新生代华南及邻区上地幔各向异性深部动力学机制的数值模拟

郑群凡, 张怀, 王勤, 张振, 石耀霖. 2023. 新生代华南及邻区上地幔各向异性深部动力学机制的数值模拟. 地球物理学报, 66(5): 2007-2018, doi: 10.6038/cjg2022P0780
引用本文: 郑群凡, 张怀, 王勤, 张振, 石耀霖. 2023. 新生代华南及邻区上地幔各向异性深部动力学机制的数值模拟. 地球物理学报, 66(5): 2007-2018, doi: 10.6038/cjg2022P0780
ZHENG QunFan, ZHANG Huai, WANG Qin, ZHANG Zhen, SHI YaoLin. 2023. Upper mantle anisotropy and dynamics beneath Cenozoic South China and its surroundings: insights from numerical simulation. Chinese Journal of Geophysics (in Chinese), 66(5): 2007-2018, doi: 10.6038/cjg2022P0780
Citation: ZHENG QunFan, ZHANG Huai, WANG Qin, ZHANG Zhen, SHI YaoLin. 2023. Upper mantle anisotropy and dynamics beneath Cenozoic South China and its surroundings: insights from numerical simulation. Chinese Journal of Geophysics (in Chinese), 66(5): 2007-2018, doi: 10.6038/cjg2022P0780

新生代华南及邻区上地幔各向异性深部动力学机制的数值模拟

  • 基金项目:

    国家自然科学杰出青年基金(41725017)和科技部国家重点研发计划"非常规油气三维地震成像的数学方法与超分辨反演高效算法"(2020YFA0713400)资助

详细信息
    作者简介:

    郑群凡, 女, 1991年生, 博士研究生, 主要从事地球动力学数值模拟研究.E-mail: zhengqunfan@foxmail.com

    通讯作者: 张怀, 男, 1973年生, 教授, 博士生导师, 主要从事计算地球动力学研究.E-mail: hzhang@ucas.ac.cn
  • 中图分类号: P313

Upper mantle anisotropy and dynamics beneath Cenozoic South China and its surroundings: insights from numerical simulation

More Information
  • 晚中生代以来, 华南地区同时受到印度—欧亚板块碰撞和太平洋—菲律宾板块俯冲及后撤作用的影响, 壳幔结构复杂.深入了解华南地区深部地幔流模式和地幔各向异性特征是认识华南复杂的深部构造演化过程与动力学机制的基础.本文采用三维全球地幔对流模型, 从软流圈剪切变形的角度计算了软流圈的各向异性, 尝试探讨了华南地区各向异性的起源和深部地幔流特征.华南地块东部, 软流圈各向异性呈NW-SE向, 各向异性主要来源于软流圈, 壳幔具有垂直连贯的变形特征; 南北构造带的中段, 软流圈各向异性大致为N-S向, 这一区域的造山作用虽然对岩石圈造成了巨大变形, 但是并未显著影响软流圈变形, 并且各向异性的主要来源可能是岩石圈地幔; 在南北构造带中, 30°N可能是地幔各向异性的过渡带, 30°N以南的川滇地区, 软流圈各向异性的方向出现了环形特征; 菲律宾板块向欧亚板块下的俯冲到达地幔转换带, 这种俯冲可能带动了西太平洋地幔向华南块体下的流动; 华南地区的软流圈流场自西向东显示出顺时针旋转的特征, 并在扬子板块东部与来自菲律宾板块下的西南向的地幔流相遇.

  • 加载中
  • 图 1 

    (a) 华南地块及邻区构造简图;(b) 横波分裂测量结果(蓝线各向异性来自Huang et al., 2011; 红线各向异性来自Lev et al., 2006; 黑线各向异性来自常利军等,2015b;绿线各向异性来自常利军等, 2015a;黄线各向异性来自Chang et al., 2017; 紫线各向异性来自Wang et al., 2013)

    Figure 1. 

    (a) Simplified tectonic map in South China and its surroundings; (b) Shear-wave splitting results from Huang et al. (2011) (blue sticks), Lev et al. (2006) (red sticks), Chang et al. (2015b) (black sticks), Chang et al. (2015a) (green sticks), Chang et al. (2017) (orange sticks) and Wang et al. (2013) (purple sticks)

    图 2 

    研究区域网格加密示意图

    Figure 2. 

    A sketch of the mesh refinement in the study region

    图 3 

    (a) 初始黏度剖面;(b) 初始温度场

    Figure 3. 

    (a) Initial viscosity profiles; (b) Initial temperature profile

    图 4 

    模型1(a)、模型2(b)、模型3(c)的软流圈流场速度和地表重构的板块运动(Seton et al., 2012)(d)

    Figure 4. 

    Asthenospheric flow in model 1 (a), model 2 (b) and model 3 (c), and reconstructed plate motion model of Seton et al. (2012) (d)

    图 5 

    预测的模型1(a)、模型2(b)、模型3(c)的软流圈各向异性

    Figure 5. 

    Predicted asthenospheric anisotropy in model 1 (a), model 2 (b) and model 3 (c)

    图 6 

    软流圈各向异性预测值与前人横波分裂观测值方位统计分析

    Figure 6. 

    Analysis of orientations of the predicted asthenospheric anisotropy and previous shear-wave splitting results

    图 7 

    软流圈各向异性预测值与前人横波分裂结果的对比图

    Figure 7. 

    Asthenospheric anisotropy predictions and previous shear-wave splitting results

    图 8 

    模型1(a—c)、模型2(d—f)、模型3(g—i)中剖面AB(位置见图 1a)上的速度场和温度场

    Figure 8. 

    Velocity and temperature fields of the cross-section AB (shown in Fig. 1a) in model 1 (a—c), model 2 (d—f) and model 3 (g—i)

    表 1 

    数值模型采用的黏度流变参数

    Table 1. 

    Parameters of viscosity used in the simulations

    参数 符号(单位) 上地幔(0~660 km) 下地幔(660~2890 km)
    活化能 E(kJ·mol-1) 300 200
    活化体积 V(cm3·mol-1) 4 1.5
    常数因子 A(Pa-1·s-1) 3×10-11 1.8×10-18(模型1:上下地幔黏度跃变50倍)
    3.0×10-17(模型2:上下地幔黏度跃变30倍)
    9.0×10-17(模型3:上下地幔黏度跃变10倍)
    气体常数 R (J·K-1·mol-1) 8.31 8.31
    下载: 导出CSV
  •  

    An M J, Shi Y L. 2006. Lithospheric thickness of the Chinese continent. Physics of the Earth and Planetary Interiors, 159(3-4): 257-266. doi: 10.1016/j.pepi.2006.08.002

     

    Ando M, Ishikawa Y, Wada H. 1980. S-wave anisotropy in the upper mantle under a volcanic area in Japan. Nature, 286(5768): 43-46. doi: 10.1038/286043a0

     

    Chang L J, Ding Z F, Wang C Y, et al. 2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan plateau using GPS and shear-wave splitting data. Tectonophysics, 699: 93-101. doi: 10.1016/j.tecto.2017.01.025

     

    Chang L J, Ding Z F, Wang C Y. 2015a. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China. Chinese Journal of Geophysics (in Chinese), 58(11): 4052-4067, doi: 10.6038/cjg20151114.

     

    Chang L J, Ding Z F, Wang C Y. 2016. Upper mantle anisotropy beneath the northern segment of the north-south tectonic belt in China. Chinese Journal of Geophysics (in Chinese), 59(11): 4035-4047, doi: 10.6038/cjg20161109.

     

    Chang L J, Wang C Y, Ding Z F, et al. 2015b. Upper mantle anisotropy of the eastern Himalayan syntaxis and surrounding regions from shear wave splitting analysis. Science China Earth Sciences, 58(10): 1872-1882. doi: 10.1007/s11430-015-5098-2

     

    Chang L J, Wang C Y, Ding Z F. 2009. Seismic anisotropy of upper mantle in eastern China. Science in China Series D: Earth Sciences (in Chinese), 52(6): 774-783. doi: 10.1007/s11430-009-0073-4

     

    Conrad C P, Behn M D, Silver P G. 2007. Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle. Journal of Geophysical Research: Solid Earth, 112(B7): B07317, doi: 10.1029/2006JB004608.

     

    Crampin S, Atkinson B K. 1985. Microcracks in the Earth's crust. First Break, 3(3): 16-20.

     

    Crampin S, Lovell J H. 1991. A decade of shear-wave splitting in the Earth's crust: what does it mean? What use can we make of it? and what should we do next?. Geophysical Journal International, 107(3): 387-407. doi: 10.1111/j.1365-246X.1991.tb01401.x

     

    Debayle E, Kennett B, Priestley K. 2005. Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature, 433(7025): 509-512. doi: 10.1038/nature03247

     

    Ding Z F, Zeng R S. 1996. Observation and study of shear wave anisotropy in Tibetan Plateau. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 39(2): 211-220.

     

    Fukao Y, Obayashi M, Nakakuki T, et al. 2009. Stagnant slab: A review. Annual Review of Earth and Planetary Sciences, 37(1): 19-46. doi: 10.1146/annurev.earth.36.031207.124224

     

    Garel F, Goes S, Davies D R, et al. 2014. Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate. Geochemistry, Geophysics, Geosystems, 15(5): 1739-1765. doi: 10.1002/2014GC005257

     

    Grand S P, van der Hilst R, Widiyantoro S. 1997. Global seismic tomography: A snapshot of convection in the Earth. Geological Society of America Today, 7(4): 1-7.

     

    Heister T, Dannberg J, Gassmöller R, et al. 2017. High accuracy mantle convection simulation through modern numerical methods—Ⅱ: realistic models and problems. Geophysical Journal International, 210(2): 833-851. doi: 10.1093/gji/ggx195

     

    Hess H H. 1964. Seismic anisotropy of the uppermost mantle under oceans. Nature, 203(4945): 629-631. doi: 10.1038/203629a0

     

    Hu J S, Faccenda M, Liu L J. 2017. Subduction-controlled mantle flow and seismic anisotropy in South America. Earth and Planetary Science Letters, 470: 13-24. doi: 10.1016/j.epsl.2017.04.027

     

    Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth, 111(B9): B09305, doi: 10.1029/2005JB004066.

     

    Huang Z C, Wang L S, Zhao D P, et al. 2010. Upper mantle structure and dynamics beneath Southeast China. Physics of the Earth and Planetary Interiors, 182(3-4): 161-169. doi: 10.1016/j.pepi.2010.07.010

     

    Huang Z C, Wang L S, Zhao D P, et al. 2011. Seismic anisotropy and mantle dynamics beneath China. Earth and Planetary Science Letters, 306(1-2): 105-117. doi: 10.1016/j.epsl.2011.03.038

     

    Karato S. 1986. Does partial melting reduce the creep strength of the upper mantle?. Nature, 319(6051): 309-310. doi: 10.1038/319309a0

     

    Kronbichler M, Heister T, Bangerth W. 2012. High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1): 12-29. doi: 10.1111/j.1365-246X.2012.05609.x

     

    Lee S P. 1957. The map of seismicity of China. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 6(2): 127-158.

     

    Lev E, Long M, Vanderhilst R. 2006. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth and Planetary Science Letters, 251(3-4): 293-304. doi: 10.1016/j.epsl.2006.09.018

     

    Li C, Van Der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. Journal of Geophysical Research, 115(B7): B07308, doi: 10.1029/2009JB006882.

     

    Li Z J, Gan W J, Qin S L, et al. 2019. Present-day deformation characteristics of the southeast borderland of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 62(12): 4540-4553, doi: 10.6038/cjg2019M0692.

     

    Li Z J, Kreemer C. 2021. Eastward mantle flow field underneath East Asia quantified by combining shear-wave splitting orientations and absolute plate motion observations. Earth and Planetary Science Letters, 566: 116969, doi: 10.1016/j.epsl.2021.116969.

     

    Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1

     

    Long M D, Becker T W. 2010. Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297(3-4): 341-354. doi: 10.1016/j.epsl.2010.06.036

     

    Long M D, Silver P G. 2009. Shear wave splitting and mantle anisotropy: Measurements, interpretations, and new directions. Surveys in Geophysics, 30(4-5): 407-461. doi: 10.1007/s10712-009-9075-1

     

    Luo Y, Huang Z X, Peng Y J, et al. 2004. A study on SKS wave splitting beneath the China mainland and adjacent regions. Chinese Journal of Geophysics (in Chinese), 47(5): 812-821. doi: 10.3321/j.issn:0001-5733.2004.05.012

     

    Ma J C, Tian Y, Zhao D P, et al. 2019. Mantle dynamics of Western Pacific and East Asia: New insights from P wave anisotropic tomography. Geochemistry, Geophysics, Geosystems, 20(7): 3628-3658. doi: 10.1029/2019GC008373

     

    Meissner R, Mooney W D, Artemieva I. 2002. Seismic anisotropy and mantle creep in young orogens. Geophysical Journal International, 149(1): 1-14. doi: 10.1046/j.1365-246X.2002.01628.x

     

    Nicolas A, Christensen N I. 1987. Formation of anisotropy in upper mantle peridotites: a review. //Fuchs K, Froidevaux C eds. Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System. American Geophysical Union, 16: 111-123.

     

    Qu P, Chen Y S, Yu Y, et al. 2020. 3D velocity structure of upper mantle beneath South China and its tectonic implications: evidence from finite frequency seismic tomography. Chinese Journal of Geophysics (in Chinese), 63(8): 2954-2969, doi: 10.6038/cjg2020N0183.

     

    Ren J Y, Tamaki K, Li S T, et al. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344(3-4): 175-205. doi: 10.1016/S0040-1951(01)00271-2

     

    Richards S, Lister G, Kennett B. 2007. A slab in depth: Three-dimensional geometry and evolution of the Indo-Australian plate. Geochemistry, Geophysics, Geosystems, 8(12): Q12003, doi: 10.1029/2007GC001657.

     

    Richardson R M. 1992. Ridge forces, absolute plate motions, and the intraplate stress field. Journal of Geophysical Research: Solid Earth, 97(B8): 11739-11748. doi: 10.1029/91JB00475

     

    Ringwood A E, Irifune T. 1988. Nature of the 650-km seismic discontinuity-Implications for mantle dynamics and differentiation. Nature, 331: 131-136. doi: 10.1038/331131a0

     

    Savage M K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?. Reviews of Geophysics, 37(1): 65-106. doi: 10.1029/98RG02075

     

    Seton M, Müller R D, Zahirovic S, et al. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002

     

    Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth, 96(B10): 16429-16454. doi: 10.1029/91JB00899

     

    Silver P G, Holt W E. 2002. The mantle flow field beneath western North America. Science, 295(5557): 1054-1057. doi: 10.1126/science.1066878

     

    Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24(1): 385-432. doi: 10.1146/annurev.earth.24.1.385

     

    Stixrude L, Lithgow-Bertelloni C. 2011. Thermodynamics of mantle minerals—Ⅱ. Phase equilibria. Geophysical Journal International, 184(3): 1180-1213. doi: 10.1111/j.1365-246X.2010.04890.x

     

    Tao K, Grand S P, Niu F L. 2018. Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography. Geochemistry, Geophysics, Geosystems, 19(8): 2732-2763. doi: 10.1029/2018GC007460

     

    Tao N, Li Z X, Danišík M, et al. 2019. Post-250 Ma thermal evolution of the central Cathaysia Block (SE China) in response to flat-slab subduction at the proto-Western Pacific margin. Gondwana Research, 75: 1-15. doi: 10.1016/j.gr.2019.03.019

     

    van der Hilst R D, Widiyantoro S, Engdahl E R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386(6625): 578-584. doi: 10.1038/386578a0

     

    Vinnik L P, Farra V, Romanowicz B. 1989. Azimuthal anisotropy in the earth from observations of SKS at GEOSCOPE and NARS broadband stations. Bull. Seismol. Soc. Am. , 79(5): 1542-1558.

     

    Wang C Y, Chan W W, Mooney W D. 2003. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications. Journal of Geophysical Research: Solid Earth, 108(B9): 2442, doi: 10.1029/2002JB001973.

     

    Wang C Y, Chang L J, Ding Z F, et al. 2014. Upper mantle anisotropy and crust-mantle deformation pattern beneath the Chinese mainland. Science China Earth Sciences, 57(1): 132-143. doi: 10.1007/s11430-013-4675-5

     

    Wang C Y, Flesch L M, Chang L J, et al. 2013. Evidence of active mantle flow beneath South China. Geophysical Research Letters, 40(19): 5137-5141. doi: 10.1002/grl.50987

     

    Wang C Y, Flesch L M, Silver P G, et al. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36(5): 363-366. doi: 10.1130/G24450A.1

     

    Wang W Y, Becker T W. 2019. Upper mantle seismic anisotropy as a constraint for mantle flow and continental dynamics of the North American plate. Earth and Planetary Science Letters, 514: 143-155. doi: 10.1016/j.epsl.2019.03.019

     

    Wei W, Xu J D, Zhao D P, et al. 2012. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism. Journal of Asian Earth Sciences, 60: 88-103. doi: 10.1016/j.jseaes.2012.08.001

     

    Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 488(1-4): 293-325. doi: 10.1016/j.tecto.2009.06.002

     

    Yu D Y, Mi N, Huang H, et al. 2016. Crust and upper mantle structure and geodynamics beneath Southeast China revealed by broadband seismic observation data. Chinese Journal of Geology (in Chinese), 51(1): 99-115.

     

    Zhang N, Li Z X. 2018. Formation of mantle "lone plumes" in the global downwelling zone—A multiscale modelling of subduction-controlled plume generation beneath the South China Sea. Tectonophysics, 723: 1-13. doi: 10.1016/j.tecto.2017.11.038

     

    Zhang S Q, Karato S I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375(6534): 774-777. doi: 10.1038/375774a0

     

    Zhang S Q, O'Neill C. 2016. The early geodynamic evolution of Mars-type planets. Icarus, 265: 187-208. doi: 10.1016/j.icarus.2015.10.019

     

    Zhang Y J, Sekine T, Lin J F, et al. 2018. Shock compression and melting of an Fe-Ni-Si alloy: Implications for the temperature profile of the Earth's core and the heat flux across the core-mantle boundary. Journal of Geophysical Research: Solid Earth, 123(2): 1314-1327. doi: 10.1002/2017JB014723

     

    Zhou L Q, Xie J Y, Shen W S, et al. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophysical Journal International, 189(3): 1565-1583. doi: 10.1111/j.1365-246X.2012.05423.x

     

    Zhu K Y, Li Z X, Xu X S, et al. 2014. A Mesozoic Andean-type orogenic cycle in southeastern China as recorded by granitoid evolution. American Journal of Science, 314(1): 187-234. doi: 10.2475/01.2014.06

     

    常利军, 王椿镛, 丁志峰. 2009. 中国东部上地幔各向异性研究. 中国科学D辑: 地球科学, 39(9): 1169-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200909001.htm

     

    常利军, 丁志峰, 王椿镛. 2015a. 南北构造带南段上地幔各向异性特征. 地球物理学报, 58(11): 4052-4067, doi: 10.6038/cjg20151114. http://www.geophy.cn/article/doi/10.6038/cjg20151114

     

    常利军, 王椿镛, 丁志峰等. 2015b. 喜马拉雅东构造结及周边地区上地幔各向异性. 中国科学D辑: 地球科学, 45(5): 577-588. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201505003.htm

     

    常利军, 丁志峰, 王椿镛. 2016. 南北构造带北段上地幔各向异性特征. 地球物理学报, 59(11): 4035-4047, doi: 10.6038/cjg20161109. http://www.geophy.cn/article/doi/10.6038/cjg20161109

     

    丁志峰, 曾融生. 1996. 青藏高原横波分裂的观测研究. 地球物理学报, 39(2): 211-220. doi: 10.3321/j.issn:0001-5733.1996.02.008 http://www.geophy.cn/article/id/cjg_4095

     

    李长军, 甘卫军, 秦姗兰等. 2019. 青藏高原东南缘南段现今变形特征研究. 地球物理学报, 62(12): 4540-4553, doi: 10.6038/cjg2019M0692. http://www.geophy.cn/article/doi/10.6038/cjg2019M0692

     

    李善邦. 1957. 中国地震区域划分圖及其說明Ⅰ. 总的說明. 地球物理学报, 6(2): 127-158. http://www.geophy.cn/article/id/cjg_5773

     

    罗艳, 黄忠贤, 彭艳菊等. 2004. 中国大陆及邻区SKS波分裂研究. 地球物理学报, 47(5): 812-821. doi: 10.3321/j.issn:0001-5733.2004.05.012 http://www.geophy.cn/article/id/cjg_589

     

    曲平, 陈永顺, 于勇等. 2020. 华南地区上地幔P波三维速度结构和动力学意义: 来自有限频层析成像的证据. 地球物理学报, 63(8): 2954-2969, doi: 10.6038/cjg2020N0183. http://www.geophy.cn/article/doi/10.6038/cjg2020N0183

     

    于大勇, 米宁, 黄晖等. 2016. 华南壳幔结构与动力学的宽频地震观测研究. 地质科学, 51(1): 99-115.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  2141
  • PDF下载数:  211
  • 施引文献:  0
出版历程
收稿日期:  2021-12-25
修回日期:  2022-04-06
上线日期:  2023-05-10

目录