基于GP14.3运动学混合震源模型和SPECFEM 3D谱元法的宽频地震动模拟

巴振宁, 赵靖轩, 张郁山, 梁建文, 张玉洁. 2023. 基于GP14.3运动学混合震源模型和SPECFEM 3D谱元法的宽频地震动模拟. 地球物理学报, 66(3): 1125-1138, doi: 10.6038/cjg2022Q0181
引用本文: 巴振宁, 赵靖轩, 张郁山, 梁建文, 张玉洁. 2023. 基于GP14.3运动学混合震源模型和SPECFEM 3D谱元法的宽频地震动模拟. 地球物理学报, 66(3): 1125-1138, doi: 10.6038/cjg2022Q0181
BA ZhenNing, ZHAO JingXuan, ZHANG YuShan, LIANG JianWen, ZHANG YuJie. 2023. Broadband ground motion spectral element simulation based on GP14.3 kinematic hybrid source model and SPECFEM 3D. Chinese Journal of Geophysics (in Chinese), 66(3): 1125-1138, doi: 10.6038/cjg2022Q0181
Citation: BA ZhenNing, ZHAO JingXuan, ZHANG YuShan, LIANG JianWen, ZHANG YuJie. 2023. Broadband ground motion spectral element simulation based on GP14.3 kinematic hybrid source model and SPECFEM 3D. Chinese Journal of Geophysics (in Chinese), 66(3): 1125-1138, doi: 10.6038/cjg2022Q0181

基于GP14.3运动学混合震源模型和SPECFEM 3D谱元法的宽频地震动模拟

  • 基金项目:

    国家自然科学基金资助项目(52178495),中南大学前沿交叉研究项目(2023QYJC006)共同资助

详细信息
    作者简介:

    巴振宁, 男, 1980年生, 教授, 博士, 主要从事大尺度复杂场地宽频地震动模拟研究.E-mail: bazhenning_001@163.com

    通讯作者: 张郁山, 男, 1974年生, 研究员, 博士, 主要从事地震工程领域相关研究.E-mail: hyszhang@163.com
  • 中图分类号: P315, TU43

Broadband ground motion spectral element simulation based on GP14.3 kinematic hybrid source model and SPECFEM 3D

More Information
  • 基于确定性物理模型的全过程地震动模拟是现代地震工程的重要发展方向.然而受限于合理震源模型和计算资源需求,目前模拟的有效频率还多处于低频范围,难以满足工程结构敏感频带(5~10 Hz或更高)需求.本文即借助运动学混合震源模型能激发宽频地震波和谱元法空间高精度及计算收敛快的优势,首先将确定性的凹凸体震源模型与GP14.3随机震源模型结合得到有限断层运动学混合震源模型,进而将上述混合震源模型开发到SPECFEM 3D谱元法开源代码中,实现了基于谱元法和运动学混合震源模型的全过程宽频带地震动模拟.将方法首先应用于一维波速结构模型0~10 Hz地震动模拟,通过与频率波数域(FK)方法结果进行比较,验证了方法的精度;进而应用于2021年5月21日云南漾濞6.4级地震0.1~5 Hz地震动模拟,通过与4个台站的时程记录和相应反应谱的比较,以及与NGA-West2地震动衰减方程在频率0.1~5 Hz的反应谱的比较,检验了方法的适用性;最后给出了漾濞地区的地震动峰值加速度(PGA)和峰值速度(PGV)云图,分析了漾濞地震下近场强地面运动的空间分布特征.结果显示,震中PGA接近400 cm·s-2,PGV达到45 cm·s-1,烈度达到Ⅸ度,且受局部地形起伏影响,大理以及洱海西侧位置出现高烈度异常区.

  • 加载中
  • 图 1 

    基于SPECFEM 3D混合运动学震源建模流程图

    Figure 1. 

    Flow chart of hybrid kinematic source based on SPECFEM 3D

    图 2 

    均匀(a)和多层(b)一维波速结构模型

    Figure 2. 

    Homogeneous (a) and multi-layer (b) 1D wave velocity structure models

    图 3 

    均匀(a)和多层(b)一维波速结构模型对应的混合运动学震源

    Figure 3. 

    Homogeneous (a) and muti-layer (b) hybrid kinematic source model

    图 4 

    观测点P1和P2位置

    Figure 4. 

    Observation points P1 and P2

    图 5 

    P1(a)和P2(b)均匀一维波速结构模型计算结果

    Figure 5. 

    Calculation results of P1 (a) and P2 (b) homogeneous 1D wave velocity structure models

    图 6 

    P1(a)和P2(b)多层一维波速结构模型计算结果

    Figure 6. 

    Calculation results of P1 (a) and P2 (b) multilayer 1D wave velocity structure models

    图 7 

    漾濞地震模拟区域

    Figure 7. 

    Yangbi seismic simulation area

    图 8 

    漾濞地震混合运动学震源模型

    Figure 8. 

    Hybrid kinematic source model of the Yangbi earthquake

    图 9 

    模拟与(YBX\\DLY\\YPX\\BTH)台站记录的加速度时程和反应谱(Sa)对比

    Figure 9. 

    The simulation is compared with acceleration time histories and reaction spectra (Sa) recorded at (YBX\\DLY\\YPX\\BTH) stations

    图 10 

    不同周期下模拟的加速度反应谱RotD50结果和GMPE曲线对比结果

    Figure 10. 

    The results of simulated acceleration response spectrum RotD50 are compared

    图 11 

    地震动PGA(a)和PGV(b)分布图

    Figure 11. 

    Distribution of ground motion PGA (a) and PGV (b)

    表 1 

    断层全局震源参数

    Table 1. 

    Fault global source parameters

    震源参数 参数值 震源参数 参数值
    走向(°) 45 断层面长度(km) 10
    倾角(°) 90 断层面宽度(km) 10
    滑动角(°) 100 子源划分尺寸(km) 1
    断层顶面埋深(基岩) 0 断层顶面埋深(多层) 5
    沿倾向的破裂起始点
    (km)
    5 沿走向的破裂起始点
    (km)
    5
    下载: 导出CSV

    表 2 

    断层局部震源参数

    Table 2. 

    Fault local source parameters

    局部参数 单位 公式 参数值



    面积Sm km2 lgSm=lgS-0.66 15.75
    平均错动量Dm cm lgDm=lgD+0.26 164.5
    长度Lm km lgLm=lgL-0.2 3.5
    宽度Wm km lgWm=lgW-0.39 4.5
    沿走向中心Xm km lgXm=lgL-0.34 5
    沿倾向中心Ym km lgYm=lgW-0.25 4.5
    注:SDLW分别为震源破裂面的面积、长度、平均错动量.
    下载: 导出CSV

    表 3 

    漾濞地区速度结构参数

    Table 3. 

    Velocity structure parameters of Yangbi area

    深度/km VP/(km·s-1) VS/(km·s-1) ρ/(kg·m-3) Q
    -2 4.30 2.10 2320 168
    -4 4.70 2.52 2400 200
    -10 5.31 3.20 2650 500
    -15 5.70 3.35 2700 1000
    -20 5.92 3.43 2760 2000
    -25 6.49 3.60 2920 9999
    -30 7.10 4.03 3050 9999
    下载: 导出CSV

    表 4 

    漾濞地震断层全局震源参数

    Table 4. 

    Global source parameters of the Yangbi earthquake fault

    震源参数 参数值 震源参数 参数值
    走向(°) 135 断层面长度(km) 15
    倾角(°) 82 断层面宽度(km) 15
    滑动角(°) 165 断层顶面深度(km) 3
    下载: 导出CSV

    表 5 

    漾濞地震断层局部震源参数

    Table 5. 

    Local source parameters of the Yangbi earthquake fault

    局部参数 单位 定标律 参数值



    面积Sm km2 lgSm=lgS-0.66 48
    平均错动量Dm cm lgDm=lgD+0.26 102
    长度Lm km lgLm=lgL-0.26 8
    宽度Wm km lgWm=lgW-0.39 6
    沿走向中心Xm km lgXm=lgL-0.34 7
    沿倾向中心Ym km lgYm=lgW-0.25 9
    下载: 导出CSV
  •  

    Ba Z N, Sang Q Z, Wu M T, et al. 2021. The revised direct stiffness matrix method for seismogram synthesis due to dislocations: from crustal to geotechnical scale. Geophysical Journal International, 227(1): 717-734, doi: 10.1093/gji/ggab248.

     

    Ba Z N, Liu Y, Liang J W, et al. 2022. The dynamic stiffness matrix method for seismograms synthesis for layered transversely isotropic half-space. Applied Mathematical Modelling, 104: 205-227, doi: 10.1016/j.apm.2021.11.022.

     

    Baltay A S, Hanks T C, Abrahamson N A. 2017. Uncertainty, variability, and earthquake physics in ground-motion prediction equations. Bulletin of the Seismological Society of America, 107(4): 1754-1772, doi: 10.1785/0120160164.

     

    Cao Z L, Tao X X, Tao Z R, et al. 2019. Kinematic source modeling for the synthesis of broadband ground motion using the f-k approach. Bulletin of the Seismological Society of America, 109(5): 1738-1757, doi: 10.1785/0120180294.

     

    Cao Z L. 2020. Synthesis of three-component broadband strong ground motion field based on FK approach [Ph. D. thesis] (in Chinese). Harbin: Harbin Institute of Technology, doi: 10.27061/d.cnki.ghgdu.2020.002971.

     

    Dangkua D T, Rong Y F, Magistrale H. 2018. Evaluation of NGA-West2 and Chinese ground-motion prediction equations for developing seismic hazard maps of mainland China. Bulletin of the Seismological Society of America, 108(5A): 2422-2443, doi: 10.1785/0120170186.

     

    Frankel A. 2009. A constant stress-drop model for producing broadband synthetic seismograms: comparison with the next generation attenuation relations. Bulletin of the Seismological Society of America, 99(2A): 664-680, doi: 10.1785/0120080079.

     

    Fu H H, He C H, Chen B W, et al. 2017. 18.9-Pflops nonlinear earthquake simulation on Sunway TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios. //Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Denver: ACM, 2, doi: 10.1145/3126908.3126910.

     

    Graves R, Pitarka A. 2015. Refinements to the Graves and Pitarka (2010) broadband ground-motion simulation method. Seismological Research Letters, 86(1): 75-80, doi: 10.1785/0220140101.

     

    Graves R W, Pitarka A. 2010. Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100(5A): 2095-2123, doi: 10.1785/0120100057.

     

    He X J, Pan H. 2021. Simulation of strong ground motion from the 2021 Yangbi, Yunnan MS6.4 earthquake. Seismology and Geology (in Chinese), 43(4): 920-935, doi: 10.3969/j.issn.0253-4967.2021.04.012.

     

    Irikura K, Miyake H. 2011. Recipe for predicting strong ground motion from crustal earthquake scenarios. Pure and Applied Geophysics, 168(1-2): 85-104, doi: 10.1007/s00024-010-0150-9.

     

    Jiang W, Tao X X, Tao Z R, et al. 2017. Scaling laws of local parameters of finite fault source model. Earthquake Engineering and Engineering Vibration (in Chinese), 37(6): 23-30, doi: 10.13197/j.eeev.2017.06.23.jiangw.003.

     

    Kagawa T, Irikura K, Somerville P G. 2004. Differences in ground motion and fault rupture process between the surface and buried rupture earthquakes. Earth, Planets and Space, 56(1): 3-14, doi: 10.1186/BF03352486.

     

    Komatitsch D, Tromp J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 139(3): 806-822, doi: 10.1046/j.1365-246x.1999.00967.x.

     

    Li X B, Bo J S, Qi W H, et al. 2014. Spectral element method in seismic ground motion simulation. Progress in Geophysics (in Chinese), 29(5): 2029-2039, doi: 10.6038/pg20140506.

     

    Liang J W, Wu M T, Ba Z N. 2022. Simulation of broadband seismic wave propagation in a crustal half-space in frequency-wavenumber domain generated by shear dislocation sources. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 41(3): 543-558.

     

    Lin P S, Chiou B, Abrahamson N, et al. 2011. Repeatable source, site, and path effects on the standard deviation for empirical ground-motion prediction models. Bulletin of the Seismological Society of America, 101(5): 2281-2295, doi: 10.1785/0120090312.

     

    Mai P M, Beroza G C. 2002. A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research: Solid Earth, 107(B11): 2308, doi: 10.1029/2001JB000588.

     

    Mai P M, Imperatori W, Olsen K B. 2010. Hybrid broadband ground-motion simulations: combining long-period deterministic synthetics with high-frequency multiple S-to-S backscattering. Bulletin of the Seismological Society of America, 100(5A): 2124-2142, doi: 10.1785/0120080194.

     

    Qiang S Y, Wang H W, Wen R Z, et al. 2021. Three-dimensional ground motion simulations by the stochastic finite-fault method for the Yangbi, Yunnan MS6.4 earthquake on May 21, 2021. Chinese Journal of Geophysics (in Chinese), 64(12): 4538-4547, doi: 10.6038/cjg2021P0404.

     

    Rodgers A J, Anders Petersson N, Pitarka A, et al. 2019. Broadband (0-5 Hz) fully deterministic 3D ground-motion simulations of a magnitude 7.0 Hayward fault earthquake: comparison with empirical ground-motion models and 3D path and site effects from source normalized intensities. Seismological Research Letters, 90(3): 1268-1284, doi: 10.1785/0220180261.

     

    Rodgers A J, Pitarka A, Pankajakshan R, et al. 2020. Regional-Scale 3D ground-motion simulations of MW7 earthquakes on the Hayward fault, northern California resolving frequencies 0-10 Hz and including site-response corrections. Bulletin of the Seismological Society of America, 110(6): 2862-2881, doi: 10.1785/0120200147.

     

    Sahakian V J, Baltay A, Hanks T C, et al. 2019. Ground motion residuals, path effects, and crustal properties: a pilot study in Southern California. Journal of Geophysical Research: Solid Earth, 124(6): 5738-5753, doi: 10.1029/2018JB016796.

     

    Sun X D, Tao X X. 2012. Hybrid simulation of broadband ground motion: overview. Acta Seismologica Sinica (in Chinese), 34(4): 571-577, doi: 10.3969/j.issn.0253-3782.2012.04.013.

     

    Wang H Y. 2004. Finite fault source model for predicting near-field strong ground motion[Ph. D. thesis](in Chinese). Harbin: Institute of Engineering Mechanics, China Earthquake Administration.

     

    Wang H Y, Xie L L. 2008. A review on near-fault ground motion simulation. Advances in Earth Science (in Chinese), 23(10): 1043-1049.

     

    Wang H Y, Xie L L, Tao X X. 2008. Finite fault source model for predicting near-fault strong ground motion. Earth Science-Journal of China University of Geosciences (in Chinese), 33(6): 843-851. doi: 10.3799/dqkx.2008.101

     

    Xu K. 2020. Broadband ground motion simulation method considering nonlinear site effects [Master′s thesis](in Chinese). Harbin: Harbin Institute of Technology, doi: 10.27061/d.cnki.ghgdu.2020.000520.

     

    Zhou H, Li Y N, Chang Y. 2021. Simulation and analysis of spatial distribution characteristics of strong ground motions by the 2021 Yangbi, Yunnan province MS6.4 earthquake. Chinese Journal of Geophysics (in Chinese), 64(12): 4526-4537, doi: 10.6038/cjg2021P0421.

     

    Zhang B, Li X J, Lin G L, et al. 2021. Analysis of strong ground motion characteristics and defectivity effect in the near-field for the May 21, 2021 MS6.4 Yangbi earthquake. Chinese Journal of Geophysics (in Chinese), 64(10): 3619-3631. doi: 10.6038/cjg2021O0529.

     

    曹泽林. 2020. 基于FK法的三分量宽频带强地震动场合成[博士论文]. 哈尔滨: 哈尔滨工业大学, doi: 10.27061/d.cnki.ghgdu.2020.002971.

     

    何欣娟, 潘华. 2021. 2021年云南漾濞MS6.4地震的强地面运动模拟. 地震地质, 43(4): 920-935, doi: 10.3969/j.issn.0253-4967.2021.04.012.

     

    姜伟, 陶夏新, 陶正如等. 2017. 有限断层震源模型局部参数定标律. 地震工程与工程振动, 37(6): 23-30, doi: 10.13197/j.eeev.2017.06.23.jiangw.003.

     

    李孝波, 薄景山, 齐文浩等. 2014. 地震动模拟中的谱元法. 地球物理学进展, 29(5): 2029-2039, doi: 10.6038/pg20140506.

     

    梁建文, 吴孟桃, 巴振宁. 2022. 频率波数域内地壳层半空间剪切位错源宽频地震波传播模拟. 岩石力学与工程学报, 41(3): 543-558. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202203010.htm

     

    强生银, 王宏伟, 温瑞智等. 2021. 2021年5月21日云南漾濞MS6.4地震随机有限断层三维地震动模拟. 地球物理学报, 64(12): 4538-4547, doi: 10.6038/cjg2021P0404. http://www.geophy.cn/article/doi/10.6038/cjg2021P0404

     

    孙晓丹, 陶夏新. 2012. 宽频带地震动混合模拟方法综述. 地震学报, 34(4): 571-577, doi: 10.3969/j.issn.0253-3782.2012.04.013.

     

    王海云. 2004. 近场强地震动预测的有限断层震源模型[博士论文]. 哈尔滨: 中国地震局工程力学研究所.

     

    王海云, 谢礼立. 2008. 近断层地震动模拟现状. 地球科学进展, 23(10): 1043-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200810006.htm

     

    王海云, 谢礼立, 陶夏新. 2008. 近断层强地震动预测中的有限断层震源模型. 地球科学(中国地质大学学报), 33(6): 843-851. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806013.htm

     

    许可. 2020. 考虑场地非线性的宽频地震动数值模拟方法[硕士论文]. 哈尔滨: 哈尔滨工业大学, doi: 10.27061/d.cnki.ghgdu.2020.000520.

     

    周红, 李亚南, 常莹. 2021. 云南漾濞6.4级地震强地面运动的模拟和空间分布特征分析. 地球物理学报, 64(12): 4526-4537, doi: 10.6038/cjg2021P0421. http://www.geophy.cn/article/doi/10.6038/cjg2021P0421

     

    张斌, 李小军, 林国良等. 2021. 2021年5月21日漾濞MS6.4地震近场地震动特征和方向性效应分析. 地球物理学报, 64(10): 3619-3631. doi: 10.6038/cjg2021O0529. http://www.geophy.cn/article/doi/10.6038/cjg2021O0529

  • 加载中

(11)

(5)

计量
  • 文章访问数:  4367
  • PDF下载数:  191
  • 施引文献:  0
出版历程
收稿日期:  2022-03-18
修回日期:  2022-07-31
上线日期:  2023-03-10

目录