2013年内蒙古通辽MS5.3地震震源区地壳速度结构与孕震环境

宋晓燕, 雷建设. 2022. 2013年内蒙古通辽MS5.3地震震源区地壳速度结构与孕震环境. 地球物理学报, 65(10): 3912-3929, doi: 10.6038/cjg2022Q0090
引用本文: 宋晓燕, 雷建设. 2022. 2013年内蒙古通辽MS5.3地震震源区地壳速度结构与孕震环境. 地球物理学报, 65(10): 3912-3929, doi: 10.6038/cjg2022Q0090
SONG XiaoYan, LEI JianShe. 2022. Crustal velocity structure and seismogenic environments in the source areas of the 2013 Tongliao, Inner Mongolia, MS5.3 earthquake. Chinese Journal of Geophysics (in Chinese), 65(10): 3912-3929, doi: 10.6038/cjg2022Q0090
Citation: SONG XiaoYan, LEI JianShe. 2022. Crustal velocity structure and seismogenic environments in the source areas of the 2013 Tongliao, Inner Mongolia, MS5.3 earthquake. Chinese Journal of Geophysics (in Chinese), 65(10): 3912-3929, doi: 10.6038/cjg2022Q0090

2013年内蒙古通辽MS5.3地震震源区地壳速度结构与孕震环境

  • 基金项目:

    国家自然科学基金项目(U1939206)和国家重点研发计划项目(2018YFC1504103)资助

详细信息
    作者简介:

    宋晓燕, 女, 1987年生, 博士研究生, 主要从事背景噪声层析成像方面的研究.E-mail: dzjsxy1987@163.com

    通讯作者: 雷建设, 男, 1969年生, 博士, 研究员, 主要从事地震波层析成像理论与应用研究.E-mail: jshlei_cj@hotmail.com
  • 中图分类号: P315

Crustal velocity structure and seismogenic environments in the source areas of the 2013 Tongliao, Inner Mongolia, MS5.3 earthquake

More Information
  • 为了解2013年内蒙古通辽MS5.3地震震源区地壳速度结构与孕震环境, 本研究基于"中国地震科学台阵——华北地区东部"29个流动地震台站自2017年1月至2019年4月期间记录的连续波形数据, 应用面波直接反演背景噪声成像方法, 获得通辽地震震源区与周边地区地壳三维S波速度结构.结果显示, 通辽MS5.3地震震源区与周边地区地壳S波速度结构呈现明显横向不均匀性.浅层S波速度结构分布特征与地表地质构造密切相关: 盆地内侧呈明显低速异常, 可能反映了沉积层结构, 而大兴安岭下方则呈现明显高速异常, 可能反映了造山带较为致密的古生代结晶基底岩.在中下地壳, 震源区低速异常向西南方向延展至南北重力梯度带.通辽MS5.3地震与该区域速度结构存在密切关系, 地震震中位于低速异常边缘, 表明该低速异常可能代表深部流体作用降低断层面有效正应力从而触发地震.结合前人全球的和区域尺度的地震层析成像结果展示上地幔存在明显低波速异常与地幔转换带存在明显高波速异常, 推测通辽MS5.3地震的发生可能与太平洋板块深俯冲至我国东北地区下方地幔转换带内形成"大地幔楔"中结构与动力学密切相关.在"大地幔楔"结构中, 由于地幔转换带中滞留板块脱水作用和地幔角流作用, 容易形成湿热物质上涌, 进而引起松辽盆地西南部岩石圈物质拆沉和携带流体的地幔热湿物质上涌至地壳后作用于断裂带、降低了断层面有效正应力, 从而导致了中强度地震的发生.

  • 加载中
  • 图 1 

    本研究区域地质构造

    Figure 1. 

    Sketch map of regional geological tectonics in the study region

    图 2 

    全部台站的噪声互相关波形

    Figure 2. 

    Ambient noise cross-correlation waveforms of all seismic stations

    图 3 

    质量控制后最终用于反演的5~25 s周期相速度频散曲线(黑线)

    Figure 3. 

    The selected phase velocity dispersions (black lines) of 5~25 s periods used in the final inversion after quality controls

    图 4 

    5、15、20和25 s周期相速度射线路径分布图

    Figure 4. 

    Ray paths of phase velocity at 5, 15, 20 and 25 s periods

    图 5 

    基于最终反演获得的三维速度模型通过平均获得一维速度模型(图 6a)的5个代表性周期的相速度敏感核测试结果

    Figure 5. 

    Test results of phase velocity sensitivity kernels at five representative periods based on the 1-D velocity model (Fig. 6a) by averaging velocities from our resulting 3-D velocity model

    图 6 

    (a) S波初始模型(红线)和最终模型(蓝线)对比图.(b) 不同周期Rayleigh波相速度平均观测频散曲线(黑色实线)、初始模型拟合的频散曲线(红色虚线)和最终模型拟合的频散曲线(蓝色虚线)对比图

    Figure 6. 

    (a) Comparison between the initial S-wave velocity model (red line) and final velocity model (blue line). (b) Comparison between observed and averaged dispersion curves (solid black line), synthetic dispersion curves from initial model (dashed red line) and final model (dashed blue line) for Rayleigh wave phase velocities at different periods

    图 7 

    不同深度反演网格点对应的平均DWS

    Figure 7. 

    The average DWS values for inverting nodes at different depths

    图 8 

    波速异常水平向尺度为0.375°×0.375°模型不同深度的检测板实验结果

    Figure 8. 

    Results of the checkerboard resolution tests at different depths with a velocity anomaly size of 0.375°×0.375° in the horizontal directions

    图 9 

    波速异常水平向尺度为0.75°×0.375°模型不同深度的检测板实验结果

    Figure 9. 

    Results of the checkerboard resolution tests at different depths with a velocity anomaly size of 0.75°×0.375° in the horizontal directions

    图 10 

    波速异常尺度为0.75°×0.375°模型检测板实验结果纵剖面

    Figure 10. 

    Vertical cross-section of the results of a checkerboard resolution test with a velocity anomaly size of 0.75°×0.375°

    图 11 

    波速异常水平向尺度为0.75°×0.75°模型不同深度检测板实验结果

    Figure 11. 

    Results of a checkerboard resolution test at different depths with a velocity anomaly size of 0.75°×0.75° in the horizontal directions

    图 12 

    (a) 面波均方根走时残差随反演迭代次数的变化. (b)反演前(虚线)和反演后(实线)的频散曲线走时残差分布图

    Figure 12. 

    (a) Variations of the surface-wave travel-time RMS residuals with iterations. (b) Comparison between travel-time residual histograms before (dashed line) and after (solid line) inversion

    图 13 

    成像结果平面图

    Figure 13. 

    Tomographic images in map view

    图 14 

    穿过2013年通辽MS5.3地震震中的三条纵剖面速度结构图

    Figure 14. 

    Three vertical cross-sections of velocity structures passing through the earthquake hypocenter of the 2013 Tongliao MS5.3 earthquake

    图 15 

    本研究结果(a)与前人(Song and Lei, 2022)研究结果(b)的对比其中的符号与图 1相同.

    Figure 15. 

    Comparison between the present (a) and previous (Song and Lei, 2022) (b) tomographic results The symbol is the same as that in Fig. 1.

  •  

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3): 1239-1260, doi: 10.1111/j.1365-246X.2007.03374.x.

     

    Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the earth's crust. Bulletin of the Seismological Society of America, 95(6): 2081-2092. doi: 10.1785/0120050077

     

    Daubechies I. 1992. Ten Lectures on Wavelets, Vol. 61. Philadelphia: SIAM.

     

    Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Basic characteristics of active tectonics of China. Science in China Series D-Earth Sciences, 46(4): 356-372.

     

    Fang H J, Yao H J, Zhang H J, et al. 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophysical Journal International, 201(3): 1251-1263, doi: 10.1093/gji/ggv080.

     

    Fu Y Y, Gao Y. 2016. Phase velocity tomography of Rayleigh and Love waves using ambient noise in Northeast China. Chinese Journal of Geophysics (in Chinese), 59(2): 494-503, doi: 10.6038/cjg20160209.

     

    Gu N, Wang K D, Gao J, et al. 2019. Shallow crustal structure of the Tanlu fault zone near Chao Lake in eastern China by direct surface wave tomography from local dense array ambient noise analysis. Pure and Applied Geophysics, 176(3): 1193-1206, doi: 10.1007/s00024-018-2041-4.

     

    Gu N, Gao J, Wang B W, et al. 2022. Ambient noise tomography of local shallow structure of the southern segment of Tanlu fault zone at Suqian, eastern China. Tectonophysics, 825: 229234, doi: 10.1016/j.tecto.2022.229234.

     

    Guo Z, Cao Y L, Wang X G, et al. 2014. Crust and upper mantle structures beneath Northeast China from receiver function studies. Earthquake Science, 27(3): 265-275, doi: 10.1007/s11589-014-0076-x.

     

    Guo Z, Chen Y J, Ning J Y, et al. 2015. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data. Earth and Planetary Science Letters, 416: 1-11, doi: 10.1016/j/epsl.2015.01.044.

     

    Guo Z, Chen Y J, Ning J Y, et al. 2016. Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in Northeast China. Earth and Planetary Science Letters, 433: 31-43, doi: 10.1016/j.epsl.2015.09.035.

     

    Han J T, Guo Z Y, Liu W Y, et al. 2018. Deep dynamic process of lithosphere thinning in Songliao basin. Chinese Journal of Geophysics (in Chinese), 61(6): 2265-2279, doi: 10.6038/cjg2018L0155.

     

    Han X M, Liu F, Zhang F, et al. 2015. The Tongliao MS5.3 earthquake and its foreshock determination. Earthquake Research in China (in Chinese), 31(2): 271-280. doi: 10.3969/j.issn.1001-4683.2015.02.011

     

    Han X M, Zhang F, Chen L F, et al. 2018. Discussion on rupture characteristics of the 2013 Tongliao M5.3 earthquake and its aftershocks. Seismology and Geology (in Chinese), 40(3): 685-697, doi: 10.3969/j.issn.0253-4967.2018.03.013.

     

    Haskell N A. 1953. The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43(1): 17-34. doi: 10.1785/BSSA0430010017

     

    He C W, Li Y M, Su X X. 2003. Study on seismic exploration method in Kailu depression. Special Oil and Gas Reservoirs (in Chinese), 10(6): 4-8.

     

    Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth, 111(B9): B09305, doi: 10.1029/2005JB004066.

     

    Kang D, Shen W S, Ning J Y, et al. 2016. Seismic evidence for lithospheric modification associated with intracontinental volcanism in Northeastern China. Geophysical Journal International, 204(1): 215-235, doi: 10.1093/gji/ggv441.

     

    Kim S, Tkalčić H, Rhie J, et al. 2016. Intraplate volcanism controlled by back-arc and continental structures in NE Asia inferred from transdimensional Bayesian ambient noise tomography. Geophysical Research Letters, 43(16): 8390-8398, doi: 10.1002/2016GL069483.

     

    Lei J S, Zhao D P. 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397(3-4): 281-295, doi: 10.1016/j.tecto.2004.12.009.

     

    Lei J S, Zhao D P. 2006. Global P-wave tomography: on the effect of various mantle and core phases. Physics of the Earth and Planetary Interiors, 154(1): 44-69, doi: 10.1016/j.pepi.2005.09.001.

     

    Lei J S, Xie F R, Lan C X, et al. 2008. Seismic images under the Beijing region inferred from P and PmP data. Physics of the Earth and Planetary Interiors, 168(3-4): 134-146. doi: 10.1016/j.pepi.2008.06.005

     

    Lei J S, Zhao D P. 2009. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (MS8.0). Geochemistry, Geophysics, Geosystems, 10(10): Q10010, doi: 10.1029.2009GC002590.

     

    Lei J S, Zhao D P, Su J R, et al. 2009. Fine seismic structure under the Longmenshan fault zone and the mechanism of the large Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 52(2): 339-345.

     

    Lei J S, Xie F R, Fan Q C, et al. 2013. Seismic imaging of the deep structure under the Chinese volcanoes: an overview. Physics of the Earth and Planetary Interiors, 224: 104-123, doi: 10.1016/j.pepi.2013.08.008.

     

    Lei J S, Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet. Geochemistry, Geophysics, Geosystems, 17(5): 1861-1884, doi: 10.1002/2016GC006262.

     

    Lei J S, Zhao D P, Xu X W, et al. 2018a. Deep structure of the Longmenshan fault zone and mechanism of the 2008 Wenchuan earthquake. Chinese Science Bulletin (in Chinese), 63(19): 1906-1916. doi: 10.1360/N972018-00415

     

    Lei J S, Zhao D P, Xu Y G, et al. 2018b. Is there a gap in the stagnant Pacific slab in the mantle transition zone under the Changbaishan volcano?. Acta Petrologica Sinica (in Chinese), 34(1): 13-22.

     

    Lei J S, Zhao D P, Xu X W, et al. 2019. Is there a big mantle wedge under eastern Tibet?. Physics of the Earth and Planetary Interiors, 292: 100-113, doi: 10.1016/j.pepi.2019.04.005.

     

    Lei J S, Zhao D P, Xu X W, et al. 2020. P-wave upper-mantle tomography of the Tanlu fault zone in eastern China. Physics of the Earth and Planetary Interiors, 299: 106402. doi: 10.1016/j.pepi.2019.106402

     

    Li C, Yao H J, Fang H J, et al. 2016. 3D near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei Urban Area, China. Seismological Research Letters, 87(4): 882-892, doi: 10.1785/0220150257.

     

    Li J, Xu Y, Han X M, et al. 2019. P-axis turning phenomenon and stress field change before and after the Kezuohouqi M5.3 earthquake in 2013. South China Journal of Seismology (in Chinese), 39(S1): 97-101, doi: 10.13512/j.hndz.2019.S1.016.

     

    Li Y H, Wu Q J, Pan J T, et al. 2012. S-wave velocity structure of northeastern China from joint inversion of Rayleigh wave phase and group velocities. Geophysical Journal International, 190(1): 105-115, doi: 10.1111/j.1365-246X.2012.05503.x.

     

    Liu C, Yang B J, Wang Z G, et al. 2011. The deep structure of the western boundary belt of the Songliao basin: the geoelectric evidence. Chinese Journal of Geophysics (in Chinese), 54(2): 401-406, doi: 10.3969/j.issn.001-5733.2011.02.016.

     

    Liu F, Diao G L, Han X M, et al. 2014. Primarily discussion about the seismogenic structure of Horqin Left Back Banner M5.3 earthquake on April 22, 2013. Seismological and Geomagnetic Observation and Research (in Chinese), 35(5-6): 63-67, doi: 10.3969/j.issn.1003-3246.2014.05/06.011.

     

    Liu J Q, Liu C, Lei J S, et al. 2017. The moment tensors of the 2013 Qianguo MS5.8 seismic swarm. Chinese Journal of Geophysics (in Chinese), 60(9): 3418-3431, doi: 10.6038/cjg20170912.

     

    Liu Y, Liu C, Yang B J, et al. 2008. Regional characteristic analysis of P-wave velocity and deep oil-gas in the northern Songliao basin. Progress in Geophysics (in Chinese), 23(3): 785-792.

     

    Liu Y, Zhang H J, Fang H J, et al. 2018. Ambient noise tomography of three-dimensional near-surface shear-wave velocity structure around the hydraulic fracturing site using surface microseismic monitoring array. Journal of Applied Geophysics, 159: 209-217, doi: 10.1016/j.jappgeo.2018.08.009.

     

    Liu Y N, Niu F L, Chen M, et al. 2017. 3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography. Earth and Planetary Science Letters, 461: 20-29, doi: 10.1016/j.epsl.2016.12.029.

     

    Liu Z, Niu F L, Chen Y J, et al. 2015. Receiver function images of the mantle transition zone beneath NE China: new constraints on intraplate volcanism, deep subduction and their potential link. Earth and Planetary Science Letters, 412: 101-111, doi: 10.1016/j.epsl.2014.12.019.

     

    Ma H C, Chu R S, Sheng M H, et al. 2020. Sedimentary structures of the Songliao Basin using high-frequency Ps converted wave from local deep earthquakes. Journal of Geodesy and Geodynamics (in Chinese), 40(2): 214-220, doi: 10.14075/j.jgg.2020.02.019.

     

    Meng E, Xu W L, Pei F P, et al. 2010. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics, 485(1-4): 42-51. doi: 10.1016/j.tecto.2009.11.015

     

    Meng E, Xu W L, Pei F P, et al. 2011. Permian bimodal volcanism in the Zhangguangcai Range of eastern Heilongjiang Province, NE China: Zircon U-Pb-Hf isotopes and geochemical evidence. Journal of Asian Earth Sciences, 41(2): 119-132. doi: 10.1016/j.jseaes.2011.01.005

     

    Mishra O P, Zhao D P. 2003. Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter: a fluid-driven earthquake?. Earth and Planetary Science Letters, 212(3-4): 393-405. doi: 10.1016/S0012-821X(03)00285-1

     

    Mishra O P, Singh A P, Kumar D, et al. 2014. An insight into crack density, saturation rate, and porosity model of the 2001 Bhuj earthquake in the stable continental region of western India. Journal of Asian Earth Sciences, 83: 48-59. doi: 10.1016/j.jseaes.2014.01.008

     

    Pan J T, Li Y H, Wu Q J, et al. 2014. 3-D S-wave velocity structure of crust and upper-mantle beneath the northeast China. Chinese Journal of Geophysics (in Chinese), 57(7): 2077-2087, doi: 10.6038/cjg20140705.

     

    Pei H J, Han X M, Zhang F, et al. 2015. Analysis of sequence characteristics and occurrence background of the Tongliao M5.3 earthquake. China Earthquake Engineering Journal (in Chinese), 37(1): 242-247, doi: 10.3969/j.issn.1000-0844.2015.01.0242.

     

    Peng J, Huang J L, Liu Z K, et al. 2020. Constraints on S-wave velocity structures of the lithosphere in mainland China from broadband ambient noise tomography. Physics of The Earth and Planetary Interiors, 299: 106406, doi: 10.1016/j.pepi.2019.106406.

     

    Rawlinson N, Sambridge M. 2004. Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophysical Journal International, 156(3): 631-647. doi: 10.1111/j.1365-246X.2004.02153.x

     

    Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788-790. doi: 10.1126/science.276.5313.788

     

    Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058. doi: 10.1126/science.1155371

     

    Scales J A, Gersztenkorn A, Treitel S. 1988. Fast lp solution of large, sparse, linear systems: application to seismic travel time tomography. Journal of Computational Physics, 75(2): 314-333. doi: 10.1016/0021-9991(88)90115-5

     

    Sethian J A, Popovici A M. 1999. 3-D traveltime computation using the fast marching method. Geophysics, 64(2): 516-523. doi: 10.1190/1.1444558

     

    Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7): L07614, doi: 10.1029/2004GL019491.

     

    Shearer P M. 2009. Introduction to Seismology. Cambridge: Cambridge University Press.

     

    Shen W S, Ritzwoller M H, Kang D, et al. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophysical Journal International, 206(2): 954-979, doi: 10.1093/gji/ggw175.

     

    Simons F J, Loris I, Nolet G, et al. 2011. Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity. Geophysical Journal International, 187(2): 969-988. doi: 10.1111/j.1365-246X.2011.05190.x

     

    Song X Y, Lei J S. 2022. Direct surface-wave tomography under Northeast China: New insights into 3-D crustal S-wave velocity structure and dynamics of intraplate volcanism. Physics of the Earth and Planetary Interiors. Under Revision.

     

    Sun X L, Song X D, Zheng S H, et al. 2010. Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography. Earthquake Science, 23(5): 449-463, doi: 10.1007/s11589-010-0744-4.

     

    Thomson W T. 1950. Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics, 21(2): 89-93. doi: 10.1063/1.1699629

     

    Thurber C, Eberhart-Phillips D. 1999. Local earthquake tomography with flexible gridding. Computers and Geosciences, 25(7): 809-818, doi: 10.1016/S0098-3004(99)00007-2.

     

    Tian Y, Liu C, Feng X. 2011. P-wave velocity structure of crust and upper mantle in Northeast China and its control on the formation of mineral and energy. Chinese Journal of Geophysics (in Chinese), 54(2): 407-414, doi: 10.399/j.issn.0001-5733.2011.02.017.

     

    Tian Y, Legendre C P, Zhou T, et al. 2017. High resolution anisotropic phase velocity tomography of Northeast China and its implication. Chinese Journal of Geophysics (in Chinese), 60(5): 1659-1675, doi: 10.608/cjg20170505.

     

    Wang J, Li C F, Lei J S, et al. 2016. Relationship between seismicity and crustal thermal structure in North China. Acta Seismologica Sinica (in Chinese), 38(4): 618-631, doi: 10.11939/jass.2016.04.008.

     

    Wang J, Li C F. 2018. Curie point depths in Northeast China and their geothermal implications for the Songliao Basin. Journal of Asian Earth Sciences, 163: 177-193, doi: 10.1016/j.jseaes.2018.05.026.

     

    Wang P J, Mattern F, Didenko N A, et al. 2016. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth-Science Reviews, 159: 82-102, doi: 10.1016/j.earscirev.2016.05.004.

     

    Wang Q H, Xu W L. 2003. The deep process of formation and evolution of Songliao Basin-Mesozoic volcanic rock probe. Journal of Jilin University (Earth Science Edition) (in Chinese), 33(1): 37-42, doi: 10.1328/j.cnki.jjuese.2003.01.007.

     

    Wang R T, Li Z W, Bao F, et al. 2019. S-wave velocity structure of sediment in Songliao Basin from short-period ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 62(9): 3385-3399, doi: 10.6038/cjg2019M0144.

     

    Wang S Z, Jia H D. 2017. 3-D characteristics inversion of hypocenter fault-plane of the 2013 Tongliao M5.3 earthquake. North China Earthquake Sciences (in Chinese), 35(4): 70-74. doi: 10.3969/j.issn.1003-1375.2017.04.013

     

    Wei P S, Zhang J L, Zhang H Q, et al. 2008. The deep crust structure features of the Songliao Basin and their implications for the generation model of inorganic petroleum. Progress in Geophysics (in Chinese), 23(5): 1507-1513.

     

    Wei W, Xu J D, Zhao D P, et al. 2012. East Asia mantle tomography: new insight into plate subduction and intraplate volcanism. Journal of Asian Earth Sciences, 60: 88-103, doi: 10.1016/j.jseaes.2012.08.001.

     

    Wei W, Zhao D P, Xu J D, et al. 2015. P and S wave tomography and anisotropy in Northwest Pacific and East Asia: constraints on stagnant slab and intraplate volcanism. Journal of Geophysical Research: Solid Earth, 120(3): 1642-1666, doi: 10.1002/2014JB011254.

     

    Wessel P, Smith W H F. 1995. New version of the generic mapping tools. Eos, Transactions American Geophysical Union, 76(33): 329, doi: 10.1029/95EO00198.

     

    Wu F Y, Sun D Y, Jahn B M, et al. 2004. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences, 23(5): 731-744. doi: 10.1016/S1367-9120(03)00149-4

     

    Wu F Y, Zhao G C, Sun D Y, et al. 2007. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30(3-4): 542-556. doi: 10.1016/j.jseaes.2007.01.003

     

    Xu W L, Ji W Q, Pei F P, et al. 2009. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications. Journal of Asian Earth Sciences, 34(3): 392-402. doi: 10.1016/j.jseaes.2008.07.001

     

    Xue L F, Zhu M, Li W Q, et al. 2018. Earthquake triggered by "magma bubble" bursting: 2013 Songyuan earthquake clusters in Jilin as an example. Journal of Jilin University (Earth Science Edition) (in Chinese), 48(6): 1865-1875, doi: 10.13278/j.cnki.jjueses.20180161.

     

    Yang Y, Lei J S, Ai Y S, et al. 2019. Crustal structure beneath Northeast China from ambient noise tomography. Physics of the Earth and Planetary Interiors, 293: 106257, doi: 10.1016/j.pepi.2019.04.008.

     

    Yang Y, Lei J S, Zhang G W, et al. 2019. Crustal velocity structure and seismogenic environment in the source areas of the Qianguo MS5.8 and Songyuan MS5.7 earthquakes. Chinese Journal of Geophysics (in Chinese), 62(11): 4259-4278, doi: 10.6038/cjg2019M0652.

     

    Yao H J, Xu G M, Xiao X, et al. 2004. A quick tracing method based on image analysis technique for the determination of dual stations phase velocities dispersion curve of surface wave. Seismological and Geomagnetic Observation and Research (in Chinese), 25(1): 1-8, doi: 10.3969/j.issn.1003-3246.2004.01.001.

     

    Yao H J, Van Der Hilst R D, De Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps. Geophysical Journal International, 166(2): 732-744, doi: 10.1111/j.1365-246X.2006.03028.x.

     

    Yao H J, Beghein C, Van Der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure. Geophysical Journal International, 173(1): 205-219, doi: 10.1111/j.1365-246X.2007.03696.x.

     

    Yin C H, Yang B Z, Cui Y Q. 2013. Study on the migration pathway of deep gas in Songliao Basin. Geology of Chemical Minerals (in Chinese), 35(2): 84-90, doi: 10.3969/j.issn.1006-5296.2013.02.004.

     

    Yun J B, Yin J Y, Jin Z J. 2003. Deep geological feature and dynamic evolution of the Songliao Basin. Seismology and Geology (in Chinese), 25(4): 595-608. doi: 10.3969/j.issn.0253-4967.2003.04.008

     

    Zhang F X, Wu Q J. 2019. Velocity structure in upper mantle and its implications for the volcanism nearby the north edge of Songliao Basin. Chinese Journal of Geophysics (in Chinese), 62(8): 2918-2929, doi: 10.6038/cjg2019M0665.

     

    Zhang G W, Lei J S, Sun D Y. 2019. The 2013 and 2017 MS5 seismic swarms in Jilin, NE China: Fluid-triggered earthquakes?. Journal of Geophysical Research: Solid Earth, 124(12): 13096-13111. doi: 10.1029/2019JB018649

     

    Zhang J L, Cao Z L, Yu J M. 2003. Discussion on the origin of dolomitization. Marine Origin Petroleum Geology (in Chinese), 8(1): 109-115, doi: 10.3969/j.issn.1672-9854.2003.01.018.

     

    Zhang Z Q, Yao H J, Yang Y. 2020. Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications. Science China Earth Science, 63(9): 1278-1293, doi: 10.1007/s11430-020-9625-3.

     

    Zhao D P, Kanamori H, Negishi H, et al. 1996. Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter?. Science, 274(5294): 1891-1894. doi: 10.1126/science.274.5294.1891

     

    Zhao D P. 2004. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Physics of the Earth & Planetary Interiors, 146(1-2): 3-34, doi: 10.1016/j.pepi.2003.07.032.

     

    Zhao D P, Tian Y, Lei J S, et al. 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab. Physics of the Earth and Planetary Interiors, 173(3-4): 197-206, doi: 10.1016/j.pepi.2008.11.009.

     

    Zhao L S, Helmberge D V. 1994. Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1): 91-104.

     

    Zheng X, Zhao C P, Zhou L Q, et al. 2012. Rayleigh wave tomography from ambient noise in central and eastern Chinese mainland. Chinese Journal of Geophysics (in Chinese), 55(6): 1919-1928, doi: 10.6038/j.issn.0001-5733.2012.06.013.

     

    付媛媛, 高原. 2016. 东北地区背景噪声的Rayleigh和Love波相速度层析成像. 地球物理学报, 59(2): 494-503, doi: 10.6038/cjg20160209. http://www.geophy.cn/article/doi/10.6038/cjg20160209

     

    韩江涛, 郭振宇, 刘文玉等. 2018. 松辽盆地岩石圈减薄的深部动力学过程. 地球物理学报, 61(6): 2265-2279, doi: 10.6038/cjg2018L0155. http://www.geophy.cn/article/doi/10.6038/cjg2018L0155

     

    韩晓明, 刘芳, 张帆等. 2015. 2013年通辽MS5.3地震及其前震序列判定. 中国地震, 31(2): 271-280. doi: 10.3969/j.issn.1001-4683.2015.02.011

     

    韩晓明, 张帆, 陈立峰等. 2018. 2013年通辽5.3级地震及余震的破裂特征讨论. 地震地质, 40(3): 685-697, doi: 10.3969/j.issn.0253-4967.2018.03.013.

     

    何长文, 李云明, 苏辛轩. 2003. 开鲁坳陷地震勘探方法研究. 特种油气藏, 10(6): 4-8. doi: 10.3969/j.issn.1006-6535.2003.06.002

     

    雷建设, 赵大鹏, 苏金蓉等. 2009. 龙门山断裂带地壳精细结构与汶川地震发震机理. 地球物理学报, 52(2): 339-345. http://www.geophy.cn/article/id/cjg_913

     

    雷建设, 赵大鹏, 徐锡伟等. 2018a. 龙门山断裂带深部结构与2008年汶川地震发震机理. 科学通报, 63(19): 1906-1916. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201819008.htm

     

    雷建设, 赵大鹏, 徐义刚等. 2018b. 长白山火山下方地幔转换带中滞留的俯冲太平洋板块存在空缺吗?. 岩石学报, 34(1): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201801003.htm

     

    李娟, 徐岩, 韩晓明等. 2019. 2013年科左后旗5.3级地震前后的P轴转向和应力场变化分析. 华南地震, 39(S1): 97-101, doi: 10.13512/j.hndz.2019.S1.016.

     

    刘财, 杨宝俊, 王兆国等. 2011. 松辽盆地西边界带深部构造: 地电学证据. 地球物理学报, 54(2): 401-406, doi: 10.3969/j.issn.001-5733.2011.02.016. http://www.geophy.cn/article/doi/10.3969/j.issn.0001-5733.2011.02.016

     

    刘芳, 刁桂苓, 韩晓明等. 2014. 2013年4月22日科尔沁左翼后旗M5.3地震的发震构造初探. 地震地磁观测与研究, 35(5-6): 63-67, doi: 10.3969/j.issn.1003-3246.2014.05/06.011.

     

    刘俊清, 刘财, 雷建设等. 2017. 2013年前郭MS5.8震群矩张量研究. 地球物理学报, 60(9): 3418-3431, doi: 10.6038/cjg20170912. http://www.geophy.cn/article/doi/10.6038/cjg20170912

     

    刘洋, 刘财, 杨宝俊等. 2008. 松辽盆地北部纵波速度区域特征分析及深层油气问题. 地球物理学进展, 23(3): 785-792. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200803021.htm

     

    马海超, 储日升, 盛敏汉等. 2020. 利用深源近震高频Ps转换波震相研究松辽盆地沉积层结构. 大地测量与地球动力学, 40(2): 214-220, doi: 10.14075/j.jgg.2020.02.019.

     

    潘佳铁, 李永华, 吴庆举等. 2014. 中国东北地区地壳上地幔三维S波速度结构. 地球物理学报, 57(7): 2077-2087, doi: 10.6038/cjg20140705. http://www.geophy.cn/article/doi/10.3969/j.issn.0001-5733.2011.02.017

     

    裴惠娟, 韩晓明, 张帆等. 2015. 内蒙古通辽5.3级地震序列特征及发震背景分析. 地震工程学报, 37(1): 242-247, doi: 10.3969/j.issn.1000-0844.2015.01.0242.

     

    田有, 刘财, 冯晅. 2011. 中国东北地区地壳、上地幔速度结构及其对矿产能源形成的控制作用. 地球物理学报, 54(2): 407-414, doi: 10.399/j.issn.0001-5733.2011.02.017. http://www.geophy.cn/article/doi/10.3969/j.issn.0001-5733.2011.02.017

     

    田原, Legendre C P, 周彤等. 2017. 中国东北地区高精度相速度层析成像及其构造意义. 地球物理学报, 60(5): 1659-1675, doi: 10.608/cjg20170505. http://www.geophy.cn/article/doi/10.6038/cjg20170505

     

    王健, 李春峰, 雷建设等. 2016. 华北地区地震活动与地壳热结构关系研究. 地震学报, 38(4): 618-631, doi: 10.11939/jass.2016.04.008.

     

    王清海, 许文良. 2003. 松辽盆地形成与演化的深部作用过程——中生代火山岩探针. 吉林大学学报(地球科学版), 33(1): 37-42, doi: 10.1328/j.cnki.jjuese.2003.01.007.

     

    王仁涛, 李志伟, 包丰等. 2019. 松辽盆地沉积层结构的短周期地震背景噪声成像研究. 地球物理学报, 62(9): 3385-3399, doi: 10.6038/cjg2019M0144. http://www.geophy.cn/article/doi/10.6038/cjg2019M0144

     

    王树忠, 贾昊东. 2017. 2013年内蒙古通辽5.3级地震震源断层三维特征反演. 华北地震科学, 35(4): 70-74. doi: 10.3969/j.issn.1003-1375.2017.04.013

     

    卫平生, 张景廉, 张虎权等. 2008. 松辽盆地深部地壳构造特征与无机油气生成模式. 地球物理学进展, 23(5): 1507-1513. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200805023.htm

     

    薛林福, 祝铭, 李文庆等. 2018. 岩浆泡破裂引发地震的模式——以吉林松原2013年地震群为例. 吉林大学学报(地球科学版), 48(6): 1865-1875, doi: 10.13278/j.cnki.jjueses.20180161.

     

    杨宇, 雷建设, 张广伟等. 2019. 前郭MS5.8和松原MS5.7地震震源区地壳速度结构与孕震环境. 地球物理学报, 62(11): 4259-4278, doi: 10.6038/cjg2019M0652. http://www.geophy.cn/article/doi/10.6038/cjg20151112

     

    姚华建, 徐果明, 肖翔等. 2004. 基于图像分析的双台面波相速度频散曲线快速提取方法. 地震地磁观测与研究, 25(1): 1-8, doi: 10.3969/j.issn.1003-3246.2004.01.001.

     

    印长海, 杨步增, 崔永强. 2013. 松辽盆地深层天然气运移通道研究. 化工矿产地质, 35(2): 84-90, doi: 10.3969/j.issn.1006-5296.2013.02.004.

     

    云金表, 殷进垠, 金之钧. 2003. 松辽盆地深部地质特征及其盆地动力学演化. 地震地质, 25(4): 595-608. doi: 10.3969/j.issn.0253-4967.2003.04.008

     

    张风雪, 吴庆举. 2019. 松辽盆地北缘的上地幔速度结构及该区火山成因探讨. 地球物理学报, 62(8): 2918-2929, doi: 10.6038/cjg2019M0665. http://www.geophy.cn/article/doi/10.6038/cjg2019M0665

     

    张景廉, 曹正林, 于均民. 2003. 白云岩成因初探. 海相油气地质, 8(1): 109-115, doi: 10.3969/j.issn.1672-9854.2003.01.018.

     

    张智奇, 姚华建, 杨妍. 2020. 青藏高原东南缘地壳上地幔三维S波速度结构及动力学意义. 中国科学: 地球科学, 50(9): 1242-1258, doi: 10.1360/SSTe-2020-0016.

     

    郑现, 赵翠萍, 周连庆等. 2012. 中国大陆中东部地区基于背景噪声的瑞利波层析成像. 地球物理学报, 55(6): 1919-1928, doi:10.6038/j.issn.0001-5733.2012.06.013. http://www.geophy.cn/article/doi/10.6038/j.issn.0001-5733.2012.06.013

  • 加载中

(15)

计量
  • 文章访问数:  536
  • PDF下载数:  115
  • 施引文献:  0
出版历程
收稿日期:  2022-02-07
修回日期:  2022-06-23
上线日期:  2022-10-10

目录