基于背景噪声方法的花岗岩型稀土矿地壳浅部结构特征及构造意义: 以江西赣州安西矿区为例

李成, 姚华建, 邓宝, 李俊伦, 吕坚, 邹新勇, 张青, 陈斌锋, 付光明, 张国印, 欧晓斌. 2023. 基于背景噪声方法的花岗岩型稀土矿地壳浅部结构特征及构造意义: 以江西赣州安西矿区为例. 地球物理学报, 66(10): 4132-4148, doi: 10.6038/cjg2022Q0863
引用本文: 李成, 姚华建, 邓宝, 李俊伦, 吕坚, 邹新勇, 张青, 陈斌锋, 付光明, 张国印, 欧晓斌. 2023. 基于背景噪声方法的花岗岩型稀土矿地壳浅部结构特征及构造意义: 以江西赣州安西矿区为例. 地球物理学报, 66(10): 4132-4148, doi: 10.6038/cjg2022Q0863
LI Cheng, YAO HuaJian, DENG Bao, LI JunLun, LÜ Jian, ZOU XinYong, ZHANG Qing, CHEN BinFeng, FU GuangMing, ZHANG GuoYin, OU XiaoBin. 2023. Shallow crust structure and its tectonic implications of granitic rare earth ore based on ambient noise techniques: A case study of Anxi Mining area, Ganzhou, Jiangxi Province. Chinese Journal of Geophysics (in Chinese), 66(10): 4132-4148, doi: 10.6038/cjg2022Q0863
Citation: LI Cheng, YAO HuaJian, DENG Bao, LI JunLun, LÜ Jian, ZOU XinYong, ZHANG Qing, CHEN BinFeng, FU GuangMing, ZHANG GuoYin, OU XiaoBin. 2023. Shallow crust structure and its tectonic implications of granitic rare earth ore based on ambient noise techniques: A case study of Anxi Mining area, Ganzhou, Jiangxi Province. Chinese Journal of Geophysics (in Chinese), 66(10): 4132-4148, doi: 10.6038/cjg2022Q0863

基于背景噪声方法的花岗岩型稀土矿地壳浅部结构特征及构造意义: 以江西赣州安西矿区为例

  • 基金项目:

    安徽省自然科学基金(2108085QD174),中国科学院重点部署项目(ZDRW-CN-2021-3-1),地震科技星火计划(XH20032)和安徽蒙城地球物理国家野外科学观测研究站联合开放基金项目(MENGO-202201)联合资助

详细信息
    作者简介:

    李成, 男, 1989年生, 讲师, 2019年获得中国科学技术大学固体地球物理专业博士学位, 主要从事背景噪声层析成像研究.E-mail: licheng@aust.edu.cn

    通讯作者: 姚华建, 男, 1979年生, 教授, 博士生导师, 主要从事地震波和背景噪声成像、岩石圈结构与变形、大地震破裂过程、地震台阵技术、地球物理联合反演等领域研究.E-mail: hjyao@ustc.edu.cn
  • 中图分类号: P315

Shallow crust structure and its tectonic implications of granitic rare earth ore based on ambient noise techniques: A case study of Anxi Mining area, Ganzhou, Jiangxi Province

More Information
  • 稀土资源是国家的战略性资源,在国民经济和国家安全等方面作用重大.目前,针对该资源的开发利用需要进一步加强勘探方法和成矿模式的研究.本研究在江西省赣州市安西镇稀土矿区10 km×6 km的区域内布设了一个约100台短周期地震仪器构成的面状台阵,以及两个48 m长各由25个短周期地震仪构成的线性台阵.通过背景噪声三维成像方法反演获得矿区地表至2.2 km深度的地壳浅部三维横波速度结构.以典型花岗岩风化壳为例,使用面波的相移成像法,反演了从地表全风化层至约40 m深度的一维横波速度结构.以该一维速度结构为参考,使用噪声谱比法(HVSR)探测了矿区内的松散沉积厚度,并结合钻孔数据验证了该方法对花岗岩型风化壳基底面的有效探测.综合上述结果,本研究通过三维横波速度结构圈定了安西岩体中稀土的成矿母岩(花岗岩)在上地壳的分布范围和形态,显示了安西岩体所处的丘陵盆地的构造背景为花岗岩型稀土矿成矿过程提供有利条件;结合HVSR结果、一维横波速度模型和钻孔数据,探测了富集稀土矿的风化壳从全风化层顶部至母岩的深度和结构,松散沉积厚度显示了矿集区和山区的沉积环境差异.本研究可以为花岗岩型稀土资源的勘探提供一系列基于背景噪声地震学的方法和策略,建立了火山岩型风化壳的起源、发育和演化的构造模型,为该类稀土矿的深-浅部结构演化过程和构造活动影响研究提供参考.

  • 加载中
  • 图 1 

    江西赣州安西稀土矿区概图

    Figure 1. 

    Overview of the Anxi rare earth mining area in Ganzhou, Jiangxi

    图 2 

    线性台阵叠加后互相关函数及瑞利波相速度时频分析图谱

    Figure 2. 

    Stacked cross-correlation functions from linear array data and the time-frequency analysis spectrum for Rayleigh wave phase velocity

    图 3 

    面状台阵数据的叠加后互相关函数、噪声源分布、群速度频散曲线和初始一维横波速度结构

    Figure 3. 

    Stacked cross-correlation functions from planar array, ambient noise source distribution, group velocity dispersion curves and initial 1D shear velocity model

    图 4 

    线性台阵下方结构的的频散曲线及一维横波速度结构

    Figure 4. 

    The dispersion curves and 1D shear velocity model beneath the linear array

    图 5 

    HVSR曲线及其对应的基岩深度

    Figure 5. 

    The HVSR curves and the depth of bedrock

    图 6 

    HVSR峰值频率和基岩深度分布图

    Figure 6. 

    Distribution map of the HVSR peak frequency and bedrock depth

    图 7 

    反演的数据残差及Rayleigh波群速度深度敏感核

    Figure 7. 

    Data residuals from inversion and depth sensitive kernels of Rayleigh wave group velocities

    图 8 

    检测版分辨率测试的反演输入模型及结果

    Figure 8. 

    The input model and results of the checkboard resolution test

    图 9 

    研究区域四个不同深度的上地壳横波速度水平方向切片

    Figure 9. 

    Horizontal slices of the upper crust shear wave velocity at four different depths in the study area

    图 10 

    三条深度剖面(位置如图 1b中所示)的结构

    Figure 10. 

    The structure of the three depth profiles (locations shown in Fig. 1b)

    图 11 

    安西稀土矿区一典型花岗岩风化壳一维钻孔岩性结构示意图

    Figure 11. 

    Schematic diagram of one-dimensional lithological structure from a borehole at a typical granite weathering crust in the Anxi rare earth mining area

    图 12 

    安西岩体花岗岩及风化壳发育演化模型图

    Figure 12. 

    Evolution model of granite and weathering crust of the Anxi rock mass

  •  

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x

     

    Berger A, Janots E, Gnos E, et al. 2014. Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar. Applied Geochemistry, 41: 218-228. doi: 10.1016/j.apgeochem.2013.12.013

     

    Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the earth's crust. Bulletin of the Seismological Society of America, 95(6): 2081-2092. doi: 10.1785/0120050077

     

    Caetano-Filho S, Paula-Santos G M, Dias-Britod D. 2018. Carbonate REE+Y signatures from the restricted early marine phase of South Atlantic Ocean (late Aptian-Albian): the influence of early anoxic diagenesis on shale-normalized REE+Y patterns of ancient carbonate rocks. Palaeogeography, Palaeoclimatology, Palaeoecology, 500: 69-83. doi: 10.1016/j.palaeo.2018.03.028

     

    Chen P R. 1998. Tectonic dynamic setting, genesis and evolution of the early Yanshanian bimodal volcanic intrusive complex in southern Jiangxi[Ph. D. thesis] (in Chinese). Nanjing: University of Nanjing.

     

    Cheng F, Xia J H, Luo Y H, et al. 2016. Multichannel analysis of passive surface waves based on crosscorrelations. Geophysics, 81(5): EN57-EN66. doi: 10.1190/geo2015-0505.1

     

    Chi R A, Tian J, Luo X P, et al. 2012. The basic research on the weathered crust elution-deposited rare earth ores. Nonferrous Metals Science and Engineering (in Chinese), 3(4): 1-13.

     

    Deng B, Li J L, Liu J S, et al. 2022. The extended range phase shift method for broadband surface wave dispersion measurement from ambient noise and its application in ore deposit characterization. Geophysics, 87(3): JM29-JM40. doi: 10.1190/geo2021-0320.1

     

    Fang H J, Yao H J, Zhang H J, et al. 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophysical Journal International, 201(3): 1251-1263. doi: 10.1093/gji/ggv080

     

    He Y, Cheng L, Li Y, et al. 2015. The mineralization mechanism of the Ion adsorption type rare earths ore and prospecting marks. Chinese Rare Earths (in Chinese), 36(4): 98-103.

     

    Kynicky J, Smith M P, Xu C. 2012. Diversity of rare earth deposits: the key example of China. Elements, 8(5): 361-367. doi: 10.2113/gselements.8.5.361

     

    Lachetl C, Bard P Y. 1994. Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique. Journal of Physics of the Earth, 42(5): 377-397. doi: 10.4294/jpe1952.42.377

     

    Li C, Yao H J, Fang H J, et al. 2016.3D near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area, China. Seismological Research Letters, 87(4): 882-892. doi: 10.1785/0220150257

     

    Li C, Yao H J, Yang Y, et al. 2020.3-D shear velocity structure in the shallow crust of Tanlu fault zone in Lujiang, Anhui, and adjacent areas and its tectonic implication. Earth and Planetary Physics, 4(3), 317-328

     

    Liu E H, Huang J, Tan W, et al. 2022. Constraints on the REE enrichment -fractionation in weathering crust by the mineral evolution in the weathering and leaching processes: A case study of the Renju REE Deposit in the Meizhou area, Guangdong, China. Bulletin of Mineralogy, Petrology and Geochemistry (in Chinese), 41(3): 517-526.

     

    Liu S, Ding L, Fan H R, et al. 2020. Hydrothermal genesis of Nb mineralization in the giant Bayan Obo REE-Nb-Fe deposit (China): implicated by petrography and geochemistry of Nb-bearing minerals. Precambrian Research, 348: 105864, doi: 10.1016/j.precamres.2020.105864.

     

    Liu Y, Zhang H J, Fang H J, et al. 2018. Ambient noise tomography of three-dimensional near-surface shear-wave velocity structure around the hydraulic fracturing site using surface microseismic monitoring array. Journal of Applied Geophysics, 159: 209-217 doi: 10.1016/j.jappgeo.2018.08.009

     

    Luo K, Ma J L. 2022. Recent advances in migration and enrichment of rare earth elements during chemical weathering of granite. Advances in Earth Science (in Chinese), 37(7): 692-708.

     

    Luo S, Yao H J, Li Q S, et al. 2019. High-resolution 3D crustal S-wave velocity structure of the Middle-Lower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting. Science China Earth Sciences, 62(9): 1361-1378. doi: 10.1007/s11430-018-9352-9

     

    Maulana A, Yonezu K, Watanabe K. 2014. Geochemistry of rare earth elements (REE) in the weathered crusts from the granitic rocks in Sulawesi Island, Indonesia. Journal of Earth Science, 25(3): 460-472. doi: 10.1007/s12583-014-0449-z

     

    Migon P. 2013. Weathering mantles and long-term landform evolution. //Shroder J F ed. Treatise on Geomorphology. Amsterdam: Elsevier, 127-144.

     

    Min G, Shu R B, Liu K, et al. 2022. Exploration test of 3D deep structure and floor fracture zone in ion type rare earth ore district. The Chinese Journal of Nonferrous Metals (in Chinese), 32(6): 1833-1843.

     

    Padrones J T, Imai A, Takahashi R. 2017. Geochemical behavior of rare earth elements in weathered granitic rocks in Northern Palawan, Philippines. Resource Geology, 67(3): 231-253. doi: 10.1111/rge.12123

     

    Park C B, Miller R D, Xia J H, et al. 2007. Multichannel analysis of surface waves (MASW)—Active and passive methods. The Leading Edge, 26(1): 60-64. doi: 10.1190/1.2431832

     

    Parolai S, Bormann P, Milkereit C. 2002. New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V Ratio of Seismic Noise for the Cologne Area (Germany). Bulletin of the Seismological Society of America, 92(6): 2521-2527. doi: 10.1785/0120010248

     

    Peng F, Wang W J, Kou H D. 2020. Microtremer H/V spectral ratio investigation in the Sanhe-Pinggu area: site responses, shallow sedimentary structure, and fault activity revealed. Chinese Journal of Geophysics (in Chinese), 63(10): 3775-3790.

     

    Qiao L, Yao H J, Lai Y C, et al. 2018. Crustal structure of southwest China and Northern Vietnam from ambient noise tomography: implication for the large-scale material transport model in SE Tibet. Tectonics, 37(5): 1492-1506. doi: 10.1029/2018TC004957

     

    Sanematsu K, Kon Y, Imai A. 2015. Influence of phosphate on mobility and adsorption of REEs during weathering of granites in Thailand. Journal of Asian Earth Sciences, 111: 14-30. doi: 10.1016/j.jseaes.2015.05.018

     

    Sanematsu K, Ejima T, Kon Y, et al. 2016. Fractionation of rare-earth elements during magmatic differentiation and weathering of calc-alkaline granites in southern Myanmar. Mineralogical Magazine, 80(1): 77-102. doi: 10.1180/minmag.2016.080.053

     

    Seht M I V, Wohlenberg J. 1999. Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89(1): 250-259. doi: 10.1785/BSSA0890010250

     

    Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7): L07614, doi: 10.1029/2004GL019491.

     

    Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715): 1615-1618 doi: 10.1126/science.1108339

     

    Song W J, Wu X S, Yang T T, et al. 2019. Application of Japanese SBP data on deep-sea REY survey and implications. China Mining Magazine (in Chinese), 28(4): 173-180.

     

    Su N, Yang S Y, Guo Y L, et al. 2017. Revisit of rare earth element fractionation during chemical weathering and river sediment transport. Geochemistry, Geophysics, Geosystems, 18(3): 935-955. doi: 10.1002/2016GC006659

     

    Wang D H, Zhao Z, Yu Y, et al. 2013. Progress, problems and research orientation of ion-adsorption type rare earth resources. Rock and Mineral Analysis (in Chinese), 32(5): 796-802. doi: 10.3969/j.issn.0254-5357.2013.05.020

     

    Wang D H, Zhao Z, Yu Y, et al. 2017. A review of the achievements in the survey and study of Ion-absorption type REE deposits in China. Acta Geoscientica Sinica (in Chinese), 38(3): 317-325.

     

    Wang D H, Zhao Z, Yu Y, et al. 2018. Exploration and research progress on ion-adsorption type REE deposit in South China. China Geology, 1(3): 415-424.

     

    Wang W J, Liu L B, Chen Q F, et al. 2009. Applications of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure. Chinese Journal of Geophysics (in Chinese), 52(6): 1515-1525, doi: 10.3969/j.issn.0001-5733.2009.06.013.

     

    Wang W J, Chen Q F, Qi C, et al. 2011. The feasibilities and limitations to explore the near-surface structure with microtremor HVSR method—a case in Baoding area of Hebei Province, China. Chinese Journal of Geophysics (in Chinese), 54(7): 1783-1797, doi: 10.3969/j.issn.0001-5733.2011.07.012.

     

    Xia J H, Miller R D, Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64(3): 691-700. doi: 10.1190/1.1444578

     

    Xie Y L, Hou Z Q, Goldfarb R J, et al. 2016. Rare earth element deposits in China. //Verplanck P L, Hitzman M W eds. Rare Earth and Critical Elements in Ore Deposits. Golden: Society of Economic Geologists, 115-136.

     

    Xie Z D, Yang Y G. 2000. Isotopic age of zircon in Anxi pluton of Xinfeng, Jiangxi, and its geological implications. Jiangxi Geology (in Chinese), 14(3): 172-175.

     

    Yan H M L, Wen W Z, Zhou M. 2017. Nature of parent rock, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model. Journal of Asian Earth Sciences, 148(2017): 65-95.

     

    Yang M G, Wang G H. 2020. Core-mantle-type extensional mode and dynamic mechanism of the magmatic metallogenic explosion of the Yanshanian in the Cathaysian metallogenic province. Journal of Geomechanics (in Chinese), 26(1): 1-12.

     

    Yao H J, Van DerHilst R D, De Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis——I. Phase velocity maps. Geophysical Journal International, 166(2): 732-744. doi: 10.1111/j.1365-246X.2006.03028.x

     

    Yao H J, Beghein C, Van Der Hilst R D. 2008. Surface wave array tomography in SE tibet from ambient seismic noise and two-station analysis——Ⅱ. Crustal and upper-mantle structure. Geophysical Journal International, 173(1): 205-219.

     

    Yao H J, Gouedard P, McGuire J, et al. 2011. Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves. Comptes Rendues Geoscience de l'Académie des Sciences, 343: 571-583. doi: 10.1016/j.crte.2011.04.004

     

    Ye D X, Zhong J G, Deng Y C, et al. 2021. Applicaton of high density electric method in an ion adsorption type rare earth mine (in Chinese). //New Progress in Geoscience in Jiangxi Province 2021——Proceedings of the 11th Member Congress of Jiangxi Provincial Geological Society and 2021 Annual Conference of Jiangxi Provincial Geological Society. Yichun: Jiangxi Geological Society, 144-149.

     

    Zhao Z, Wang D H, Wang C H, et al. 2019. Progress in prospecting and research of ion-adsorption type REE deposits. Acta Geologica Sinica (in Chinese), 93(6): 1454-1465.

     

    Zhao Z, Wang D H, Zou X Y. 2022. The genesis and diversity of ion adsorption REE mineralization in the Zhaibei deposit, Jiangxi Province, South China. Acta Petrologica Sinica (in Chinese), 38(2): 356-370. doi: 10.18654/1000-0569/2022.02.04

     

    Zhang Y Y, Yao H J, Yang H Y, et al. 2018.3-D crustal shear wave velocity structure of the Taiwan strait and fujian, SE China, revealed by ambient noise tomography. Journal of Geophysical Research, 123.

     

    Zhong S S, Han Y S, Huang X H, et al. 2021. Geological characteristics and genesis of ion adsorption type heavy rare earth deposit in Shitouping, Anyuan County (in Chinese). //New Progress in Geoscience in Jiangxi Province 2021——Proceedings of the 11th Member Congress of Jiangxi Provincial Geological Society and 2021 Annual Conference of Jiangxi Provincial Geological Society. Yichun: Jiangxi Geological Society, 255-261.

     

    Zhou M F, Li X X, Wang Z C, et al. 2020. The genesis of regolith-hosted rare earth element and scandium deposits: current understanding and outlook to future prospecting. Chinese Science Bulletin (in Chinese), 65(33): 3809-3824.

     

    陈培荣. 1998. 赣南燕山早期双峰式火山侵入杂岩的构造动力学背景及其成因和演化[博士论文]. 南京: 南京大学.

     

    池汝安, 田君, 罗仙平等. 2012. 风化壳淋积型稀土矿的基础研究. 有色金属科学与工程, 3(4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201204003.htm

     

    何耀, 程柳, 李毅等. 2015. 离子吸附型稀土矿的成矿机理及找矿标志. 稀土, 36(4): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201504018.htm

     

    刘恩豪, 黄健, 谭伟等. 2022. 风化淋积过程中矿物演化对稀土元素富集-分异的制约: 以梅州仁居稀土矿床为例. 矿物岩石地球化学通报, 41(3): 517-526. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202203005.htm

     

    罗松, 姚华建, 李秋生等. 2019. 长江中下游成矿带高分辨地壳三维横波速度结构及其形成的深部动力学背景. 中国科学: 地球科学, 49(9): 1394-1412. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201909006.htm

     

    雒恺, 马金龙. 2022. 花岗岩风化过程中稀土元素迁移富集机制研究进展. 地球科学进展, 37(7): 692-708. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202207003.htm

     

    闵刚, 舒荣波, 刘康等. 2022. 离子型稀土矿区深部三维结构与底板破碎带勘探试验. 中国有色金属学报, 32(6): 1833-1843. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202206027.htm

     

    彭菲, 王伟君, 寇华东. 2020. 三河—平谷地区地脉动H/V谱比法探测: 场地响应、浅层沉积结构及其反映的断层活动. 地球物理学报, 63(10): 3775-3790. http://www.geophy.cn/article/doi/10.6038/cjg2020O0025

     

    宋韦剑, 吴西顺, 杨添天等. 2019. 日本利用SBP数据勘探深海稀土的方法总结. 中国矿业, 28(4): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201904033.htm

     

    王登红, 赵芝, 于扬等. 2013. 离子吸附型稀土资源研究进展、存在问题及今后研究方向. 岩矿测试, 32(5): 796-802. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201305022.htm

     

    王登红, 赵芝, 于扬等. 2017. 我国离子吸附型稀土矿产科学研究和调查评价新进展. 地球学报, 38(3): 317-325. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201703002.htm

     

    王伟君, 刘澜波, 陈棋福等. 2009. 应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构. 地球物理学报, 52(6): 1515-1525, doi: 10.3969/j.issn.0001-5733.2009.06.013.

     

    王伟君, 陈棋福, 齐诚等. 2011. 利用噪声HVSR方法探测近地表结构的可能性和局限性——以保定地区为例. 地球物理学报, 54(7): 1783-1797, doi: 10.3969/j.issn.0001-5733.2011.07.012.

     

    谢振东, 杨永革. 2000. 江西信丰安西岩体同位素年龄及其地质意义. 江西地质, 14(3): 172-175. https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ200003002.htm

     

    杨明桂, 王光辉. 2020. 论华夏成矿省燕山期岩浆成矿大爆发的核幔式扩展模式与动力机制——纪念李四光先生诞辰130周年. 地质力学学报, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202001002.htm

     

    叶东旭, 钟建国, 邓以超等. 2021. 高密度电法在赣南某离子型稀土矿山的应用. //江西地学新进展2021——江西省地质学会第十一次会员代表大会暨江西省地质学会2021年学术年会论文集. 宜春: 江西省地质学会, 144-149.

     

    赵芝, 王登红, 王成辉等. 2019. 离子吸附型稀土找矿及研究新进展. 地质学报, 93 (6): 1454-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906021.htm

     

    赵芝, 王登红, 邹新勇. 2022. "寨背式"离子吸附型稀土矿床多类型稀土矿化及其成因. 岩石学报, 38(2): 356-370. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202202004.htm

     

    钟书松, 韩永顺, 黄小洪等. 2021. 安远县石头坪离子吸附型重稀土矿区地质特征及成因. //江西地学新进展2021——江西省地质学会第十一次会员代表大会暨江西省地质学会2021年学术年会论文集. 宜春: 江西省地质学会, 255-261.

     

    周美夫, 李欣禧, 王振朝等. 2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望. 科学通报, 65(33): 3809-3824. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033014.htm

  • 加载中

(12)

计量
  • 文章访问数:  3147
  • PDF下载数:  274
  • 施引文献:  0
出版历程
收稿日期:  2022-10-25
修回日期:  2023-06-05
上线日期:  2023-10-10

目录