A CPML ABC for Maxwell equations with low-frequency approximation in transient electromagnetic modeling
-
摘要:
为保证瞬变电磁场晚期信号计算正确, 在时域有限差分正演中通常采用低频近似, 即将磁场散度方程显式的包含在电磁场迭代方程中, 因而Hz的求解方式与Hx、Hy不同, 导致常规CPML吸收边界无法施加.本文重新推导了CPML介质中的迭代方程, 并将其与常规介质中的迭代方程在形式上进行了统一, 提出了一种适用于瞬变电磁低频近似下三维FDTD的CPML边界条件及施加方法.首先采用均匀半空间模型来验证本方法的有效性, 发现模拟结果与解析解吻合较好, 且模拟用时为采用Dirichlet边界FDTD用时的一半; 而且, 反射误差实验验证了本文的CPML边界吸收效率较高.之后, 模拟了典型的三层模型, 发现本方法的模拟结果与线性数字滤波解吻合程度较好.最后采用本方法计算了航空瞬变电磁带地形的复杂模型, 实验证明了本文提出的CPML具有广泛的适用性.
-
关键词:
- 瞬变电磁 /
- 三维正演 /
- FDTD /
- 低频近似 /
- 卷积完全匹配层(CPML)
Abstract:To ensure the response accuracy of the transient electromagnetic field at late time, the low-frequency approximation is usually used in the Finite-Difference Time-Domain (FDTD) forward modeling, in which the magnetic field divergence equation is explicitly included in the iterative equation. Therefore, Hz is calculated differently from Hx and Hy, causing the conventional Convolution Perfectly Matched Layer (CPML) application method not suitable. In this study, the iterative equation in the CPML medium is re-derived and is formally unified with that in conventional medium. A CPML application method suitable for 3D FDTD of TEM with low-frequency approximation is proposed. Firstly, the uniform half-space model is used to verify the effectiveness of this method. Through comparison, it is found that the numerical result agree with the analytical solution well and the simulation time is half that of the FDTD with Dirichlet boundary. Moreover, the reflection error experiment verifies that the CPML proposed in this paper has good absorption efficiency. After that, a typical three-layer model was tested. The simulation result of this method agree with the linear digital filter solution well. Finally, this method was applied to the airborne TEM forward modeling of the complex terrain model. The tests shown that the proposed CPML has a wide range of applicability.
-
Key words:
- Transient electromagnetic /
- 3D forward modeling /
- FDTD /
- Low-frequency approximation /
- CPML
-
-
-
Berenger J P. 1994. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2): 185-200. doi: 10.1006/jcph.1994.1159
Best M E, Duncan P, Jacobs F J, et al. 1985. Numerical modeling of the electromagnetic response of three-dimensional conductors in a layered earth. Geophysics, 50(4): 665-676. doi: 10.1190/1.1441941
Chew W C, Weedon W H. 1994. A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates. Microwave and Optical Technology Letters, 7(13): 599-604. doi: 10.1002/mop.4650071304
Commer M, Newman G. 2004. A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources. Geophysics, 69(5): 1192-1202. doi: 10.1190/1.1801936
Ge D B, Yan Y B. 2005. Finite Difference Time Domain Method of Electromagnetic Wave (in Chinese). Xi'an: Xidian University Press.
Gedney S D. 1996. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Transactions on Antennas and Propagation, 44(12): 1630-1639. doi: 10.1109/8.546249
Jiang H L, Wu L T, Zhang X G, et al. 2019. Computationally efficient CN-PML for EM simulations. IEEE Transactions on Microwave Theory and Techniques, 67(12): 4646-4655. doi: 10.1109/TMTT.2019.2946160
Jiang Y N, Liu W, Wang J, et al. 2015. CPML absorbing boundary condition in modeling of transient electromagnetic fields. Chinese Journal of Computational Physics(in Chinese), 32(6): 701-708.
Kuzuoglu M, Mittra R. 1996. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave and Guided Wave Letters, 6(12): 447-449. doi: 10.1109/75.544545
Li J H, Hu X Y, Zeng S H, et al. 2013. Three-dimensional forward calculation for loop source transient electromagnetic method based on electric field Helmholtz equation. Chinese Journal of Geophysics(in Chinese), 56(12): 4256-4267, doi: 10.6038/cjg20131228.
Li X. 2002. Theory and Application of Transient Electromagnetic Sounding (in Chinese). Xi'an: Shanxi Science and Technology Press.
Li Z H, Huang Q H. 2014. Application of the complex frequency shifted perfectly matched layer absorbing boundary conditions in transient electromagnetic method modeling. Chinese Journal of Geophysics(in Chinese), 57(4): 1292-1299, doi: 10.6038/cjg20140426.
Liao Z P, Zhou Z H, Zhang Y H. 2002. Stable implementation of transmitting boundary in numerical simulation of wave motion. Chinese Journal of Geophysics(in Chinese), 45(4): 533-545.
Mur G. 1981. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Transactions on Electromagnetic Compatibility, EMC-23(4): 377-382. doi: 10.1109/TEMC.1981.303970
Oldenburg D W, Haber E, Shekhtman R. 2012. Three dimensional inversion of multisource time domain electromagnetic data. Geophysics, 78(1): E47-E57.
Oristaglio M L, Hohmann G W. 1984. Diffusion of electromagnetic fields into a two-dimensional earth; a finite-difference approach. Geophysics, 49(7): 870-894. doi: 10.1190/1.1441733
Roden J A, Gedney S D. 2000. Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and Optical Technology Letters, 27(5): 334-339. doi: 10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
Sacks Z S, Kingsland D M, Lee R, et al. 1995. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Transactions on Antennas and Propagation, 43(12): 1460-1463. doi: 10.1109/8.477075
Song W Q, Tong Z Q. 2000. Forward finite differential calculation for 3-D transient electromagnetic field. Oil Geophysical Prospecting(in Chinese), 35(6): 751-756.
Sun H F, Li X, Li S C, et al. 2013. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time. Chinese Journal of Geophysics(in Chinese), 56(3): 1049-1064, doi: 10.6038/cjg20130333.
Sun H F, Cheng M, Wu Q L, et al. 2018. A multi-scale grid scheme in three-dimensional transient electromagnetic modeling using FDTD. Chinese Journal of Geophysics(in Chinese), 61(12): 5096-5104, doi: 10.6038/cjg2018L0659.
Wang T, Hohmann G W. 1993. A finite-difference, time-domain solution for three-dimensional electromagnetic modeling. Geophysics, 58(6): 797-809. doi: 10.1190/1.1443465
Xue G Q, Li X, Di Q Y. 2007. The progress of TEM in theory and application. Progress in Geophysics(in Chinese), 22(4): 1195-1200.
Xue G Q, Li X, Di Q Y. 2008. Research progress in TEM forward modeling and inversion calculation. Progress in Geophysics(in Chinese), 23(4): 1165-1172.
Yan S, Chen M S, Fu J M. 2002. Direct time-domain numerical analysis of transient electromagnetic fields. Chinese Journal of Geophysics(in Chinese), 45(2): 275-284.
Yu X, Wang X B, Zhu X Q, et al. 2017. Application analysis of CPML in FDTD for transient electromagnetic method 3D forward modeling. Progress in Geophysics(in Chinese), 32(4): 1705-1710, doi: 10.6038/pg20170439.
Yue J H, Yang H Y, Hu B. 2007. 3D finite difference time domain numerical simulation for TEM in-mine. Progress in Geophysics(in Chinese), 22(6): 1904-1909.
Zhang B, Yin C C, Liu Y H, et al. 2016. 3D modeling on topographic effect for frequency-/time-domain airborne EM systems. ChineseJournal of Geophysics(in Chinese), 59(4): 1506-1520, doi: 10.6038/cjg20160431.
Zhao Y, Li X, Wang Y P, et al. 2017. Characteristics of terrain effect for 3-D ATEM. Chinese Journal of Geophysics(in Chinese), 60(1): 383-402, doi: 10.6038/cjg20170132.
葛德彪, 闫玉波. 2005. 电磁波时域有限差分方法. 西安: 西安电子科技大学出版社.
姜彦南, 刘文, 王娇等. 2015. 瞬变电磁场模拟中的CPML吸收边界条件. 计算物理, 32(6): 701-708. doi: 10.3969/j.issn.1001-246X.2015.06.010
李建慧, 胡祥云, 曾思红等. 2013. 基于电场Helmholtz方程的回线源瞬变电磁法三维正演. 地球物理学报, 56(12): 4256-4267, doi: 10.6038/cjg20131228. http://www.geophy.cn/article/doi/10.6038/cjg20131228
李貅. 2002. 瞬变电磁测深的理论与应用. 西安: 陕西科学技术出版社.
李展辉, 黄清华. 2014. 复频率参数完全匹配层吸收边界在瞬变电磁法正演中的应用. 地球物理学报, 57(4): 1292-1299, doi: 10.6038/cjg20140426. http://www.geophy.cn/article/doi/10.6038/cjg20140426
廖振鹏, 周正华, 张艳红. 2002. 波动数值模拟中透射边界的稳定实现. 地球物理学报, 45(4): 533-545. doi: 10.3321/j.issn:0001-5733.2002.04.011 http://www.geophy.cn/article/id/cjg_3509
宋维琪, 仝兆歧. 2000. 3D瞬变电磁场的有限差分正演计算. 石油地球物理勘探, 35(6): 751-756. doi: 10.3321/j.issn:1000-7210.2000.06.009
孙怀凤, 李貅, 李术才等. 2013. 考虑关断时间的回线源激发TEM三维时域有限差分正演. 地球物理学报, 56(3): 1049-1064, doi: 10.6038/cjg20130333. http://www.geophy.cn/article/doi/10.6038/cjg20130333
孙怀凤, 程铭, 吴启龙等. 2018. 瞬变电磁三维FDTD正演多分辨网格方法. 地球物理学报, 61(12): 5096-5104, doi: 10.6038/cjg2018L0659. http://www.geophy.cn/article/doi/10.6038/cjg2018L0659
薛国强, 李貅, 底青云. 2007. 瞬变电磁法理论与应用研究进展. 地球物理学进展, 22(4): 1195-1200. doi: 10.3969/j.issn.1004-2903.2007.04.026
薛国强, 李貅, 底青云. 2008. 瞬变电磁法正反演问题研究进展. 地球物理学进展, 51(4): 1165-1172.
闫述, 陈明生, 傅君眉. 2002. 瞬变电磁场的直接时域数值分析. 地球物理学报, 45(2): 275-284. doi: 10.3321/j.issn:0001-5733.2002.02.014 http://www.geophy.cn/article/id/cjg_3515
余翔, 王绪本, 朱湘琴等. 2017. CPML在瞬变电磁法时域有限差分三维正演中的应用分析. 地球物理学进展, 32(4): 1705-1710, doi: 10.6038/pg20170439.
岳建华, 杨海燕, 胡搏. 2007. 矿井瞬变电磁法三维时域有限差分数值模拟. 地球物理学进展, 22(6): 1904-1909. doi: 10.3969/j.issn.1004-2903.2007.06.036
张博, 殷长春, 刘云鹤等. 2016. 起伏地表频域/时域航空电磁系统三维正演模拟研究. 地球物理学报, 59(4): 1506-1520, doi: 10.6038/cjg20160431. http://www.geophy.cn/article/doi/10.6038/cjg20160431
赵越, 李貅, 王祎鹏等. 2017. 三维起伏地形条件下航空瞬变电磁响应特征研究. 地球物理学报, 60(1): 383-402, doi:10.6038/cjg20170132. http://www.geophy.cn/article/doi/10.6038/cjg20170132
-