瞬变电磁低频近似Maxwell方程的CPML吸收边界及施加方法

柳尚斌, 李雪峰, 蓝日彦, 李敦仁, 孙怀凤. 2022. 瞬变电磁低频近似Maxwell方程的CPML吸收边界及施加方法. 地球物理学报, 65(4): 1472-1481, doi: 10.6038/cjg2022P0529
引用本文: 柳尚斌, 李雪峰, 蓝日彦, 李敦仁, 孙怀凤. 2022. 瞬变电磁低频近似Maxwell方程的CPML吸收边界及施加方法. 地球物理学报, 65(4): 1472-1481, doi: 10.6038/cjg2022P0529
LIU ShangBin, LI XueFeng, LAN RiYan, LI DunRen, SUN HuaiFeng. 2022. A CPML ABC for Maxwell equations with low-frequency approximation in transient electromagnetic modeling. Chinese Journal of Geophysics (in Chinese), 65(4): 1472-1481, doi: 10.6038/cjg2022P0529
Citation: LIU ShangBin, LI XueFeng, LAN RiYan, LI DunRen, SUN HuaiFeng. 2022. A CPML ABC for Maxwell equations with low-frequency approximation in transient electromagnetic modeling. Chinese Journal of Geophysics (in Chinese), 65(4): 1472-1481, doi: 10.6038/cjg2022P0529

瞬变电磁低频近似Maxwell方程的CPML吸收边界及施加方法

  • 基金项目:

    国家自然科学基金(42074145), 山东省自然科学基金(ZR2019MD20)资助

详细信息
    作者简介:

    柳尚斌, 男, 1987年生, 博士研究生, 主要从事瞬变电磁三维正反演方面的研究. E-mail: lsbin87@126.com

    通讯作者: 孙怀凤, 男, 1982年生, 博士, 教授, 博士生导师, 主要从事电磁探测理论、方法、装备与应用方面的教学与科研工作. E-mail: sunhuaifeng@email.sdu.edu.cn
  • 中图分类号: P631

A CPML ABC for Maxwell equations with low-frequency approximation in transient electromagnetic modeling

More Information
  • 为保证瞬变电磁场晚期信号计算正确, 在时域有限差分正演中通常采用低频近似, 即将磁场散度方程显式的包含在电磁场迭代方程中, 因而Hz的求解方式与HxHy不同, 导致常规CPML吸收边界无法施加.本文重新推导了CPML介质中的迭代方程, 并将其与常规介质中的迭代方程在形式上进行了统一, 提出了一种适用于瞬变电磁低频近似下三维FDTD的CPML边界条件及施加方法.首先采用均匀半空间模型来验证本方法的有效性, 发现模拟结果与解析解吻合较好, 且模拟用时为采用Dirichlet边界FDTD用时的一半; 而且, 反射误差实验验证了本文的CPML边界吸收效率较高.之后, 模拟了典型的三层模型, 发现本方法的模拟结果与线性数字滤波解吻合程度较好.最后采用本方法计算了航空瞬变电磁带地形的复杂模型, 实验证明了本文提出的CPML具有广泛的适用性.

  • 加载中
  • 图 1 

    均匀半空间模型CPML-FDTD模拟结果与解析解对比

    Figure 1. 

    Comparison of CPML-FDTD numerical solution and analytical solution for Homogeneous half space model

    图 2 

    模型示意图及反射误差曲线

    Figure 2. 

    Schematic diagram of the model and reflection error curve

    图 3 

    A型模型CPML-FDTD数值解与解析解对比

    Figure 3. 

    Comparison of digital filter solution and CPML-FDTD numerical solution for A type model

    图 4 

    山脊地形正演模型

    Figure 4. 

    3D trapezoidal hill model

    图 5 

    山谷地形正演模型

    Figure 5. 

    3D trapezoidal valley model

  •  

    Berenger J P. 1994. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2): 185-200. doi: 10.1006/jcph.1994.1159

     

    Best M E, Duncan P, Jacobs F J, et al. 1985. Numerical modeling of the electromagnetic response of three-dimensional conductors in a layered earth. Geophysics, 50(4): 665-676. doi: 10.1190/1.1441941

     

    Chew W C, Weedon W H. 1994. A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates. Microwave and Optical Technology Letters, 7(13): 599-604. doi: 10.1002/mop.4650071304

     

    Commer M, Newman G. 2004. A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources. Geophysics, 69(5): 1192-1202. doi: 10.1190/1.1801936

     

    Ge D B, Yan Y B. 2005. Finite Difference Time Domain Method of Electromagnetic Wave (in Chinese). Xi'an: Xidian University Press.

     

    Gedney S D. 1996. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Transactions on Antennas and Propagation, 44(12): 1630-1639. doi: 10.1109/8.546249

     

    Jiang H L, Wu L T, Zhang X G, et al. 2019. Computationally efficient CN-PML for EM simulations. IEEE Transactions on Microwave Theory and Techniques, 67(12): 4646-4655. doi: 10.1109/TMTT.2019.2946160

     

    Jiang Y N, Liu W, Wang J, et al. 2015. CPML absorbing boundary condition in modeling of transient electromagnetic fields. Chinese Journal of Computational Physics(in Chinese), 32(6): 701-708.

     

    Kuzuoglu M, Mittra R. 1996. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave and Guided Wave Letters, 6(12): 447-449. doi: 10.1109/75.544545

     

    Li J H, Hu X Y, Zeng S H, et al. 2013. Three-dimensional forward calculation for loop source transient electromagnetic method based on electric field Helmholtz equation. Chinese Journal of Geophysics(in Chinese), 56(12): 4256-4267, doi: 10.6038/cjg20131228.

     

    Li X. 2002. Theory and Application of Transient Electromagnetic Sounding (in Chinese). Xi'an: Shanxi Science and Technology Press.

     

    Li Z H, Huang Q H. 2014. Application of the complex frequency shifted perfectly matched layer absorbing boundary conditions in transient electromagnetic method modeling. Chinese Journal of Geophysics(in Chinese), 57(4): 1292-1299, doi: 10.6038/cjg20140426.

     

    Liao Z P, Zhou Z H, Zhang Y H. 2002. Stable implementation of transmitting boundary in numerical simulation of wave motion. Chinese Journal of Geophysics(in Chinese), 45(4): 533-545.

     

    Mur G. 1981. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Transactions on Electromagnetic Compatibility, EMC-23(4): 377-382. doi: 10.1109/TEMC.1981.303970

     

    Oldenburg D W, Haber E, Shekhtman R. 2012. Three dimensional inversion of multisource time domain electromagnetic data. Geophysics, 78(1): E47-E57.

     

    Oristaglio M L, Hohmann G W. 1984. Diffusion of electromagnetic fields into a two-dimensional earth; a finite-difference approach. Geophysics, 49(7): 870-894. doi: 10.1190/1.1441733

     

    Roden J A, Gedney S D. 2000. Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and Optical Technology Letters, 27(5): 334-339. doi: 10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

     

    Sacks Z S, Kingsland D M, Lee R, et al. 1995. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Transactions on Antennas and Propagation, 43(12): 1460-1463. doi: 10.1109/8.477075

     

    Song W Q, Tong Z Q. 2000. Forward finite differential calculation for 3-D transient electromagnetic field. Oil Geophysical Prospecting(in Chinese), 35(6): 751-756.

     

    Sun H F, Li X, Li S C, et al. 2013. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time. Chinese Journal of Geophysics(in Chinese), 56(3): 1049-1064, doi: 10.6038/cjg20130333.

     

    Sun H F, Cheng M, Wu Q L, et al. 2018. A multi-scale grid scheme in three-dimensional transient electromagnetic modeling using FDTD. Chinese Journal of Geophysics(in Chinese), 61(12): 5096-5104, doi: 10.6038/cjg2018L0659.

     

    Wang T, Hohmann G W. 1993. A finite-difference, time-domain solution for three-dimensional electromagnetic modeling. Geophysics, 58(6): 797-809. doi: 10.1190/1.1443465

     

    Xue G Q, Li X, Di Q Y. 2007. The progress of TEM in theory and application. Progress in Geophysics(in Chinese), 22(4): 1195-1200.

     

    Xue G Q, Li X, Di Q Y. 2008. Research progress in TEM forward modeling and inversion calculation. Progress in Geophysics(in Chinese), 23(4): 1165-1172.

     

    Yan S, Chen M S, Fu J M. 2002. Direct time-domain numerical analysis of transient electromagnetic fields. Chinese Journal of Geophysics(in Chinese), 45(2): 275-284.

     

    Yu X, Wang X B, Zhu X Q, et al. 2017. Application analysis of CPML in FDTD for transient electromagnetic method 3D forward modeling. Progress in Geophysics(in Chinese), 32(4): 1705-1710, doi: 10.6038/pg20170439.

     

    Yue J H, Yang H Y, Hu B. 2007. 3D finite difference time domain numerical simulation for TEM in-mine. Progress in Geophysics(in Chinese), 22(6): 1904-1909.

     

    Zhang B, Yin C C, Liu Y H, et al. 2016. 3D modeling on topographic effect for frequency-/time-domain airborne EM systems. ChineseJournal of Geophysics(in Chinese), 59(4): 1506-1520, doi: 10.6038/cjg20160431.

     

    Zhao Y, Li X, Wang Y P, et al. 2017. Characteristics of terrain effect for 3-D ATEM. Chinese Journal of Geophysics(in Chinese), 60(1): 383-402, doi: 10.6038/cjg20170132.

     

    葛德彪, 闫玉波. 2005. 电磁波时域有限差分方法. 西安: 西安电子科技大学出版社.

     

    姜彦南, 刘文, 王娇等. 2015. 瞬变电磁场模拟中的CPML吸收边界条件. 计算物理, 32(6): 701-708. doi: 10.3969/j.issn.1001-246X.2015.06.010

     

    李建慧, 胡祥云, 曾思红等. 2013. 基于电场Helmholtz方程的回线源瞬变电磁法三维正演. 地球物理学报, 56(12): 4256-4267, doi: 10.6038/cjg20131228. http://www.geophy.cn/article/doi/10.6038/cjg20131228

     

    李貅. 2002. 瞬变电磁测深的理论与应用. 西安: 陕西科学技术出版社.

     

    李展辉, 黄清华. 2014. 复频率参数完全匹配层吸收边界在瞬变电磁法正演中的应用. 地球物理学报, 57(4): 1292-1299, doi: 10.6038/cjg20140426. http://www.geophy.cn/article/doi/10.6038/cjg20140426

     

    廖振鹏, 周正华, 张艳红. 2002. 波动数值模拟中透射边界的稳定实现. 地球物理学报, 45(4): 533-545. doi: 10.3321/j.issn:0001-5733.2002.04.011 http://www.geophy.cn/article/id/cjg_3509

     

    宋维琪, 仝兆歧. 2000. 3D瞬变电磁场的有限差分正演计算. 石油地球物理勘探, 35(6): 751-756. doi: 10.3321/j.issn:1000-7210.2000.06.009

     

    孙怀凤, 李貅, 李术才等. 2013. 考虑关断时间的回线源激发TEM三维时域有限差分正演. 地球物理学报, 56(3): 1049-1064, doi: 10.6038/cjg20130333. http://www.geophy.cn/article/doi/10.6038/cjg20130333

     

    孙怀凤, 程铭, 吴启龙等. 2018. 瞬变电磁三维FDTD正演多分辨网格方法. 地球物理学报, 61(12): 5096-5104, doi: 10.6038/cjg2018L0659. http://www.geophy.cn/article/doi/10.6038/cjg2018L0659

     

    薛国强, 李貅, 底青云. 2007. 瞬变电磁法理论与应用研究进展. 地球物理学进展, 22(4): 1195-1200. doi: 10.3969/j.issn.1004-2903.2007.04.026

     

    薛国强, 李貅, 底青云. 2008. 瞬变电磁法正反演问题研究进展. 地球物理学进展, 51(4): 1165-1172.

     

    闫述, 陈明生, 傅君眉. 2002. 瞬变电磁场的直接时域数值分析. 地球物理学报, 45(2): 275-284. doi: 10.3321/j.issn:0001-5733.2002.02.014 http://www.geophy.cn/article/id/cjg_3515

     

    余翔, 王绪本, 朱湘琴等. 2017. CPML在瞬变电磁法时域有限差分三维正演中的应用分析. 地球物理学进展, 32(4): 1705-1710, doi: 10.6038/pg20170439.

     

    岳建华, 杨海燕, 胡搏. 2007. 矿井瞬变电磁法三维时域有限差分数值模拟. 地球物理学进展, 22(6): 1904-1909. doi: 10.3969/j.issn.1004-2903.2007.06.036

     

    张博, 殷长春, 刘云鹤等. 2016. 起伏地表频域/时域航空电磁系统三维正演模拟研究. 地球物理学报, 59(4): 1506-1520, doi: 10.6038/cjg20160431. http://www.geophy.cn/article/doi/10.6038/cjg20160431

     

    赵越, 李貅, 王祎鹏等. 2017. 三维起伏地形条件下航空瞬变电磁响应特征研究. 地球物理学报, 60(1): 383-402, doi:10.6038/cjg20170132. http://www.geophy.cn/article/doi/10.6038/cjg20170132

  • 加载中

(5)

计量
  • 文章访问数:  930
  • PDF下载数:  101
  • 施引文献:  0
出版历程
收稿日期:  2021-07-25
修回日期:  2022-02-28
上线日期:  2022-04-10

目录