双聚束噪声成像揭示钦杭与武夷山成矿带上地壳精细结构

侯爵, 徐涛, 吕庆田, 郑孟杰, 白志明. 2022. 双聚束噪声成像揭示钦杭与武夷山成矿带上地壳精细结构. 地球物理学报, 65(10): 3881-3899, doi: 10.6038/cjg2022Q0152
引用本文: 侯爵, 徐涛, 吕庆田, 郑孟杰, 白志明. 2022. 双聚束噪声成像揭示钦杭与武夷山成矿带上地壳精细结构. 地球物理学报, 65(10): 3881-3899, doi: 10.6038/cjg2022Q0152
HOU Jue, XU Tao, LÜ QingTian, ZHENG MengJie, BAI ZhiMing. 2022. The fine upper crustal structure below the Qin-Hang and Wuyishan metallogenic belts revealed by double beamforming ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 65(10): 3881-3899, doi: 10.6038/cjg2022Q0152
Citation: HOU Jue, XU Tao, LÜ QingTian, ZHENG MengJie, BAI ZhiMing. 2022. The fine upper crustal structure below the Qin-Hang and Wuyishan metallogenic belts revealed by double beamforming ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 65(10): 3881-3899, doi: 10.6038/cjg2022Q0152

双聚束噪声成像揭示钦杭与武夷山成矿带上地壳精细结构

  • 基金项目:

    国家重点研发计划项目(2019YFA0708602, 2016YFC0600201)和国家自然科学基金(42130807, 41974048, 42074099)联合资助

详细信息
    作者简介:

    侯爵,男,1989年生,助理研究员,主要研究方向为地震学. E-mail: houjue@cea-igp.ac.cn

    通讯作者: 徐涛,男,1978年生,研究员,主要研究方向为地震学. E-mail: xutao@mail.iggcas.ac.cn
  • 中图分类号: P315, P541

The fine upper crustal structure below the Qin-Hang and Wuyishan metallogenic belts revealed by double beamforming ambient noise tomography

More Information
  • 华南地区是全球重要的钨锡等多金属矿集区之一,是我国东部中生代成矿最具代表性区域.然而该区主要成矿带的矿床类型和成矿特征却存在一定差异.为了加深对区域成矿背景的认识和厘清控制成矿差异的因素,我们基于主动源和被动源联合探测“万载—永春”剖面所记录的环境噪声数据,开展了双聚束噪声成像,获得了剖面下方的S波速度结构.主要认识如下:(1)S波速度模型异常特征刻画了研究区域内不同类型的断裂及其深部展布形态和速度特征.钦杭成矿带内的江山—绍兴断裂具有逆冲性质,西北倾向,深切地壳,控制中生代斑岩岩浆系统;武夷山成矿带内的走滑断裂几乎均以高角度切穿上地壳,与其相伴发育的铲式断层控制了大量的走滑拉分盆地和火山断陷盆地的发育.(2)剖面下方的速度结构在横向上具有强烈的速度异常变化,且武夷山成矿带内的平均S波速度略高于钦杭成矿带,反映了武夷山成矿带上地壳以壳源花岗岩和酸性火山岩为主体,而钦杭成矿带上地壳以巨厚的元古宙变质火山-沉积岩系为特征.(3)综合证据表明,中下地壳物质组成差异是导致两个成矿带具有不同成矿金属组合的根本原因.在钦杭成矿带,尽管浅部地壳平均S波速度低,但下地壳高速异常显著,反映其下部地壳偏镁铁质;武夷山成矿带浅部地壳平均S波速度高,但下地壳相对低速,反映下部地壳为偏长英质古老地壳.

  • 加载中
  • 图 1 

    研究区域位置及地震台站分布

    Figure 1. 

    Research region and the location of seismic stations

    图 2 

    按台站间距排列的噪声互相关函数及对噪声互相关波形的时频分析

    Figure 2. 

    Noise cross-correlations against inter distance and the time-frequency analysis of the noise cross-correlation waveform

    图 3 

    双聚束分析原理示意图

    Figure 3. 

    Illustration of double beamforming

    图 4 

    窄带滤波处理后的噪声互相关函数

    Figure 4. 

    The narrow-band filtered noise cross-correlations

    图 5 

    台站与波束中心位置

    Figure 5. 

    Seismic stations and beam center

    图 6 

    2D网格搜索最佳慢度示例

    Figure 6. 

    Example of determining the best slowness by 2D grid search

    图 7 

    沿地震剖面的慢度测量结果

    Figure 7. 

    Slowness measurements along the seismic survey profile

    图 8 

    (a) 2D相速度剖面; (b) 2D测量误差剖面

    Figure 8. 

    (a) 2D phase velocity cross-section. (b) 2D cross-section of the measuring uncertainties

    图 9 

    (a) 用于S波反演的2D相速度频散剖面;(b) 测量误差剖面

    Figure 9. 

    (a) 2D phase velocity cross-section used for S-wave inversion. (b) The cross-section of the measuring uncertainties

    图 10 

    单个波束中心频散反演示例

    Figure 10. 

    Example of S-wave inversion at a single beam center

    图 11 

    “万载—永春”剖面上地壳速度结构

    Figure 11. 

    The upper crustal seismic velocity structure beneath the "Wanzai-Yongchun" survey profile

    表 1 

    叠加波形信噪比统计

    Table 1. 

    SNR (Signal-to-Noise Ratio) statistics of the stacked waveforms

    周期(s) Q1 Q2 Q3 平均值 最小值 阈值
    1.0 17.70 20.86 24.11 21.73 10.73 20
    1.5 21.66 24.67 28.46 25.04 11.82
    2.0 22.76 26.4 29.65 26.7 13.12
    2.5 23.67 26.75 29.64 27.22 15.92
    3.0 24.17 26.72 29.09 27.35 17.94
    3.5 24.35 26.49 28.58 27.40 17.93
    4.0 24.12 26.03 27.96 27.19 18.08
    4.5 23.57 25.34 27.15 26.62 17.98
    5.0 22.86 24.47 26.21 25.94 18.32
    5.5 22.00 23.47 25.16 25.14 18.12
    6.0 21.02 22.34 23.9 24.14 17.18
    6.5 19.88 20.99 22.4 22.84 15.79
    7.0 18.34 19.50 20.73 21.28 14.38
    注:Q1, Q2和Q3分别代表第一四分位数,第二四分位数(中位数)和第三四分位数.
    Note:Q1, Q2 and Q3 represent the first quartile, second quartile (median) and third quartile, respectively.
    下载: 导出CSV
  •  

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x

     

    Boué P, Roux P, Campillo M, et al. 2013. Double beamforming processing in a seismic prospecting context. Geophysics, 78(3): V101-V108. doi: 10.1190/geo2012-0364.1

     

    Boué P, Roux P, Campillo M, et al. 2014. Phase velocity tomography of surface waves using ambient noise cross correlation and array processing. Journal of Geophysical Research: Solid Earth, 119(1): 519-529. doi: 10.1002/2013JB010446

     

    Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the earth's crust. Bulletin of the Seismological Society of America, 95(6): 2081-2092. doi: 10.1785/0120050077

     

    Cai H T, Hao K C, Jin X, et al. 2015. A three-dimensional VP, VS, and VP/VS crustal structure in Fujian, Southeast China, from active- and passive-source experiments. Journal of Asian Earth Sciences, 111: 517-527, doi: 10.1016/j.jseaes.2015.06.014.

     

    Carter A, Roques D, Bristow C, et al. 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29(3): 211-214. doi: 10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2

     

    Chang Y F, Liu X P, Wu Y C. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River (in Chinese). Beijing: Geological Publishing House. 71-76.

     

    Chen G H, Shu L S, Shu L M, et al. 2016. Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the Eastern Jiangnan Orogen. Science China: Earth Sciences, 59(4): 803-823, doi: 10.1007/s11430-015-5200-9.

     

    Chen H, Ni P, Wang G G, et al. 2017. Petrogenesis of ore-related granodiorite porphyry in the Jiande Copper deposit, SE China: implications for the tectonic setting and mineralization. Resource Geology, 67(2): 117-138. doi: 10.1111/rge.12126

     

    Chen J, Lu J J, Chen W F, et al. 2008. W-Sn-Nb-Ta-bearing granites in the Nanling Range and their relationship to metallogenesis. Geological Journal of China Universities (in Chinese), 14(4): 459-473. doi: 10.3969/j.issn.1006-7493.2008.04.001

     

    Chen Y C, Pei R F, Zhang H L, et al. 1989. Nonferrous and Rare Metal Deposits Related to Granite in Nanling Area (in Chinese). Beijing: Geological Publishing House.

     

    Chen Z L, Han F B, Yang N, et al. 2012. Topographic erosive diversities of the Xiangshan uranium ore-field, Jiangxi province and its implications for ore-preservation: evidences from fission track dating of apatite. Chinese Journal of Geophysics (in Chinese), 55(7): 2371-2384, doi: 10.6038/j.issn.0001-5733.2012.07.022.

     

    De Cacqueray B, Roux P, Campillo M, et al. 2011. Elastic-wave identification and extraction through array processing: An experimental investigation at the laboratory scale. Journal of Applied Geophysics, 74(2-3): 81-88. doi: 10.1016/j.jappgeo.2011.04.005

     

    Ding J H, Fan J F, Yin J N, et al. 2016. Geological characteristics and mineral resource potential of the Wuyishan Cu-Pb-Zn polymetallic metallogenic belt. Acta Geologica Sinica (in Chinese), 90(7): 1537-1550. doi: 10.3969/j.issn.0001-5717.2016.07.019

     

    Dong S W, Zhang Y Q, Long C X, et al. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan movement. Acta Geologica Sinica (in Chinese), 81(11): 1449-1461. doi: 10.3321/j.issn:0001-5717.2007.11.001

     

    Fan H H, Ling H F, Wang D Z, et al. 2003. Study on metallogenetic mechanism of Xiangshan Uranium ore-field. Uranium Geology (in Chinese), 19(4): 208-213. doi: 10.3969/j.issn.1000-0658.2003.04.003

     

    Gao L E, Gao J H, Zhao L H, et al. 2017. The Miocene leucogranite in the Nariyongcuo Gneiss Dome, southern Tibet: Products from melting metapelite and fractional crystallization. Acta Petrologica Sinica (in Chinese), 33(8): 2395-2411.

     

    Gkogkas K, Lin F C, Allam A A, et al. 2021. Shallow damage zone structure of the Wasatch fault in Salt Lake City from ambient- noise double beamforming with a temporary linear array. Seismological Research Letters, 92(4): 2453-2463. doi: 10.1785/0220200404

     

    Guo L H, Gao R. 2018. Potential-field evidence for the tectonic boundaries of the central and western Jiangnan belt in South China. Precambrian Research, 309: 45-55. doi: 10.1016/j.precamres.2017.01.028

     

    Guo L H, Gao R, Shi L, et al. 2019. Crustal thickness and Poisson's ratios of South China revealed from joint inversion of receiver function and gravity data. Earth and Planetary Science Letters, 510: 142-152. doi: 10.1016/j.epsl.2018.12.039

     

    Han R B, Li Q S, Xu Y X, et al. 2019. Deep structure background and Poisson's ration beneath the intersection zone of Nanling and Wuyi. Chinese Journal of Geophysics (in Chinese), 62(7): 2477-2489, doi: 10.6038/cjg2019M0207.

     

    He C S, Dong S W, Santosh M, et al. 2013. Seismic evidence for a geosuture between the Yangtze and Cathaysia Blocks, South China. Scientific Reports, 3(1): 2200, doi: 10.1038/srep02200.

     

    Herrmann R B. 2013. Computer programs in seismology: an evolving tool for instruction and research. Seismological Research Letters, 84(6): 1081-1088. doi: 10.1785/0220110096

     

    Hou J, Xu T, Lü Q T, et al. 2022. Deep background of large-scale Mesozoic Cu-Au-W mineralization in northeastern South China: constraints from Yingshan-Changshan wide-angle seismic data. Science China Earth Sciences, doi: 10.1007/s11430-022-9973-4.

     

    Hou Z Q, Zhang H R, Pan X F, et al. 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39(1-2): 21-45. doi: 10.1016/j.oregeorev.2010.09.002

     

    Hou Z Q, Zheng Y C, Zeng L S, et al. 2012. Eocene-Oligocene granitoids in southern Tibet: constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth and Planetary Science Letters, 349-350: 38-52.

     

    Hou Z Q, Pan X F, Li Q Y, et al. 2013. The giant Dexing porphyry Cu-Mo-Au deposit in east China: product of melting of juvenile lower crust in an intracontinental setting. Mineralium Deposita, 48(8): 1019-1045. doi: 10.1007/s00126-013-0472-5

     

    Hu R Z, Mao J W, Hua R M, et al. 2015. Intracontinental Mineralization of the South China Block (in Chinese). Beijing: Science Press.

     

    Hu X Y, Bi B T, Liu G X, et al. 2017. The lithospheric electrical structure of Ji'an-Fuzhou profile in the east part of South China. Chinese Journal of Geophysics (in Chinese), 60(7): 2756-2766, doi: 10.6038/cjg20170721.

     

    Hua R M, Mao J W. 1999. A preliminary discussion on the Mesozoic metallogenic explosion in east China. Mineral Deposits (in Chinese), 18(4): 300-308. doi: 10.3969/j.issn.0258-7106.1999.04.002

     

    Huang M F, Xu T, Lü Q T, et al. 2022. Crustal structure along the Wanzai-Yongchun profile in the Cathaysia Block, Southeast China, constrained by a joint active- and passive-source seismic experiment. Geophysical Journal International, 231: 384-393, doi: 10.1093/gji/ggac198.

     

    Isozaki Y. 1997. Jurassic accretion tectonics of Japan. The Island Arc, 6(1): 25-51. doi: 10.1111/j.1440-1738.1997.tb00039.x

     

    Krüger F, Weber M, Scherbaum F, et al. 1993. Double beam analysis of anomalies in the core-mantle boundary region. Geophysical Research Letters, 20(14): 1475-1478. doi: 10.1029/93GL01311

     

    Li G L, Niu F L, Yang Y J, et al. 2018. An investigation of time-frequency domain phase-weighted stacking and its application to phase-velocity extraction from ambient noise's empirical Green's functions. Geophysical Journal International, 212(2): 1143-1156. doi: 10.1093/gji/ggx448

     

    Li P, Jin X, Wang S X, et al. 2015. Crustal velocity structure of the Shaowu-Nanping-Pingtan transect through Fujian from deep seismic sounding-tectonic implications. Science China Earth Sciences, 58(12): 2188-2199. doi: 10.1007/s11430-015-5191-6

     

    Li Q S, Gao R, Wu F T, et al. 2013. Seismic structure in the southeastern China using teleseismic receiver functions. Tectonophysics, 606: 24-35. doi: 10.1016/j.tecto.2013.06.033

     

    Li S Z, Zang Y B, Wang P C, et al. 2017. Mesozoic tectonic transition in South China and initiation of Palaeo-Pacific subduction. Earth Science Frontiers (in Chinese), 24(4): 213-225.

     

    Lin F C, Moschetti M P, Ritzwoller M H. 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173(1): 281-298. doi: 10.1111/j.1365-246X.2008.03720.x

     

    Lin J Y, Tang G B, Xu T, et al. 2020. P-wave velocity structure in upper crust and crystalline basement of the Qinhang and Wuyishan metallogenic belts: constraint from the Wanzai-Hui'an deep seismic sounding profile. Chinese Journal of Geophysics (in Chinese), 63(12): 4396-4409, doi: 10.6038/cjg2020O0158.

     

    Lin J Y, Xu T, Cai H T, et al. 2021. Crustal velocity structure of Cathaysia Block from an active-source seismic profile between Wanzai and Hui'an in SE China. Tectonophysics, 811: 228874. doi: 10.1016/j.tecto.2021.228874

     

    Liu C Z, Yin W Q, Zhang J, et al. 2009. Ore-controlling factors and prospecting prediction criteria of the Sn-Cu polymetallic deposit in Wuyishan metallogenic zone. Mineral Resources and Geology (in Chinese), 23(2): 124-128. doi: 10.3969/j.issn.1001-5663.2009.02.006

     

    Liu W Q, Lü Q T, Cheng Z Z, et al. 2021. Multi-element geochemical data mining: Implications for block boundaries and deposit distributions in South China. Ore Geology Reviews, 133: 104063. doi: 10.1016/j.oregeorev.2021.104063

     

    Luo F, Yan J Y, Fu G M, et al. 2019. Crust thickness and its apocalyptic of mineralization in South China: Constraint from Satellite Gravity data. Geology in China (in Chinese), 46(4): 759-774, doi: 10.12029/gc20190407.

     

    Luo Y H, Yang Y J, Xu Y X, et al. 2015. On the limitations of interstation distances in ambient noise tomography. Geophysical Journal International, 201(2): 652-661. doi: 10.1093/gji/ggv043

     

    Lü Q T, Dong S W, Shi D N, et al. 2014. Lithosphere architecture and geodynamic model of middle and lower reaches of Yangtze metallogenic belt: a review from SinoProbe. Acta Petrologica Sinica (in Chinese), 30(4): 889-906.

     

    Mao J R, Li Z L, Ye H M. 2014. Mesozoic tectono-magmatic activities in South China: retrospect and prospect. Science China Earth Sciences, 57(12): 2853-2877. doi: 10.1007/s11430-014-5006-1

     

    Mao J W, Xie G Q, Guo C L, et al. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities (in Chinese), 14(4): 510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005

     

    Mao J W, Wu S H, Song S W, et al. 2020. The world-class Jiangnan tungsten belt: Geological characteristics, metallogeny, and ore deposit model. Chinese Science Bulletin (in Chinese), 65(33): 3746-3762, doi: 10.1360/TB-2020-0370.

     

    Meng X J, Hou Z Q, Dong G Y, et al. 2009. Geological characteristics and mineralization timing of the Lengshuikeng porphyry Pb-Zn-Ag deposit, Jiangxi province. Acta Geologica Sinica (in Chinese), 83(12): 1951-1967. doi: 10.3321/j.issn:0001-5717.2009.12.011

     

    Nakata N, Boué P, Brenguier F, et al. 2016. Body and surface wave reconstruction from seismic noise correlations between arrays at Piton de la Fournaise volcano. Geophysical Research Letters, 43(3): 1047-1054. doi: 10.1002/2015GL066997

     

    Nakata N, Gualtieri L, Fichtner A. 2019. Seismic Ambient Noise. Cambridge: Cambridge University Press.

     

    Ni P, Wang G G. 2017. Multiple episodes of Cu-Au mineralization in the northeastern section of the Qin-Hang metallogenic belt induced by reworking of continental crust. Acta Petrologica Sinica (in Chinese), 33(11): 3373-3394.

     

    Poli P, Thomas C, Campillo M, et al. 2015. Imaging the D″ reflector with noise correlations. Geophysical Research Letters, 42(1): 60-65. doi: 10.1002/2014GL062198

     

    Ren J S. 1984. The Indosinian orogeny and its significance in the tectonic evolution of China. Bulletin of the Chinese Academy of Geological Sciences (in Chinese), 9: 31-44.

     

    Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology, 37(3): 247-250. doi: 10.1130/G25451A.1

     

    Richards J P. 2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: Just add water. Economic Geology, 106(7): 1075-1081. doi: 10.2113/econgeo.106.7.1075

     

    Rost S, Thomas C. 2002. Array seismology: Methods and applications. Reviews of Geophysics, 40(3): 2-1-2-27.

     

    Roux P, Cornuelle B D, Kuperman W A, et al. 2008. The structure of raylike arrivals in a shallow-water waveguide. The Journal of the Acoustical Society of America, 124(6): 3430-3439. doi: 10.1121/1.2996330

     

    Roux P, Iturbe I, Nicolas B, et al. 2011. Travel-time tomography in shallow water: Experimental demonstration at an ultrasonic scale. The Journal of the Acoustical Society of America, 130(3): 1232-1241. doi: 10.1121/1.3621271

     

    Roux P, Moreau L, Lecointre A, et al. 2016. A methodological approach towards high-resolution surface wave imaging of the San Jacinto Fault Zone using ambient-noise recordings at a spatially dense array. Geophysical Journal International, 206(2): 980-992. doi: 10.1093/gji/ggw193

     

    Shu L S, Zhou X M, Deng P, et al. 2004. Geological features and tectonic evolution of Meso-Cenozoic basins in southeastern China. Geological Bulletin of China (in Chinese), 23(9-10): 876-884.

     

    Shu L S. 2012. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China (in Chinese), 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

     

    Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3

     

    Snieder R. 2004. Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E, 69(4): 046610, doi: 10.1103/PhysRevE.69.046610.

     

    Tang X S, Nie B, Li J. 2011. Uranium metallogenic characteristics and exploration direction of Wuyishan metallogenic belt. Uranium Geology (in Chinese), 27(2): 69-73. doi: 10.3969/j.issn.1000-0658.2011.02.002

     

    Wang G G, Ni P, Zhao K D, et al. 2012. Petrogenesis of the Middle Jurassic Yinshan volcanic-intrusive complex, SE China: Implications for tectonic evolution and Cu-Au mineralization. Lithos, 150: 135-154. doi: 10.1016/j.lithos.2012.05.030

     

    Wang G G, Ni P, Wang R C, et al. 2013. Geological, fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit, South China: Implications for ore genesis and exploration. Journal of Asian Earth Sciences, 74: 343-360. doi: 10.1016/j.jseaes.2012.11.038

     

    Wang G G, Ni P, Yao J, et al. 2015. The link between subduction- modified lithosphere and the giant Dexing porphyry copper deposit, South China: Constraints from high-Mg adakitic rocks. Ore Geology Reviews, 67: 109-126. doi: 10.1016/j.oregeorev.2014.12.004

     

    Wang Y D, Lin F C, Ward K M. 2019a. Ambient noise tomography across the Cascadia subduction zone using dense linear seismic arrays and double beamforming. Geophysical Journal International, 217(3): 1668-1680. doi: 10.1093/gji/ggz109

     

    Wang Y D, Allam A, Lin F C. 2019b. Imaging the fault damage zone of the San Jacinto fault near Anza with ambient noise tomography using a dense nodal array. Geophysical Research Letters, 46(22): 12938-12948. doi: 10.1029/2019GL084835

     

    Wang Z, Dahlen F A. 1995. Validity of surface-wave ray theory on a laterally heterogeneous earth. Geophysical Journal International, 123(3): 757-773. doi: 10.1111/j.1365-246X.1995.tb06888.x

     

    Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007

     

    Xiang X K, Liu X M, Zhan G N. 2012. Discovery of Shimensi super-large tungsten deposit and its prospecting significance in Dahutang area, Jiangxi province. Resources Survey & Environment (in Chinese), 33(3): 141-151. doi: 10.3969/j.issn.1671-4814.2012.03.002

     

    Xu D M, Lin Z Y, Long W G, et al. 2012. Research history and current situation of Qinzhou-Hangzhou metallogenic belt, South China. Geology and Mineral Resources of South China (in Chinese), 28(4): 277-289. doi: 10.3969/j.issn.1007-3701.2012.04.001

     

    Xu J W, Cui K R, Liu Q, et al. 1985. Mesozoic sinistral transcurrent faulting along the continent margin in East Asia. Marine Geology & Quaternary Geology (in Chinese), 5(2): 51-64.

     

    Xu T, Zhang Z J, Tian X B, et al. 2014. Crustal structure beneath the Middle-Lower Yangtze metallogenic belt and its surrounding areas: constraints from active source seismic experiment along the Lixin to Yixing profile in East China. Acta Petrologica Sinica (in Chinese), 30(4): 918-930.

     

    Yang M D, Yao J Y. 2008. Prospecting evaluation of the W, Sn, Cu, Au, Ag metallogenic belt in Wuyishan area. Mineral Resources and Geology (in Chinese), 22(1): 33-35. doi: 10.3969/j.issn.1001-5663.2008.01.007

     

    Yang M G, Mei Y W. 1997. Characteristics of geology and metallization in the Qinzhou-Hangzhou paleoplate juncture. Geology and Mineral Resources of South China (in Chinese), (3): 52-59.

     

    Yang M G, Huang S B, Lou F S, et al. 2009. Lithospheric structure and large-scale metallogenic process in Southeast China continental area. Geology in China (in Chinese), 36(3): 528-543. doi: 10.3969/j.issn.1000-3657.2009.03.004

     

    Yang Y J, Ritzwoller M H, Levshin A L, et al. 2007. Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1): 259-274. doi: 10.1111/j.1365-246X.2006.03203.x

     

    Yang Y J, Ritzwoller M H, Zheng Y, et al. 2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. Journal of Geophysical Research: Solid Earth, 117(B4): B04303, doi: 10.1029/2011JB008810.

     

    Yao H J, van Der Hilst R D, de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophysical Journal International, 166(2): 732-744. doi: 10.1111/j.1365-246X.2006.03028.x

     

    Yao H J, Van Der Hilst R D. 2009. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophysical Journal International, 179(2): 1113-1132. doi: 10.1111/j.1365-246X.2009.04329.x

     

    Ye T Z, Huang C K, Deng Z Q. 2017. Spatial database of 1 ∶ 2500000 digital geologic map of People's Republic of China. Geology in China (in Chinese), 44(S1): 19-24, 139-146.

     

    Ye Z, Li Q S, Gao R, et al. 2013. Seismic receiver functions revealing crust and upper mantle structure beneath the continental margin of southeastern China. Chinese Journal of Geophysics (in Chinese), 56(9): 2947-2958, doi: 10.6038/cjg20130909.

     

    Zhan Z W, Ni S D, Helmberger D V, et al. 2010. Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise. Geophysical Journal International, 182(1): 408-420.

     

    Zhang G W, Guo A L, Wang Y J, et al. 2013. Tectonics of South China continent and its implications. Science China Earth Sciences, 56(11): 1804-1828. doi: 10.1007/s11430-013-4679-1

     

    Zhang S B, Zheng Y F. 2013. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Research, 23(4): 1241-1260. doi: 10.1016/j.gr.2012.09.005

     

    Zhang W L, Li Z Y, Liu D Z, et al. 2015. The neotectonic activity trail of Fuzhou-Yongfeng fault and its significance to uranium ore exploration in central Jiangxi province. Contributions to Geology and Mineral Resources Research (in Chinese), 30(1): 23-29.

     

    Zhang Y Q, Xu X B, Jia D, et al. 2009. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic. Earth Science Frontiers (in Chinese), 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026

     

    Zhang Y Q, Shi D N, Lü Q T, et al. 2021a. A fine crustal structure and geodynamics revealed by receiver functions along the Guangchang-Putian line in the Cathaysia Block, South China. Tectonophysics, 815: 229007, doi: 10.1016/j.tecto.2021.229007.

     

    Zhang Y Q, Shi D N, Lü Q T, et al. 2021b. The crustal thickness and composition in the eastern South China Block constrained by receiver functions: implications for the geological setting and metallogenesis. Ore Geology Reviews, 130: 103988, doi: 10.1016/j.oregeorev.2021.103988.

     

    Zhang Z J, Teng J W, Badal J, et al. 2008. Construction of regional and local seismic anisotropic structures from wide-angle seismic data: crustal deformation in the southeast of China. Journal of Seismology, 13(2): 241-252.

     

    Zhao B, Bai Z M, Xu T, et al. 2013. Lithological model of the South China crust based on integrated geophysical data. Journal of Geophysics and Engineering, 10(2): 025005, doi: 10.1088/1742-2132/10/2/025005.

     

    Zheng M J, Xu T, Lü Q T, et al. 2022. Upper crustal structure beneath the Qin-Hang and Wuyishan metallogenic belts in Southeast China as revealed by a joint active and passive seismic experiment. Geophysical Journal International, 232(1): 190-200. doi: 10.1093/gji/ggac337

     

    Zheng T Y, Zhao L, He Y M, et al. 2014. Seismic imaging of crustal reworking and lithospheric modification in eastern China. Geophysical Journal International, 196(2): 656-670. doi: 10.1093/gji/ggt420

     

    Zhou T F, Fan Y, Yuan F. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the middle and lower reaches of the Yangtze River area. Acta Petrologica Sinica (in Chinese), 24(8): 1665-1678.

     

    Zhou X M, Sun T, Shen W Z, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004

     

    Zhou Z P. 2018. New understanding of Fuzhou-Yongfeng fault structure using magnetotelluric. West-China Exploration Engineering (in Chinese), 30(10): 171-173, 176. doi: 10.3969/j.issn.1004-5716.2018.10.055

     

    常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ200102006.htm

     

    陈国华, 舒良树, 舒立旻等. 2015. 江南东段朱溪钨(铜)多金属矿床的地质特征与成矿背景. 中国科学: 地球科学, 45(12): 1799-1818. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201512002.htm

     

    陈骏, 陆建军, 陈卫锋等. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14(4): 459-473. doi: 10.3969/j.issn.1006-7493.2008.04.001

     

    陈毓川, 裴荣富, 张宏良等. 1989. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质. 北京: 地质出版社.

     

    陈正乐, 韩凤彬, 杨农等. 2012. 江西相山铀矿田地貌剥蚀特征及其控矿意义——磷灰石裂变径迹证据. 地球物理学报, 55(7): 2371-2384, doi: 10.6038/j.issn.0001-5733.2012.07.022. http://www.geophy.cn/article/doi/10.6038/j.issn.0001-5733.2012.07.022

     

    丁建华, 范建福, 阴江宁等. 2016. 武夷山Cu-Pb-Zn多金属成矿带主要成矿地质特征及潜力分析. 地质学报, 90(7): 1537-1550. doi: 10.3969/j.issn.0001-5717.2016.07.019

     

    董树文, 张岳桥, 龙长兴等. 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449-1461. doi: 10.3321/j.issn:0001-5717.2007.11.001

     

    范洪海, 凌洪飞, 王德滋等. 2003. 相山铀矿田成矿机理研究. 铀矿地质, 19(4): 208-213. doi: 10.3969/j.issn.1000-0658.2003.04.003

     

    高利娥, 高家昊, 赵令浩等. 2017. 藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程: 变泥质岩部分熔融与分离结晶作用. 岩石学报, 33(8): 2395-2411. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201708005.htm

     

    韩如冰, 李秋生, 徐义贤等. 2019. 南岭—武夷交汇区的深部背景及地壳泊松比. 地球物理学报, 62(7): 2477-2489, doi: 10.6038/cjg2019M0207. http://www.geophy.cn/article/doi/10.6038/cjg2019M0207

     

    侯爵, 徐涛, 吕庆田等. 2022. 华南东北部中生代铜金钨大规模成矿的深部背景: 来自英山—常山宽角地震资料的约束. 中国科学: 地球科学, doi: 10.1360/SSTe-2022-0045.

     

    胡瑞忠, 毛景文, 华仁民等. 2015. 华南陆块陆内成矿作用. 北京: 科学出版社.

     

    胡祥云, 毕奔腾, 刘国兴等. 2017. 华南东部吉安—福州剖面岩石圈电性结构研究. 地球物理学报, 60(7): 2756-2766, doi: 10.6038/cjg20170721. http://www.geophy.cn/article/doi/10.6038/cjg20170721

     

    华仁民, 毛景文. 1999. 试论中国东部中生代成矿大爆发. 矿床地质, 18(4): 300-308. doi: 10.3969/j.issn.0258-7106.1999.04.002

     

    李培, 金星, 王善雄等. 2015. 福建邵武—南平—平潭深地震测深剖面的地壳速度结构及其构造意义. 中国科学: 地球科学, 45(11): 1757-1767. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201511012.htm

     

    李三忠, 臧艺博, 王鹏程等. 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704028.htm

     

    林吉焱, 唐国彬, 徐涛等. 2020. 钦杭—武夷山成矿带上地壳速度结构与基底特征: 万载—惠安宽角反射/折射地震剖面约束. 地球物理学报, 63(12): 4396-4409, doi: 10.6038/cjg2020O0158. http://www.geophy.cn/article/doi/10.6038/cjg2020O0158

     

    刘成忠, 尹维青, 张婧等. 2009. 武夷山成矿带锡铜多金属矿床控矿条件和找矿预测标志. 矿产与地质, 23(2): 124-128. doi: 10.3969/j.issn.1001-5663.2009.02.006

     

    罗凡, 严加永, 付光明等. 2019. 华南地区地壳厚度变化及对成矿类型的制约: 来自卫星重力数据的约束. 中国地质, 46(4): 759-774, doi: 10.12029/gc20190407.

     

    吕庆田, 董树文, 史大年等. 2014. 长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述. 岩石学报, 30(4): 889-906. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201404001.htm

     

    毛建仁, 厉子龙, 叶海敏. 2014. 华南中生代构造-岩浆活动研究: 现状与前景. 中国科学: 地球科学, 44(12): 2593-2617. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201412001.htm

     

    毛景文, 谢桂青, 郭春丽等. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005

     

    毛景文, 吴胜华, 宋世伟等. 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型. 科学通报, 65(33): 3746-3762, doi: 10.1360/TB-2020-0370.

     

    孟祥金, 侯增谦, 董光裕等. 2009. 江西冷水坑斑岩型铅锌银矿床地质特征、热液蚀变与成矿时限. 地质学报, 83(12): 1951-1967. doi: 10.3321/j.issn:0001-5717.2009.12.011

     

    倪培, 王国光. 2017. 大陆再造与钦杭带北东段多期铜金成矿作用. 岩石学报, 33(11): 3373-3394. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711003.htm

     

    任纪舜. 1984. 印支运动及其在中国大地构造演化中的意义. 中国地质科学院院报, 9: 31-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198402003.htm

     

    舒良树, 周新民, 邓平等. 2004. 中国东南部中、新生代盆地特征与构造演化. 地质通报, 23(9-10): 876-884. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2007.htm

     

    舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm

     

    唐湘生, 聂斌, 李嘉. 2011. 武夷山成矿带铀成矿特征与找矿方向. 铀矿地质, 27(2): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201102001.htm

     

    项新葵, 刘显沐, 詹国年. 2012. 江西省大湖塘石门寺矿区超大型钨矿的发现及找矿意义. 资源调查与环境, 33(3): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201203003.htm

     

    徐德明, 蔺志永, 龙文国等. 2012. 钦杭成矿带的研究历史和现状. 华南地质与矿产, 28(4): 277-289. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201204001.htm

     

    徐嘉炜, 崔可锐, 刘庆等. 1985. 东亚大陆边缘中生代的左行平移断裂作用. 海洋地质与第四纪地质, 5(2): 51-64. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198502006.htm

     

    徐涛, 张忠杰, 田小波等. 2014. 长江中下游成矿带及邻区地壳速度结构: 来自利辛-宜兴宽角地震资料的约束. 岩石学报, 30(4): 918-930. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201404003.htm

     

    杨明德, 姚金炎. 2008. 武夷山地区钨锡铜金银成矿区带找矿评价. 矿产与地质, 22(1): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200801006.htm

     

    杨明桂, 梅勇文. 1997. 钦-杭古板块结合带与成矿带的主要特征. 华南地质与矿产, (3): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC199703008.htm

     

    杨明桂, 黄水保, 楼法生等. 2009. 中国东南陆区岩石圈结构与大规模成矿作用. 中国地质, 36(3): 528-543. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200903006.htm

     

    叶天竺, 黄崇轲, 邓志奇. 2017. 1: 250万中华人民共和国数字地质图空间数据库. 中国地质, 44(S1): 19-24, 139-146. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CJFDPREP&filename=DIZI2017S1004

     

    叶卓, 李秋生, 高锐等. 2013. 中国大陆东南缘地震接收函数与地壳和上地幔结构. 地球物理学报, 56(9): 2947-2958, doi: 10.6038/cjg20130909. http://www.geophy.cn/article/doi/10.6038/cjg20130909

     

    张国伟, 郭安林, 王岳军等. 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm

     

    张万良, 李子颖, 刘德长等. 2015. 赣中抚州—永丰断裂新构造活动踪迹及其找矿意义. 地质找矿论丛, 30(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201501003.htm

     

    张岳桥, 徐先兵, 贾东等. 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901033.htm

     

    周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展. 岩石学报, 24(8): 1665-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201602001.htm

     

    周忠平. 2018. 利用MT对抚州—永丰断裂构造的新认识. 西部探矿工程, 30(10): 171-173, 176. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201810056.htm

  • 加载中

(11)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-03-06
修回日期:  2022-08-04
上线日期:  2022-10-10

目录