. 应用接收函数方法研究海南及其邻区地幔转换带结构. 地球物理学报, 55(4): 1161-1167, doi: 10.6038/j.issn.0001-5733.2012.04.012. http://www.geophy.cn/article/doi/10.6038/j.issn.0001-5733.2012.04.012

     

    王秀姣, 韩光洁, 李娟. 2018. 西北太平洋俯冲地区410-km间断面上覆低速层探测. 地球物理学报, 61(3): 819-831, doi: 10.6038/cjg2018L0484. http://www.geophy.cn/article/doi/10.6038/cjg2018L0484

     

    肖勇, 张瑞青, 况春利. 2021. 阿留申-阿拉斯加俯冲带及周边地区地幔过渡带结构研究. 地球物理学报, 64(3): 838-850, doi: 10.6038/cjg2021O0085. http://www.geophy.cn/article/doi/10.6038/cjg2021O0085

     

    臧绍先, 周元泽, 蒋志勇. 2003. 伊豆-小笠原地区地幔间断面的起伏及其意义. 中国科学(D辑), 33(3): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200303000.htm

     

    张瑞青, 吴庆举, 李永华等. 2011. 藏西北地幔过渡带地震波速度结构研究. 中国科学: 地球科学, 41(5): 700-712. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105009.htm

  • 加载中

(11)

(2)

计量
  • 文章访问数:  465
  • PDF下载数:  64
  • 施引文献:  0
出版历程
收稿日期:  2021-08-30
修回日期:  2021-12-01
上线日期:  2022-10-10

目录