密集台阵背景噪声成像揭示郯庐断裂带潍坊段地壳浅层速度结构及变形特征

靳佳琪, 罗松, 姚华建, 田晓峰. 2023. 密集台阵背景噪声成像揭示郯庐断裂带潍坊段地壳浅层速度结构及变形特征. 地球物理学报, 66(2): 558-575, doi: 10.6038/cjg2022P0934
引用本文: 靳佳琪, 罗松, 姚华建, 田晓峰. 2023. 密集台阵背景噪声成像揭示郯庐断裂带潍坊段地壳浅层速度结构及变形特征. 地球物理学报, 66(2): 558-575, doi: 10.6038/cjg2022P0934
JIN JiaQi, LUO Song, YAO HuaJian, TIAN XiaoFeng. 2023. Dense array ambient noise tomography reveals the shallow crustal velocity structure and deformation features in the Weifang segment of the Tanlu fault zone. Chinese Journal of Geophysics (in Chinese), 66(2): 558-575, doi: 10.6038/cjg2022P0934
Citation: JIN JiaQi, LUO Song, YAO HuaJian, TIAN XiaoFeng. 2023. Dense array ambient noise tomography reveals the shallow crustal velocity structure and deformation features in the Weifang segment of the Tanlu fault zone. Chinese Journal of Geophysics (in Chinese), 66(2): 558-575, doi: 10.6038/cjg2022P0934

密集台阵背景噪声成像揭示郯庐断裂带潍坊段地壳浅层速度结构及变形特征

  • 基金项目:

    中国自然科学基金委项目(42125401, 42004031, 41774071)资助

详细信息
    作者简介:

    靳佳琪, 女, 1998年生, 2022年获得中国科学技术大学固体地球物理专业硕士学位, 主要从事背景噪声成像研究工作.E-mail: jinjq@mail.ustc.edu.cn

    通讯作者: 姚华建, 男, 1979年生, 教授, 博士生导师, 主要从事地震波和背景噪声成像、岩石圈结构与变形、大地震破裂反演等领域的研究工作.E-mail: hjyao@ustc.edu.cn
  • 中图分类号: P315

Dense array ambient noise tomography reveals the shallow crustal velocity structure and deformation features in the Weifang segment of the Tanlu fault zone

More Information
  • 郯庐断裂带是中国东部最重要的一条走滑断裂带,历史上发生过多次破坏性大地震,而潍坊段(沂沭断裂带北部)有历史记录的地震较少,未来发生大地震的可能性尚不清楚.因此,研究潍坊段地壳浅层精细结构,将对该地区的地震危险性评估提供重要的参考模型,同时也将有助于深入了解郯庐断裂带潍坊段的动力学过程.我们利用302个短周期流动台站组成的密集台阵在2017年8—10月期间记录的垂向分量连续背景噪声数据,通过预处理、计算噪声互相关函数、手动提取频散曲线并进行质量控制,共得到17614条0.6~6 s周期的Rayleigh波相速度频散曲线.然后基于面波直接成像法反演了该区域地下0~7.5 km的三维各向同性和方位各向异性横波速度模型.研究结果显示,断裂带东边界条带状低速异常从近地表延续至地下4 km深度,表现出明显的高低速异常过渡的构造边界特征.地壳浅部的速度结构与地表构造单元一致性较好,其中凹陷区和隆起区分别显示低速和高速异常.0~4 km深度的快波方向主要为NNE向和NE向,且集中分布在低速异常区,可能与断裂带的左旋走滑有关.4~7.5 km深度,研究区出现大范围的NEE向和近EW向快波方向,可能与白垩世地壳NWW-SEE向伸展变形和现今华北地区最大主压应力场(NEE-SWW向和近EW向)的共同作用有关.潍坊凹陷处0~4 km呈现特殊的环绕凹陷边界的"圆环状"快波方向,可能与新生代岩浆活动形成的熔岩沿凹陷边界溢流和断裂带受EW向挤压作用而发生右行平移有关.

  • 加载中
  • 图 1 

    (a) 研究区位置及近代中小型地震分布(3≤MS≤5). 黑色实线为主要断裂(邓起东等, 2002). 黄色圆圈代表1970—2017年间的中小型地震(来源于中国地震台网中心), 圆圈大小反映震级大小. 郯庐断裂带中南段经过的主要城市包括:昌邑(CY)、潍坊(WF)、安丘(AQ)、沂水(YS)、临沂(LY)、郯城(TC)、嘉山(JS)、合肥(HF)、庐江(LJ). (b) 研究区台站分布及主要地质构造单元. 蓝色三角形代表台站, 红色三角形指示图 2中的0533台. 黑色粗实线为主要断裂, 其中郯庐断裂带(Tanlu Fault Zone)的四条分支包括昌邑—大店断裂(CY-DD fault)、安丘—莒县断裂(AQ-JX fault)、沂水—汤头断裂(YS-TT fault)和鄌郚—葛沟断裂(TW-GG fault). 此外研究区内还有上五井断裂(SWJ fault)、李家庄断裂(LJZ fault)和景芝断裂(JZ fault). 黑色虚线为构造边界. 研究区内的主要地质构造单元有:潍北凹陷(WB depression)、潍县凸起(WX uplift)、潍坊凹陷(WF depression)和汞丹山凸起(GDS uplift). 研究区内还包括鲁西隆起(LX uplift)和鲁东地体(LD terrane). 研究区内的主要城市有:昌邑(CY)、潍坊(WF)、昌乐(CL)、临朐(LQ)和安丘(AQ)

    Figure 1. 

    (a) The location and small magnitude earthquakes distribution in the study area (3≤MS≤5). The black solid lines are the main faults (Deng et al., 2002). The yellow circles are the earthquakes that occurred from 1970 to 2017 (from the China Earthquake Network Center). The main cities in the central-southern segment of Tanlu fault zone include: Changyi (CY), Weifang (WF), Anqiu (AQ), Yishui (YS), Linyi (LY), Tancheng (TC), Jiashan (JS), Hefei (HF), Lujiang (LJ). (b) The station distribution and tectonic units in the study area. The blue triangles represent the stations, and the red triangle indicates the 0533 station in Fig. 2. The black solid lines are the main faults. The four branches of the Tanlu Fault Zone include Changyi—Dadian fault (CY-DD fault), Anqiu—Juxian fault (AQ-JX fault), Yishui—Tangtou fault (YS-TT fault) and the Tangwu—Gegou fault (TW-GG fault). Besides, there are Shangwujing fault (SWJ fault), Lijiazhuang fault (LJZ fault) and Jingzhi fault (JZ fault). The black dashed lines are the structural boundaries. The main tectonic units in the study area include Weibei depression (WB depression), Weixian uplift (WX uplift), Weifang depression (WF depression), and Gongdanshan uplift (GDS uplift). There are also Luxi uplift (LX uplift) and Ludong terrane (LD terrane). The main cities in the study area include Changyi (CY), Weifang (WF), Changle (CL), Linqu (LQ) and Anqiu (AQ)

    图 2 

    0533台与其他台站之间的噪声互相关函数. 互相关函数的周期为0.6~10 s

    Figure 2. 

    Ambient noise cross-correlation functions between station 0533 and other stations

    图 3 

    对0701和1939台站对进行路径聚束分析

    Figure 3. 

    The path cluster analysis for the station pair between station 0701 and 1939

    图 4 

    (a) Rayleigh波相速度频散数据. 黑线代表不同路径的频散分布. 黄线代表各个路径下频散数据的平均值. (b) 不同周期下射线路径数目的统计图

    Figure 4. 

    (a) Rayleigh wave phase velocity dispersion curves. The black lines represent the dispersion distribution of different paths. The yellow line shows the mean Rayleigh wave phase velocity. (b) The histogram of the number of ray paths at each period

    图 5 

    不同周期Rayleigh波射线路径分布情况

    Figure 5. 

    Rayleigh wave ray path coverage at different periods

    图 6 

    深度敏感核分析

    Figure 6. 

    Depth sensitivity kernels

    图 7 

    Rayleigh波走时残差分布

    Figure 7. 

    Rayleigh wave travel time residual distribution

    图 8 

    各向同性检测板测试结果

    Figure 8. 

    Checkerboard resolution tests of the isotropic model

    图 9 

    方位各向异性检测板测试结果

    Figure 9. 

    Checkerboard resolution tests of the azimuth anisotropic model

    图 10 

    研究区三维横波速度模型在0.8~1、1.5~2、2.5~3、3~4、5~6和6~7.5 km处的水平剖面

    Figure 10. 

    The horizontal 3-D VS maps at depths 0.8~1, 1.5~2, 2.5~3, 3~4, 5~6 and 6~7.5 km

    图 11 

    研究区域AA′~JJ′的横波速度垂直剖面

    Figure 11. 

    The vertical VS model at profiles AA′ to JJ′

    图 12 

    方位各向异性模型恢复性测试

    Figure 12. 

    Recovery tests of the azimuthally anisotropic model

  •  

    Bem T S, Liu C M, Yao H J, et al. 2022. Azimuthally anisotropic structure in the crust and uppermost mantle in central East China and its significance to regional deformation around the Tan-Lu fault zone. Journal of Geophysical Research: Solid Earth, 127(3): e2021JB023532, doi: 10.1029/2021JB023532.

     

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. , 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x

     

    Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth′s crust. Bull. Seismol. Soc. Am. , 95(6): 2081-2092. doi: 10.1785/0120050077

     

    Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of theTanlu fault zone, Eastern China: constructed from wave equation based receiver function migration. Journal of Geophysical Research: Solid Earth, 111(B9): B09312, doi: 10.1029/2005JB003974.

     

    Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Basic characteristics of active tectonics of China. Science in China Series D: Earth Sciences, 46(4): 356-372.

     

    Fang H J, Yao H J, Zhang H J, et al. 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophys. J. Int. , 201(3): 1251-1263. doi: 10.1093/gji/ggv080

     

    Gao Y, Wu J, Fukao Y, et al. 2011. Shear wave splitting in the crust in North China: stress, faults and tectonic implications. Geophys. J. Int. , 187(2): 642-654. doi: 10.1111/j.1365-246X.2011.05200.x

     

    Gu N, Wang K D, Gao J, et al. 2019. Shallow crustal structure of the Tanlu fault zone near Chao lake in eastern China by direct surface wave tomography from local dense array ambient noise analysis. Pure and Applied Geophysics, 176(3): 1193-1206. doi: 10.1007/s00024-018-2041-4

     

    Gu Q P, Ding Z F, Kang Q Q, et al. 2020. Group velocity tomography of Rayleigh wave in the middle-southern segment of the Tan-Lu fault zone and adjacent regions using ambient seismic noise. Chinese Journal of Geophysics (in Chinese), 63(4): 1505-1522, doi: 10.6038/cjg2020N0117.

     

    He Z Q, Ding Z F, Ye T L, et al. 2002. The group velocity distribution of Rayleigh waves and crustal and upper mantle velocity structure of the Chinese mainland and its vicinity. Acta Seismologica Sinica (in Chinese), 24(3): 252-259. doi: 10.3321/j.issn:0253-3782.2002.03.004

     

    Herrmann R B. 2013. Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84(6): 1081-1088. doi: 10.1785/0220110096

     

    Huang Y, Li Q H, Zhang Y S, et al. 2011. Crustal velocity structure beneath the Shandong-Jiangsu—Anhui segment of the Tancheng-Lujiang fault zone and adjacent areas. Chinese Journal of Geophysics (in Chinese), 54(10): 2549-2559, doi: 10.3969/j.issn.0001-5733.2011.10.012.

     

    Jin L Y. 1985. K-Ar ages of Cenozoic volcanic rocks in the middle segment of the Tancheng-Lujiang fault zone and stages of related volcanic activity. Geological Review (in Chinese), 31(4): 309-315. doi: 10.3321/j.issn:0371-5736.1985.04.004

     

    Jin L Y. 1989. Petrologic and geochemical characteristics of Cenozoic volcanic rocks in the middle segment of the Tancheng-Lujiang fault zone. Acta Petrologica Sinica (in Chinese), 5(4): 45-57. doi: 10.3321/j.issn:1000-0569.1989.04.005

     

    Leary P C, Crampin S, McEvilly T V. 1990. Seismic fracture anisotropy in the Earth′s crust: An overview. Journal of Geophysical Research: Solid Earth, 95(B7): 11105-11114. doi: 10.1029/JB095iB07p11105

     

    Li C, Yao H J, Yang Y, et al. 2020. 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications. Earth and Planetary Physics, 4(3): 317-328, doi: 10.26464/epp2020026.

     

    Li H K. 2010. Study on tectonic evolution and gold mineralization in Yishu fault belt [Ph. D. thesis] (in Chinese). Qingdao: Shandong University of Science and Technology.

     

    Li H K, Zhuo C Y, Geng K, et al. 2017. Intra-continental extensional tectonics of the Tan-Lu fault zone: an example from the appearance characteristics of the Yishu fault zone. Earth Science Frontiers (in Chinese), 24(2): 73-84.

     

    Li Y H, Gao M T, Wu Q J. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions. Tectonophysics, 611: 51-60. doi: 10.1016/j.tecto.2013.11.019

     

    Li Z W, Xu Y, Hao T Y, et al. 2006. Seismic tomography and velocity structure in the crust and upper mantle around Bohai Sea area. Chinese Journal of Geophysics (in Chinese), 49(3): 797-804. doi: 10.3321/j.issn:0001-5733.2006.03.023

     

    Liu C M, Yao H J, Yang H Y, et al. 2019. Direct inversion for three-dimensional shear wave speed azimuthal anisotropy based on surface wave ray tracing: Methodology and application to Yunnan, southwest China. Journal of Geophysical Research: Solid Earth, 124(11): 11394-11413. doi: 10.1029/2018JB016920

     

    Luo S, Yao H J. 2021. Multistage tectonic evolution of the Tanlu fault: Insights from upper crustal azimuthal anisotropy of the Chao Lake segment. Tectonophysics, 806: 228795, doi: 10.1016/j.tecto.2021.228795.

     

    Luo S, Yao H, Zhang Z, et al. 2022. High-resolution crustal and upper mantle shear-wave velocity structure beneath the central- southern Tanlu fault: Implications for its initiation and evolution. Earth and Planetary Science Letters, 595: 117763. doi: 10.1016/j.epsl.2022.117763

     

    Ma C, Lei J S, Xu X W. 2020. Three-dimensional shear-wave velocity structure under the Weifang segment of the Tanlu fault zone in Eastern China inferred from ambient noise tomography with a short-period dense seismic array. Physics of the Earth and Planetary Interiors, 309: 106590. doi: 10.1016/j.pepi.2020.106590

     

    Man H M. 2005. Differential activity within Yishu fault zone and its causes of formation. North China Earthquake Sciences (in Chinese), 23(3): 13-21. doi: 10.3969/j.issn.1003-1375.2005.03.003

     

    Meng Y F, Yao H J, Wang X Z, et al. 2019. Crustal velocity structure and deformation features in the central-southern segment of Tanlu fault zone and its adjacent area from ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 62(7): 2490-2509, doi: 10.6038/cjg2019M0189.

     

    Miao Q J, Liu X Q, Shi Y Y, et al. 2016. Tectonic stress analysis based on the crustal seismic anisotropy in the Shandong area. Earthquake Research in China (in Chinese), 32(1): 63-71. doi: 10.3969/j.issn.1001-4683.2016.01.006

     

    Montagner J P, Nataf H C. 1986. A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research, 91(B1): 511, doi: 10.1029/JB091iB01p00511.

     

    Niu M L, Zhu G, Song C Z. 2001. Mesozoic volcanic activities and deep processes in the Tan-Lu fault zone. Journal of Hefei University of Technology (in Chinese), 24(2): 147-153. doi: 10.3969/j.issn.1003-5060.2001.02.001

     

    Niu M L, Zhu G, Liu G S, et al. 2005. Cenozoic volcanic activities and deep processes in the middle-south sector of the Tan-Lu fault zone. Chinese Journal of Geology (in Chinese), 40(3): 390-403. doi: 10.3321/j.issn:0563-5020.2005.03.008

     

    Ouyang L B, Li H Y, Lü Q T, et al. 2015. Crustal shear wave velocity structure and radial anisotropy beneath the Middle-Lower Yangtze River metallogenic belt and surrounding areas from seismic ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 58(12): 4388-4402, doi: 10.6038/cjg20151205.

     

    Qu P, Lü J, Guo Z, et al. 2020. Study on crust and upper mantle structure in Shandong area. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 56(4): 649-658.

     

    Rawlinson N, Sambridge M. 2004. Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys. J. Int. , 156(3): 631-647. doi: 10.1111/j.1365-246X.2004.02153.x

     

    Shen J C, Zhang B, Su D L, et al. 2016. Analysis on crustal thickness and Poisson's ratio beneath area of Luxi Uplift, Yishu Fault and Jiaonan Uplift. Journal of Seismological Research (in Chinese), 39(2): 246-254. doi: 10.3969/j.issn.1000-0666.2016.02.010

     

    Smith M L, Dahlen F A. 1973. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78(17): 3321-3333. doi: 10.1029/JB078i017p03321

     

    Su D L, Fan J K, Wu S G, et al. 2016. 3D P wave velocity structures of crust and their relationship with earthquakes in the Shandong area. Chinese Journal of Geophysics (in Chinese), 59(4): 1335-1349, doi: 10.6038/cjg20160415.

     

    Tian F F, Lei J S, Xu X W. 2020. Teleseismic P-wave crustal tomography of the Weifang segment on the Tanlu fault zone: a case study based on short-period dense seismic array experiment. Physics of the Earth and Planetary Interiors, 306: 106521. doi: 10.1016/j.pepi.2020.106521

     

    Tian H Q, Ma Y X, Yu W Q, et al. 2000. Studies on the fracture systems in the volcanic rocks, Changle-Linqu region, Shandong. Acta Petrologica Sinica (in Chinese), 16(2): 174-182.

     

    Wan T F, Zhu H, Zhao L, et al. 1996. Formation and evolution of Tancheng-Lujiang fault zone: a review. Geoscience (in Chinese), 10(2): 159-168.

     

    Wang X M, Zhong D L, Li L, et al. 2010. Relationship between NW faults of West Shandong and Yi-Shu fault zone in Late Mesozoic and their geotectonic setting operations. Earth Science Frontiers (in Chinese), 17(3): 166-190.

     

    Wang Y S, Zhu G, Hu Z Q, et al. 2009. K-Ar dating of extensional fault gouge from the Yi-Shu segment of the Tan-Lu fault zone. Science in China Series D: Earth Sciences, 52(4): 489-503. doi: 10.1007/s11430-009-0050-y

     

    Wang Z C, Jia R G, Sun Z M, et al. 2005. Geometry and activity of the Anqiu-Zhuli segment of the Anqiu-Juxian fault in the Yishu fault zone. Seismology and Geology (in Chinese), 27(2): 212-220. doi: 10.3969/j.issn.0253-4967.2005.02.004

     

    Wei Z G, Chu R S, Chen L, et al. 2020. Crustal structure in the middle-southern segments of the Tanlu fault zone and adjacent regions constrained by multifrequency receiver function and surface wave data. Physics of the Earth and Planetary Interiors, 301: 106470, doi: 10.1016/j.pepi.2020.106470.

     

    Weiss T, Siegesmund S, Rabbel W, et al. 1999. Seismic velocities and anisotropy of the lower continental crust: A review. Pure and Applied Geophysics, 156(1-2): 97-122. doi: 10.1007/s000240050291

     

    Wu P P, Ding Z F, Ma X J, et al. 2015. Rayleigh wave group velocity tomography beneath Dabie-Sulu and its adjacent areas from ambient seismic noise. Acta Seismologica Sinica (in Chinese), 37(2): 218-229, 370.

     

    Xiong Z, Li Q H, Zhang Y S, et al. 2016. Segmentation of crustal velocity structure beneath the Shandong-Jiangsu-Anhui segment of the Tanlu fault zone and adjacent areas and its geological implications. Chinese Journal of Geophysics (in Chinese), 59(7): 2433-2443, doi: 10.6038/cjg20160710.

     

    Xu G M, Li G P, Wang S E, et al. 2000. The 3-D structure of shear waves in the crust and mantle of east continental China inverted by Rayleigh wave data. Chinese Journal of Geophysics (in Chinese), 43(3): 366-376. doi: 10.3321/j.issn:0001-5733.2000.03.010

     

    Xu J W, Ma G F. 1992. Review of ten years (1981—1991) of research on the Tancheng-Lujiang fault zone. Geological Review (in Chinese), 38(4): 316-324. doi: 10.3321/j.issn:0371-5736.1992.04.004

     

    Xu J W, Zhu G, Lü P J, et al. 1995. Progress in studies on strike-slip chronology of the Tan-Lu fault zone. Geology of Anhui (in Chinese), (1): 1-12.

     

    Yan L J, Zhu G, Lin S Z, et al. 2014. Neotectonic activity and formation mechanism of the Yishu Fault Zone. Science China Earth Sciences, 57(4): 614-629. doi: 10.1007/s11430-013-4725-z

     

    Yao H J, Van Der Hilst R D, De Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys. J. Int. , 166(2): 732-744. doi: 10.1111/j.1365-246X.2006.03028.x

     

    Yao H J, Gouédard P, Collins J A, et al. 2011. Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves. Comptes Rendus Geoscience, 343(8-9): 571-583. doi: 10.1016/j.crte.2011.04.004

     

    Yi G X, Yao H J, Zhu J S, et al. 2008. Rayleigh-wave phase velocity distribution in China continent and its adjacent regions. Chinese Journal of Geophysics (in Chinese), 51(2): 402-411. doi: 10.3321/j.issn:0001-5733.2008.02.013

     

    Zhang C C, Yang E X, Li X Z, et al. 2010. Cenozoic volcanic study in Linqu-Changle district of Shandong province. Shanghai Geology (in Chinese), 31(S1): 137-139, 156.

     

    Zhang L, Liu J S, Hao T Y, et al. 2007. Seismic tomography of the crust and upper mantle in the Bohai Bay Basin and its adjacent regions. Science in China Series D: Earth Sciences, 50(12): 1810-1822. doi: 10.1007/s11430-007-0135-4

     

    Zhang P, Wang L S, Zhong K, et al. 2007. Research on the segmentation of Tancheng-Lujiang fault zone. Geological Review (in Chinese), 53(5): 577-583. doi: 10.3321/j.issn:0371-5736.2007.05.001

     

    Zhang Y Y, Yao H J, Yang H Y, et al. 2018. 3-D crustal shear-wave velocity structure of the Taiwan Strait and Fujian, SE China, revealed by ambient noise tomography. Journal of Geophysical Research: Solid Earth, 123(9): 8016-8031. doi: 10.1029/2018JB015938

     

    Zhang Z Q, Yao H J, Wang W T, et al. 2022. 3-D crustal azimuthal anisotropy reveals multi-stage deformation processes of the Sichuan Basin and its adjacent area, SW China. Journal of Geophysical Research: Solid Earth, 127: e2021JB023289.

     

    Zhu G, Wang D X, Liu G S, et al. 2001. Extensional activities along the Tan-Lu fault zone and its geodynamic setting. Chinese Journal of Geology (in Chinese), 36(3): 269-278. doi: 10.3321/j.issn:0563-5020.2001.03.002

     

    Zhu G, Liu G S, Niu M L, et al. 2002. Post-Eogene compressive activities on the Tan-Lu fault zone and their deep processes. Seismology and Geology (in Chinese), 24(2): 265-277. doi: 10.3969/j.issn.0253-4967.2002.02.015

     

    Zhu G, Liu G S, Niu M L, et al. 2003. Transcurrent movement and genesis of the Tan-Lu fault zone. Geological Bulletin of China (in Chinese), 22(3): 200-207. doi: 10.3969/j.issn.1671-2552.2003.03.009

     

    Zhu G, Niu M L, Xie C L, et al. 2010. Sinistral to normal faulting along the Tan-Lu fault zone: Evidence for geodynamic switching of the East China continental margin. Journal of Geology, 118(3): 277-293. doi: 10.1086/651540

     

    Zhu G, Jiang D Z, Zhang B L, et al. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res. , 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005

     

    Zhu G, Lu Y C, Su N, et al. 2021. Crustal deformation and dynamics of Early Cretaceous in the North China Craton. Science China Earth Sciences, 64(9): 1428-1450. doi: 10.1007/s11430-020-9749-0

     

    Zhu S B, Shi Y L. 2011. Estimation of GPS strain rate and its error analysis in the Chinese continent. J. Asian Earth Sci. , 40(1): 351-362. doi: 10.1016/j.jseaes.2010.06.007

     

    Zou W L, Shen Y C. 2001. A discussion on metalizational pattern of gold ore in Yishu fault system. Geology and Prospecting (in Chinese), 37(1): 20-26.

     

    邓起东, 张培震, 冉勇康等. 2002. 中国活动构造基本特征. 中国科学: 地球科学, 32(12): 1020-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm

     

    方仲景, 丁梦林, 向宏发等. 1986. 郯庐断裂带的基本特征. 科学通报, (1): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198601014.htm

     

    顾勤平, 丁志峰, 康清清等. 2020. 郯庐断裂带中南段及邻区基于背景噪声的瑞利波群速度层析成像. 地球物理学报, 63(4): 1505-1522, doi: 10.6038/cjg2020N0117.

     

    何正勤, 丁志峰, 叶太兰等. 2002. 中国大陆及其邻域的瑞利波群速度分布图象与地壳上地幔速度结构. 地震学报, 24(3): 252-259. doi: 10.3321/j.issn:0253-3782.2002.03.004

     

    黄伟师. 1988. 从地质地貌标志看沂沭断裂带的新构造活动特性. 中国地震, (3): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD198803025.htm

     

    黄耘, 李清河, 张元生等. 2011. 郯庐断裂带鲁苏皖段及邻区地壳速度结构. 地球物理学报, 54(10): 2549-2559, doi: 10.3969/j.issn.0001-5733.2011.10.012.

     

    金隆裕. 1985. 郯庐断裂带中段新生代火山岩的k-Ar年龄值和分期. 地质论评, 31(4): 309-315. doi: 10.3321/j.issn:0371-5736.1985.04.004

     

    金隆裕. 1989. 郯庐断裂带中段新生代火山岩的岩石学和地球化学特征. 岩石学报, 5(4): 45-57. doi: 10.3321/j.issn:1000-0569.1989.04.005

     

    李洪奎. 2010. 沂沭断裂带构造演化与金矿成矿作用研究[博士论文]. 青岛: 山东科技大学.

     

    李洪奎, 禚传源, 耿科等. 2017. 郯-庐断裂带陆内伸展构造: 以沂沭断裂带的表现特征为例. 地学前缘, 24(2): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702013.htm

     

    李志伟, 胥颐, 郝天珧等. 2006. 环渤海地区的地震层析成像与地壳上地幔结构. 地球物理学报, 49(3): 797-804. doi: 10.3321/j.issn:0001-5733.2006.03.023

     

    满洪敏. 2005. 沂沭断裂带内部的差异活动及其成因分析. 华北地震科学, 23(3): 13-21. doi: 10.3969/j.issn.1003-1375.2005.03.003

     

    孟亚锋, 姚华建, 王行舟等. 2019. 基于背景噪声成像方法研究郯庐断裂带中南段及邻区地壳速度结构与变形特征. 地球物理学报, 62(7): 2490-2509, doi: 10.6038/cjg2019M0189.

     

    苗庆杰, 刘希强, 石玉燕等. 2016. 基于地壳介质各向异性分析山东地区构造应力特征. 中国地震, 32(1): 63-71. doi: 10.3969/j.issn.1001-4683.2016.01.006

     

    牛漫兰, 朱光, 宋传中. 2001. 郯庐断裂带中生代火山活动与深部过程. 合肥工业大学学报(自然科学版), 24(2): 147-153. doi: 10.3969/j.issn.1003-5060.2001.02.001

     

    牛漫兰, 朱光, 刘国生等. 2005. 郯庐断裂带中-南段新生代火山活动与深部过程. 地质科学, 40(3): 390-403. doi: 10.3321/j.issn:0563-5020.2005.03.008

     

    欧阳龙斌, 李红谊, 吕庆田等. 2015. 长江中下游成矿带及邻区地壳剪切波速度结构和径向各向异性. 地球物理学报, 58(12): 4388-4402, doi: 10.6038/cjg20151205.

     

    曲平, 吕杰, 郭震等. 2020. 山东地区地壳及上地幔结构研究. 北京大学学报(自然科学版), 56(4): 649-658. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ202004008.htm

     

    申金超, 张斌, 苏道磊等. 2016. 鲁西隆起、沂沭断裂带及胶南隆起区域地壳厚度、泊松比分析. 地震研究, 39(2): 246-254. doi: 10.3969/j.issn.1000-0666.2016.02.010

     

    苏道磊, 范建柯, 吴时国等. 2016. 山东地区地壳P波三维速度结构及其与地震活动的关系. 地球物理学报, 59(4): 1335-1349, doi: 10.6038/cjg20160415.

     

    田海芹, 马玉新, 于文芹等. 2000. 山东昌乐—临朐火山岩孔隙系统研究. 岩石学报, 16(2): 174-182. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002004.htm

     

    万天丰, 朱鸿, 赵磊等. 1996. 郯庐断裂带的形成与演化: 综述. 现代地质, 10(2): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ602.002.htm

     

    王小凤. 2000. 郯庐断裂带. 北京: 地质出版社.

     

    王先美, 钟大赉, 李理等. 2010. 鲁西北西向断裂系与沂沭断裂带晚中生代演化关系及其动力学背景探讨. 地学前缘, 17(3): 166-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003019.htm

     

    王勇生, 朱光, 胡召齐等. 2009. 郯庐断裂带沂沭段伸展活动断层泥K-Ar同位素定年. 中国科学D辑: 地球科学, 39(5): 580-593. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200905005.htm

     

    王志才, 贾荣光, 孙昭民等. 2005. 沂沭断裂带安丘—莒县断裂安丘—朱里段几何结构与活动特征. 地震地质, 27(2): 212-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200502003.htm

     

    吴萍萍, 丁志峰, 马小军等. 2015. 基于背景噪声研究大别—苏鲁及其邻区的瑞雷波群速度结构. 地震学报, 37(2): 218-229, 370. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201502002.htm

     

    熊振, 李清河, 张元生等. 2016. 郯庐断裂带鲁苏皖段地壳速度结构的分段特征及其地质意义. 地球物理学报, 59(7): 2433-2443, doi: 10.6038/cjg20160710.

     

    徐果明, 李光品, 王善恩等. 2000. 用瑞利面波资料反演中国大陆东部地壳上地幔横波速度的三维构造. 地球物理学报, 43(3): 366-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200003009.htm

     

    徐嘉炜. 1980. 郯-庐断裂带巨大的左行平移运动. 合肥工业大学学报, (1): 1-26+127-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE198001000.htm

     

    徐嘉炜, 马国锋. 1992. 郯庐断裂带研究的十年回顾. 地质论评, 38(4): 316-324. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199204003.htm

     

    徐嘉炜, 朱光, 吕培基等. 1995. 郯庐断裂带平移年代学研究的进展. 安徽地质, (1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ501.000.htm

     

    严乐佳, 朱光, 林少泽等. 2014. 沂沭断裂带新构造活动规律与机制. 中国科学: 地球科学, 44(7): 1452-1467. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201407009.htm

     

    易桂喜, 姚华建, 朱介寿等. 2008. 中国大陆及邻区Rayleigh面波相速度分布特征. 地球物理学报, 51(2): 402-411. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200802014.htm

     

    张春池, 杨恩秀, 李秀章等. 2010. 山东临朐—昌乐地区新生代火山岩研究. 上海地质, 31(S1): 137-139, 156. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD2010S1041.htm

     

    张岭, 刘劲松, 郝天珧等. 2007. 渤海湾盆地及其邻域地区地壳与上地幔层析成像. 中国科学D辑: 地球科学, 37(11): 1444-1455. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200711003.htm

     

    张鹏, 王良书, 钟锴等. 2007. 郯庐断裂带的分段性研究. 地质论评, 53(5): 577-583. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200705001.htm

     

    郑朗荪, 高维明, 郑传贝. 1988. 郯庐断裂带的分段与沂沭断裂的活动性. 中国地震, (3): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD198803022.htm

     

    朱光, 王道轩, 刘国生等. 2001. 郯庐断裂带的伸展活动及其动力学背景. 地质科学, 36(3): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103001.htm

     

    朱光, 刘国生, 牛漫兰等. 2002. 郯庐断裂带晚第三纪以来的浅部挤压活动与深部过程. 地震地质, 24(2): 265-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200202014.htm

     

    朱光, 刘国生, 牛漫兰等. 2003. 郯庐断裂带的平移运动与成因. 地质通报, 22(3): 200-207. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200303009.htm

     

    朱光, 刘程, 顾承串等. 2018. 郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示. 中国科学: 地球科学, 48(04): 415-435. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201804003.htm

     

    朱光, 陆元超, 苏楠等. 2021. 华北克拉通早白垩世地壳变形规律与动力学. 中国科学: 地球科学, 51(9): 1420-1443. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109002.htm

     

    邹为雷, 沈远超. 2001. 浅议沂沭断裂系及其邻区金矿成矿作用演化. 地质与勘探, 37(1): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200101021.htm

  • 加载中

(12)

计量
  • 文章访问数:  4678
  • PDF下载数:  450
  • 施引文献:  0
出版历程
收稿日期:  2021-12-12
修回日期:  2022-06-14
上线日期:  2023-02-10

目录