河南"21·7"特大暴雨常规与扰动天气形势分析

钱维宏, 孔海江, 赵培娟, 任静静, 张银意. 2022. 河南'21·7'特大暴雨常规与扰动天气形势分析. 地球物理学报, 65(11): 4208-4224, doi: 10.6038/cjg2022P0631
引用本文: 钱维宏, 孔海江, 赵培娟, 任静静, 张银意. 2022. 河南"21·7"特大暴雨常规与扰动天气形势分析. 地球物理学报, 65(11): 4208-4224, doi: 10.6038/cjg2022P0631
QIAN WeiHong, KONG HaiJiang, ZHAO PeiJuan, REN JingJing, ZHANG YinYi. 2022. Anomaly-based versus full-field-based weather analysis on the extraordinary storm in Henan province in July 2021. Chinese Journal of Geophysics (in Chinese), 65(11): 4208-4224, doi: 10.6038/cjg2022P0631
Citation: QIAN WeiHong, KONG HaiJiang, ZHAO PeiJuan, REN JingJing, ZHANG YinYi. 2022. Anomaly-based versus full-field-based weather analysis on the extraordinary storm in Henan province in July 2021. Chinese Journal of Geophysics (in Chinese), 65(11): 4208-4224, doi: 10.6038/cjg2022P0631

河南"21·7"特大暴雨常规与扰动天气形势分析

  • 基金项目:

    中国气象局/广东省区域数值天气预报重点实验室开放基金(J202001)资助

详细信息
    作者简介:

    钱维宏, 男, 1957年生, 教授, 主要从事极端天气和异常气候研究.E-mail: qianwh@pku.edu.cn

  • 中图分类号: P458

Anomaly-based versus full-field-based weather analysis on the extraordinary storm in Henan province in July 2021

  • 2021年7月19—21日, 河南省中北部的特大暴雨造成了内涝和重大的生命财产损失, 其中以省会郑州市的灾害最为严重.极值日雨量分布从西南的鲁山400.6 mm到郑州659.7 mm和东北部的鹤壁777.5 mm, 跨度约为300 km, 其中20日16—17时的郑州最大小时降水量达到201.9 mm.科学认识和提前预报产生特大暴雨的天气系统是减少生命财产损失的前提.本文利用我国气象业务平台上的大气观测实况和数值模式产品做常规与扰动天气形势分析, 结果发现: (1)与强降水对应的稳定云团属于西北太平洋副高异常偏北与内陆高压连通后形成在南侧的对流层中下部东风波中尺度扰动低压系统; (2)最强降水的20日, 华南沿海台风"查帕卡"、西北太平洋台风"烟花"与郑州附近强上升气流的扰动中低压构成了相互牵制的3个强降水系统; (3)扰动分析比常规天气图上的风和比湿形势更能有效地确定极端降水的位置, 欧洲中期天气预报中心(ECMWF)模式产品中的风扰动、比湿扰动和湿涡度扰动对极端降水预报有明确的指示意义, 认识模式产品的准确性和稳定性是未来提高特大暴雨预报技巧的基础.

  • 加载中
  • 图 1 

    2021年7月17日08时至22日20时河南省中北部7个大降水站逐小时降水量(mm)序列

    Figure 1. 

    Hourly precipitation (mm) series of seven large precipitation stations in central northern Henan Province from 08 ∶ 00 BJT on 17 July to 20:00 BJT on 22 July 2021.

    图 2 

    (a) 2021年7月17日08时至7月23日08时144 h(6天)累计降水量(mm)和(b) 2021年7月20日08时至7月21日08时24h累计降水量(mm)

    Figure 2. 

    (a) Cumulative precipitation (mm) for 144h (6 days) from 08 ∶ 00 BJT on 17 July to 08 ∶ 00 BJT on 23 July 2021, and (b) Cumulative precipitation (mm) for 24 hours from 08 ∶ 00 BJT on 20 July to 08 ∶ 00 BJT on 21 July 2021

    图 3 

    2021年7月4天每个24小时时段的累计降水量(mm)分布

    Figure 3. 

    Distribution of accumulated precipitation (mm) for each 24-hour for the four days of July 2021

    图 4 

    2021年7月(a) 18日14时,(b) 19日14时,(c) 20日14时和(d)21日14时,日本葵花卫星真彩色云图.

    Figure 4. 

    True color cloud maps of the Japanese Himawari-8 at 14 ∶ 00 BJT on (a) 18, (b) 19, (c) 20, and (d) 21 July 2021.

    图 5 

    2021年7月20日(a)13时30分,(b)15时00分,(c)15时30分,(d)16时36分,(e)17时00分,(f)18时00分雷达回波组合反射率(阴影,5dBZ间隔)

    Figure 5. 

    Combined radar echo reflectance (shaded, 5dBZ interval) at (a) 13 ∶ 30, (b) 15 ∶ 00, (c) 15 ∶ 30, (d) 16 ∶ 36, (e) 17 ∶ 00, and (f) 18 ∶ 00 BJT on 20 July, 2021

    图 6 

    2021年7月20日(a)08时和(b)20时700 hPa高度、风和比湿(阴影,%)分析, 以及欧洲模式(c)提前24 h和(d)提前48 h对20日20时700 hPa高度、风和比湿的预报(来自江苏一体化平台).

    Figure 6. 

    Analysis of 700 hPa geopotential height, wind and specific humidity (shading, %) at (a) 08:00 BJT, and (b) 20 ∶ 00 BJT on 20 July 2021 (from the Integration Platform of Jiangsu Provincial Meteorological Observation). (c) and (d) are same as in (b) but the ECMWF model prediction with lead times of 24 and 48 hours.

    图 7 

    2021年7月20日(a)08时和(b)20时700 hPa风扰动和比湿扰动(阴影,0.6×10-3 kg·kg-1间隔), 以及欧洲模式(c)提前24h和(d)提前48 h对20日20时700 hPa风扰动和比湿扰动的预报.

    Figure 7. 

    700 hPa wind anomaly and specific humidity anomaly (shaded, 0.6×10-3kg·kg-1 interval) at (a) 08 ∶ 00 BJT and (b) 20 ∶ 00 BJT on 20 July 2021. (c) and (d) are same as in (b) but the ECMWF model prediction with lead times of 24 and 48 hours.

    图 8 

    2021年7月20日(a)08时和(b)20时700 hPa风扰动和湿涡度扰动(阴影,MVA,0.1×10-6s-1间隔), 以及欧洲模式(c)提前24 h和(d)提前48 h对20日08时700 hPa MVA和风扰动的预报.

    Figure 8. 

    00 hPa MVA (shaded, 0.1×10-6s-1 interval) and wind anomalies (a) 08 ∶ 00 BJT and (b) 20 ∶ 00 BJT on 20 July 2021. (c) and (d) are same as in (b) but the ECMWF model prediction with lead times of 24 and 48 hours.

    图 9 

    2021年7月20日08时(a)沿34.5°N从105°E—125°E和(b)沿113°E从15°N—45°N随气压(hPa)变化的高度扰动(等值线,1×10 gPm)和温度扰动(阴影,1 ℃间隔)垂直剖面.

    Figure 9. 

    Vertical profiles of geopotential anomalies (contours, 1×10 gpm) and temperature anomalies (shading, 1 ℃ interval) along 34.5°N from 105°E—125°E and (b) along 113.4°E from 15°N—45°N with pressure (hPa) at 08 ∶ 00 BJT on 20 July 2021.

    图 10 

    欧洲模式分别从2021年7月(a)15日08时和(b)17日20时起报郑州未来10天的湿度扰动(阴影,0.6×10-3 kg·kg-1间隔)和南风扰动(等值线,4 m·s-1间隔)随气压(1000~100 hPa)和时间(每天4个时次)的变化.

    Figure 10. 

    The profiles of specific humidity anomalies (shading, 0.6×10-3 kg·kg-1 interval) and the southerly wind anomalies (contours, 4 m·s-1 interval) with vertical pressures (1000~100 hPa) and times (4 times per day) based on the ECMWF model prediction started from (a) 08 ∶ 00 BJT on 15 July 2021 and (b) 20 ∶ 00 BJT on 17 July 2021, respectively.

    图 11 

    图 8,但为欧洲模式14日08时(a)提前96h预报18日08时和(b)提前108 h预报18日20时700 hPa风扰动和湿涡度扰动.

    Figure 11. 

    Same as Fig. 10, but for the ECMWF model predictions of 700 hPa MVA and wind anomalies started from 08 ∶ 00 BJT on 14 July with lead times of (a) 96 and (b) 108 hours for the forecasts at 08 ∶ 00 BIT on 18 July and 20 ∶ 00 BJT on 18 July.

    图 12 

    欧洲模式(a)16日20时提前48h预报18日20时,(b) 17日08时提前54 h预报19日14时,(c) 17日20时提前66 h预报20日14时,和(d)18日20时提前42 h预报20日14时沿经度113.63°E剖面上的南风扰动(实线和虚线,4 m·s-1间隔)和MVA(阴影,0.1×10-6s-1)垂直分布.

    Figure 12. 

    The ECMWF model predictions of southerly wind anomalies (solid line and dashed line, 4 m·s-1 interval) and MVA (shaded, 0.1×10-6s-1) at the vertical-longitude section along 113.63°E with lead times of (a) 48 hours started from 20 ∶ 00 BJT on 16 July for the forecasts at 20:00 BJT on 18 July 2021, (b) 54 hours started from 08 ∶ 00 BJT on 17 July for the forecasts at 14 ∶ 00 BJT on 19 July 2021, (c) 66 hours started from 20 ∶ 00 BJT on 17 July for the forecasts at 14 ∶ 00 BJT on 20 July 2021, and (d) 42 hours started from 20 ∶ 00 BJT on 18 July for the forecasts at 14 ∶ 00 BJT on 20 July 2021.

    表 1 

    2021年7月17日08时—2021年7月22日20时河南省小时雨强排序

    Table 1. 

    Hourly precipitation intensity rankings in Henan Province from 08 ∶ 00 BJT on 17 July 2021 to 20 ∶ 00 BJT on 22 July 2021

    排名 站名 经度 纬度 海拔高度(m) 小时雨强(mm) 出现时段
    1 郑州国家站 113°39′46″ 34°42′23″ 110.4 201.9 20日16—17时
    2 郑州尖岗 113°34′11″ 34°41′39″ 158 158.0 20日15—16时
    3 新乡牧野乡 113°53′56″ 35°19′19″ 78 149.9 21日20—21时
    4 郑州中原区 113°35′46″ 34°44′37″ 156 144.4 20日15—16时
    5 安阳北关六十五中 114°22′40″ 36°07′01″ 76 138.0 21日04—05时
    6 郑州外国语 113°33′16″ 34°49′07″ 103 137.9 20日15—16时
    7 郑州气象局 113°41′55″ 34°42′14″ 105 135.7 20日16—17时
    8 新乡牧野 113°55′33″ 35°21′22″ 64 131.1 21日20—21时
    9 淇县北阳 114°09′50″ 35°33′22″ 72 130.1 21日18—19时
    10 郑州侯寨 113°34′52″ 34°40′10″ 190 129.1 20日15—16时
    下载: 导出CSV
  •  

    Ding Y H, Cai Z Y, Li J S. 1978. A case study on the excessively severe rainstorm in Henan province, early in August, 1975. Scientia Atmopherica Sinica (in Chinese), 2(4): 276-289, doi: 10.3878/j.issn.1006-9895.1978.04.02.

     

    Ding Y H. 2015. On the study of the unprecedented heavy rainfall in Henan province during 4-8 August 1975: review and assessment. Acta Meteorologica Sinica (in Chinese), 73(3): 411-424, doi: 10.11676/qxxb2015.067.

     

    Feng W H, Cheng L S, Cheng M H. 2001. Nonhydrostatic numerical simulation for the "96·8" extraordinary heavy rainfall and the developing structure of mesoscale system. Acta Meteorologica Sinica (in Chinese), 59(3): 294-307, doi: 10.11676/qxxb2001.031.

     

    Jiang N, Qian W H, Du J, et al. 2016. A comprehensive approach from the raw and normalized anomalies to the analysis and prediction of the Beijing extreme rainfall on July 21, 2012. Nat. Hazards, 84(3): 1551-1567, doi: 10.1007/s11069-016-2500-0.

     

    Kong H J, Wang X, Wang R, et al. 2012. Characteristics classification of water vapor transfer of persistent torrential rain in south-central Henan province. Journal of China Hydrology (in Chinese), 32(4): 37-43.

     

    Kong H J, Tian L, Wang R, et al. 2019. "Fupan" method in weather forecaster training. Advances in Meteorological Science and Technology (in Chinese), 9(2): 32-35, doi: 10.3969/j.issn.2095-1973.2019.02.006.

     

    Liang Y, Wang X M, Shao Y X, et al. 2010. Weather characteristics of Huang-huai cyclone rainstorm in Henan and diagnosis of case. Meteorological and Environmental Sciences (in Chinese), 33(1): 24-29, doi: 10.16765/j.cnki.1673-7148.2010.01.003.

     

    Qian W H. 2012a. Transient eddy method and its application on the forecast of extreme weather events. Advances in Meteorological Science and Technology (in Chinese), 2(5): 44-48, doi: 10.3969/j.issn.2095-1973.2012.05.006.

     

    Qian W H. 2012b. Principles of Medium to Extended Range Weather Forecasts (in Chinese). Beijing: China Science Press.

     

    Qian W H, Li J, Shan X L. 2013. Application of synoptic-scale anomalous winds predicted by medium-range weather forecast models on the regional heavy rainfall in China in 2010. Science China Earth Sciences, 56(6): 1059-1070, doi: 10.1007/s11430-013-4586-5.

     

    Qian W H. 2015. Making method of anomalous weather charts and their application in forecasting: China, 201210134358.4 (in Chinese).

     

    Qian W H, Zhang G W, Huang J. 2015. Intensity evolution of typhoon Megi (2010) revealed from anomaly-based atmospheric variables. Meteorological Monthly (in Chinese), 41(7): 806-815, doi: 10.7519/j.issn.1000-0526.2015.07.002.

     

    Qian W H, Jiang N, Du J. 2016. Anomaly-based weather analysis versus traditional total-field-based weather analysis for depicting regional heavy rain events. Wea. Forecasting, 31(1): 71-93, doi: 10.1175/WAF-D-15-0074.1.

     

    Qian W H. 2017. Temporal Climatology and Anomalous Weather Analysis. Singapore: Springer.

     

    Qian W H, Ai Y, Chen L W, et al. 2020. Anomalous synoptic pattern of typical dragon boat precipitation process in Guangdong province. Journal of Tropical Meteorology (in Chinese), 36(4): 433-443, doi: 10.16032/j.issn.1004-4965.2020.040.

     

    Qian W H, Ai Y, Leung J C H, et al. 2021a. Anomaly-based synoptic analysis and model product application for 2020 summer southern China rainfall events. Atm. Res. , 258: 105631, doi: 10.1016/j.atmosres.2021.105631.

     

    Qian W H, Du J, Ai Y. 2021b. A review: Anomaly-based versus full-field-based weather analysis and forecasting. Bull. Amer. Meteor. Soc. , 102(4): E849-E870, doi: 10.1175/BAMS-D-19-0297.1.

     

    Su A F, Zhang N, Huang Y. 2016. Organizational structure and trigger mechanism of rainstorm cloud clusters over north Huanghuai region on 13 August 2010. Meteorological Monthly (in Chinese), 42(8): 905-919, doi: 10.7519/j.issn.1000-0526.2016.08.001.

     

    Yang G M, Mao D Y, Yao X P. 2006. The analysis of dry intrusion feature of a Huanghuai cyclone development in Meiyu period. Journal of Tropical Meteorology (in Chinese), 22(2): 176-183, doi: 10.16032/j.issn.1004-4965.2006.02.010.

     

    Zhang S L, Gai S M, Gu R Y, et al. 2001. The tropical cyclone caused Northern storm climatology characteristic analyse. Marine Forecasts (in Chinese), 18(1): 40-47.

     

    Zhang S P, Li C, Bai Y, et al. 2006. Energy analysis on a heavy storm case in north China caused by typhoon No. 9406. Chinese Journal of Atmospheric Sciences (in Chinese), 30(4): 645-659.

     

    Zhang Y P, Wang X M, Liang J P, et al. 2013. Analysis on mesoscale characteristics of two vortex rainstorms in the Huanghe-Huaihe regions. Torrential Rain and Disasters (in Chinese), 32(4): 303-313, doi: 10.3969/j.issn.1004-9045.2013.04.002.

     

    丁一汇, 蔡则怡, 李吉顺. 1978. 1975年8月上旬河南特大暴雨的研究. 大气科学, 2(4): 276-289, doi: 10.3878/j.issn.1006-9895.1978.04.02.

     

    丁一汇. 2015. 论河南"75.8"特大暴雨的研究: 回顾与评述. 气象学报, 73(3): 411-424, doi: 10.11676/qxxb2015.067.

     

    冯伍虎, 程麟生, 程明虎. 2001. "96.8"特大暴雨和中尺度系统发展结构的非静力数值模拟. 气象学报, 59(3): 294-307, doi: 10.11676/qxxb2001.031.

     

    孔海江, 王霄, 王蕊等. 2012. 河南中南部持续性暴雨水汽输送特征分型. 水文, 32(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201204011.htm

     

    孔海江, 田力, 王蕊等. 2019. 预报员培训的"复盘"方法. 气象科技进展, 9(2): 32-35, doi: 10.3969/j.issn.2095-1973.2019.02.006.

     

    梁钰, 王新敏, 邵宇翔等. 2010. 河南省黄淮气旋暴雨的天气特征及个例诊断. 气象与环境科学, 33(1): 24-29, doi: 10.16765/j.cnki.1673-7148.2010.01.003.

     

    钱维宏. 2012a. 瞬变涡扰动法在极端天气事件预报中的应用. 气象科技进展, 2(5): 44-48, doi: 10.3969/j.issn.2095-1973.2012.05.006.

     

    钱维宏. 2012b. 中期-延伸期天气预报原理. 北京: 科学出版社.

     

    钱维宏. 2015. 瞬变扰动天气图和低频扰动天气图制作方法及其在天气预报中的应用: 中国, 201210134358.4.

     

    钱维宏, 张广文, 黄静. 2015. 不同资料大气扰动分量对2010年台风鲇鱼强度变化的描述. 气象, 41(7): 806-815, doi: 10.7519/j.issn.1000-0526.2015.07.002.

     

    钱维宏, 艾阳, 陈绿文等. 2020. 一次广东典型龙舟水暴雨过程的扰动形势分析. 热带气象学报, 36(4): 433-443, doi: 10.16032/j.issn.1004-4965.2020.040.

     

    苏爱芳, 张宁, 黄勇. 2016. "8.13"黄淮北部暴雨云团的组织结构和触发机制. 气象, 42(8): 905-919, doi: 10.7519/j.issn.1000-0526.2016.08.001.

     

    杨贵名, 毛冬艳, 姚秀萍. 2006. 梅雨期一次黄淮气旋发展的干侵入特征分析. 热带气象学报, 22(2): 176-183, doi: 10.16032/j.issn.1004-4965.2006.02.010.

     

    张少林, 盖世民, 顾润源等. 2001. 造成我国北方暴雨的热带气旋天气学特征分析. 海洋预报, 18(1): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB200101007.htm

     

    张苏平, 李春, 白燕等. 2006. 一次北方台风暴雨(9406)能量特征分析. 大气科学, 30(4): 645-659. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604009.htm

     

    张一平, 王新敏, 梁俊平等. 2013. 黄淮地区两次低涡暴雨的中尺度特征分析. 暴雨灾害, 32(4): 303-313, doi:10.3969/j.issn.1004-9045.2013.04.002.

  • 加载中

(12)

(1)

计量
  • 文章访问数:  1940
  • PDF下载数:  133
  • 施引文献:  0
出版历程
收稿日期:  2021-08-24
修回日期:  2022-03-28
上线日期:  2022-11-10

目录