地震频段弹性模量测试系统改进与升级

李智, 欧阳芳, 肖增佳, 龙腾, 贺艳晓, 赵建国. 2022. 地震频段弹性模量测试系统改进与升级. 地球物理学报, 65(5): 1769-1784, doi: 10.6038/cjg2022P0447
引用本文: 李智, 欧阳芳, 肖增佳, 龙腾, 贺艳晓, 赵建国. 2022. 地震频段弹性模量测试系统改进与升级. 地球物理学报, 65(5): 1769-1784, doi: 10.6038/cjg2022P0447
LI Zhi, OUYANG Fang, XIAO ZengJia, LONG Teng, HE YanXiao, ZHAO JianGuo. 2022. Improvement and upgrade of elastic modulus testing system under seismic frequency band. Chinese Journal of Geophysics (in Chinese), 65(5): 1769-1784, doi: 10.6038/cjg2022P0447
Citation: LI Zhi, OUYANG Fang, XIAO ZengJia, LONG Teng, HE YanXiao, ZHAO JianGuo. 2022. Improvement and upgrade of elastic modulus testing system under seismic frequency band. Chinese Journal of Geophysics (in Chinese), 65(5): 1769-1784, doi: 10.6038/cjg2022P0447

地震频段弹性模量测试系统改进与升级

  • 基金项目:

    国家自然科学基金联合基金重点基金项目(U20B2015), 国家自然科学基金项目(41574103, 41974120), 国家重大专项课题(2016ZX05004-003)联合资助. 第一

详细信息
    作者简介:

    李智, 男, 1993年生, 现于中国石油大学(北京)就读, 主要从事岩石物理、储层预测研究.E-mail: lzooot@sina.com

    通讯作者: 赵建国, 男, 1976年生, 现为中国石油大学(北京)地球物理学院教授, 主要从事地震波传播、数字岩心、跨频段地震岩石物理实验技术与理论研究. E-mail: zhaojg@cup.edu.cn
  • 中图分类号: P631

Improvement and upgrade of elastic modulus testing system under seismic frequency band

More Information
  • 获取地震频段弹性模量对于地震数据定量解释、研究地震波传播特征及油气勘探开发具有重要意义.前期建立的测试系统基于应力应变法可以获得地震频段内岩心的杨氏模量、泊松比和衰减.该系统仅适用于ϕ38 mm岩心, 而测量物性参数(孔隙度、渗透率等)、测量超声纵横波速度时一般使用ϕ25 mm岩心.为将ϕ25 mm岩心应用于地震频段弹性模量的测试, 统一各项岩石物理测试的数据, 本文结合有限元数值模拟和实验测试对地震频段弹性模量测试系统的机械结构与应变采集系统(惠斯通电桥)做了改进与升级.通过数值模拟与标定实验(铝和有机玻璃)论证了在ϕ25 mm岩心上进行低频实验的可靠性和准确性.利用改进后的测试系统对常规砂岩在干燥(空气)、充气(N2)与完全饱和流体(白油)条件开展了高频(MHz)超声和低频(1~3 kHz)应力应变测量实验, 其结果表明: 干燥岩样和充气岩样的弹性参数在低频和超声频段一致, 以此验证了改进后测量系统的可靠性; 而饱和白油的砂岩弹性参数在1~3000 Hz频段范围内表现出明显的频散特性.改进后的地震频段弹性模量测试系统可以为定量研究含流体岩石的弹性频散特征提供有效的实验测量工具, 其实验结果不仅可应用于生产实践, 也可为检验、修正岩石物理模型的提供重要的实验依据.

  • 加载中
  • 图 1 

    应力-应变实验测量仪器

    Figure 1. 

    Stress-strain experimental measuring instrument

    图 2 

    原有测试系统示意图

    Figure 2. 

    Schematic diagram of the original test system

    图 3 

    原有测试系统不同直径(38 mm、25 mm)样品

    Figure 3. 

    Original test system with different diameter (38 mm, 25 mm) samples

    图 4 

    共振频率应力分布比较

    Figure 4. 

    Comparison of stress distribution at resonance frequency

    图 5 

    样品参考点位置的应力应变随频率变化图

    Figure 5. 

    Stress and strain at the sample reference point location as a function of frequency

    图 6 

    样品杨氏模量计算结果

    Figure 6. 

    Sample Young′s modulus calculation results

    图 7 

    不同长径比样品模拟结果

    Figure 7. 

    Simulation results of samples with different aspect ratios

    图 8 

    岩心样品制备图

    Figure 8. 

    Core sample preparation figure

    图 9 

    改进后测试系统示意图

    Figure 9. 

    Schematic diagram of the improved test system

    图 10 

    电磁干扰条件下改进前后测试数据对比

    Figure 10. 

    Comparison of test data before and after improvement under electromagnetic interference condition

    图 11 

    测试系统流体驱替部分示意图

    Figure 11. 

    Schematic diagram of fluid displacement part of test system

    图 12 

    标准样

    Figure 12. 

    Standard samples

    图 13 

    不同标准样测量结果

    Figure 13. 

    Measurement results of different standard samples

    图 14 

    砂岩孔隙结构描述

    Figure 14. 

    Description of sandstone pore structure

    图 15 

    实验压力变化图

    Figure 15. 

    Experimental pressure variation diagram

    图 16 

    干燥条件弹性参数随频率变化

    Figure 16. 

    Drying condition elastic parameter change graph with frequency

    图 17 

    充注干燥氮气弹性参数随频率变化图

    Figure 17. 

    The graph of elastic parameters changing with frequency of dry nitrogen gas

    图 18 

    砂岩孔隙结构描述

    Figure 18. 

    Description of sandstone pore structure

    图 19 

    饱和白油条件弹性参数随频率变化图

    Figure 19. 

    Elastic parameters with frequency changes in complete saturated white oil

    表 1 

    几种地震频段岩石物理测量系统重要参数

    Table 1. 

    Important parameters of several rock physical measurement systems in seismic frequency bands

    围压上限(MPa) 样品长度×直径(mm) 频率范围(Hz)
    Spencer (1981) 70 (110~140)×38.1 4~400
    Batzle (2006) 30 (43~55)×37.5 5~2000
    Tisato and Madonna (2012) 25 250×76 0.01~100
    Madonna and Tisato (2013) 50 60×25.4 0.01~100
    Mikhaltsevitch (2014) 70 70×38 0.1~400
    Pimienta (2015) 50 80×40 0.005~0.5
    下载: 导出CSV

    表 2 

    样品基本信息

    Table 2. 

    Sample description

    编号 干燥密度(g·cm-3) 矿物(%) 孔隙度(%) 渗透率(10-3 μm2)
    石英 钾长石 白云石 黏土矿物
    58# 2.004 85.7 4.6 4.9 4.8 22.257 464.926
    下载: 导出CSV

    表 3 

    样品基本信息

    Table 3. 

    Sample description

    编号 干燥密度(g·cm-3) 矿物(%) 孔隙度(%) 渗透率(10-3 μm2)
    石英 钾长石 白云石 黏土矿物
    64# 2.023 66.6 5.1 16.4 11.9 23.28 143.26
    下载: 导出CSV

    表 4 

    孔隙流体物理属性

    Table 4. 

    Physical properties of the pore fluids

    流体信息 黏度(mPa·s) 模量Kf(GPa) 密度(kg·m-3)
    3#白油 3.28 1.4 820
    下载: 导出CSV
    描述 高度 半径
    夹持器顶部 19.5 cm 4.3 cm 4.8 cm 7.4 cm
    样品基座 6 cm 2.2 cm
    支撑杆 25.1 cm 11 mm
    参考铝块 3 cm 12.5/19 mm
    样品 5 cm 12.5/19 mm
    震源平台 4 cm 2.5 cm
    连接杆 3.7 cm 6 mm
    下载: 导出CSV
  •  

    Adam L, Batzle M, Lewallen K T, et al. 2009. Seismic wave attenuation in carbonates. Journal of Geophysical Research, 114(B6): B06208, doi: 10.1029/2008JB005890.

     

    Adel inet M, Fortin J, Guéguen Y, et al. 2010. Frequency and fluid effects on elastic properties of basalt: Experimental investigations. Geophysical Research Letters, 37(2): L02303, doi: 10.1029/2009GL041660.

     

    Batzle M L, Han D H, Hofmann R. 2006. Fluid mobility and frequency-dependent seismic velocity—Direct measurements. Geophysics, 71(1): N1-N9. doi: 10.1190/1.2159053

     

    Born W T. 1941. The attenuation constant of earth materials. Geophysics, 6(2): 132-148. doi: 10.1190/1.1443714

     

    David E C, Fortin J, Schubnel A, et al. 2013. Laboratory measurements of low- and high-frequency elastic moduli in Fontainebleau sandstone. Geophysics, 78(5): D369-D379. doi: 10.1190/geo2013-0070.1

     

    De G S, Winterstein D F, Meadows M A. 1994. Comparison of P-and S-wave velocities and Q′s from VSP and sonic log data. Geophysics, 59(10): 1512-1529. doi: 10.1190/1.1443541

     

    Gao F, Wei J X, Di B R, et al. 2018. Influence of diffraction effects on attenuation measurement using pulse transmission method. Journal of Geophysics and Engineering, 15(4): 1610-1623. doi: 10.1088/1742-2140/aab8a4

     

    Goetz J F, Dupal L, Bowler J. 1979. An investigation into discrepancies between sonic log and seismic check spot velocities. The APPEA Journal, 19(1): 131-141. doi: 10.1071/AJ78014

     

    Huang Q, Han D H, Li H. 2015. Laboratory measurement of dispersion and attenuation in the seismic frequency. //85th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 3090-3093.

     

    Lienert B R, Manghnani M H. 1990. The relationship between QE-1 and dispersion in extensional modulus, E. Geophysical Research Letters, 17(6): 677-680. doi: 10.1029/GL017i006p00677

     

    Li C, Zhao J G, Wang H B, et al. 2020. Multi-frequency rock physics measurements and dispersion analysis on tight carbonate rocks. Chinese Journal of Geophysics (in Chinese), 63(2): 627-637, doi: 10.6038/cjg2019M0294

     

    Li H, Wang D X, Gao J H, et al. 2020a. Role of saturation on elastic dispersion and attenuation of tight rocks: An experimental study. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB018513, doi: 10.1029/2019JB018513.

     

    Li H, Zhao L X, Han D H, et al. 2020b. Experimental study on frequency-dependent elastic properties of weakly consolidated marine sandstone: effects of partial saturation. Geophysical Prospecting, 68(9): 2808-2824. doi: 10.1111/1365-2478.13031

     

    Long T, Zhao J G, Liu X Z, et al. 2020. Cross-band rock physics measurement and theoretical modeling of carbonate rocks—Study on the effect of different pore structures on the dispersion and attenuation of carbonate rocks. Chinese Journal of Geophysics (in Chinese), 63(12): 4502-4516, doi: 10.6038/cjg2020O0234.

     

    Ma X Y, Wang S X, Zhao J G, et al. 2018. Velocity dispersion and fluid substitution in sandstone under partially saturated conditions. Applied Geophysics, 15(2): 188-196. doi: 10.1007/s11770-018-0683-8

     

    Madonna C, Tisato N. 2013. A new Seismic Wave Attenuation Module to experimentally measure low-frequency attenuation in extensional mode. Geophysical Prospecting, 61(2): 302-314. doi: 10.1111/1365-2478.12015

     

    Mikhaltsevitch V, Lebedev M, Gurevich B. 2011. A low-frequency laboratory apparatus for measuring elastic and anelastic properties of rocks. //81st Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 2256-2260.

     

    Müller T M, Gurevich B, Lebedev M. 2010. Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review. Geophysics, 75(5): A147-A164. doi: 10.1190/1.3463417.

     

    Murphy W F, Schwartz L M, Hornby B. 1991. Interpretation physics of VP and VS in sedimentary rocks. //61st Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Ouyang F, Zhao J G, Li Z, et al. 2021a. Inversion of pore aspect ratio distribution based on effective medium theories. Chinese Journal of Geophysics (in Chinese), 64(3): 1016-1033, doi: 10.6038/cjg2021O0348.

     

    Ouyang F, Zhao J G, Li Z, et al. 2021b. Modeling velocity dispersion and attenuation using pore structure characteristics of rock. Chinese Journal of Geophysics (in Chinese), 64(3): 1034-1047, doi: 10.6038/cjg2021O0355.

     

    Pimienta L, Fortin J, Guéguen Y. 2015a. Bulk modulus dispersion and attenuation in sandstones. Geophysics, 80(2): D111-D127. doi: 10.1190/geo2014-0335.1

     

    Pimienta L, Fortin J, Guéguen Y. 2015b. Experimental study of Young′s modulus dispersion and attenuation in fully saturated sandstones. Geophysics, 80(5): L57-L72. doi: 10.1190/geo2014-0532.1

     

    Pimienta L, Fortin J, Guéguen Y. 2016. Effect of fluids and frequencies on Poisson′s ratio of sandstone samples. Geophysics, 81(2): D35-D47. doi: 10.1190/GEO-2015-0310.1

     

    Spencer J W. 1981. Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion. Journal of Geophysical Research: Solid Earth, 86(B3): 1803-1812. doi: 10.1029/JB086iB03p01803

     

    Stewart R R, Huddleston P D, Kan T K. 1984. Seismic versus sonic velocities: A vertical seismic profiling study. Geophysics, 49(8): 1153-1168. doi: 10.1190/1.1441745

     

    Subramaniyan S, Quintal B, Tisato N, et al. 2014. An overview of laboratory apparatuses to measure seismic attenuation in reservoir rocks. Geophysical Prospecting, 62(6): 1211-1223. doi: 10.1111/1365-2478.12171

     

    Sun C, Tang G Y, Zhao J G, et al. 2018. An enhanced broad-frequency-band apparatus for dynamic measurement of elastic moduli and Poisson′s ratio of rock samples. Review of Scientific Instruments, 89(6): 064503, doi: 10.1063/1.5018152.

     

    Tisato N, Madonna C. 2012. Attenuation at low seismic frequencies in partially saturated rocks: Measurements and description of a new apparatus. Journal of Applied Geophysics, 86: 44-53. doi: 10.1016/j.jappgeo.2012.07.008

     

    Toksöz M N, Johnston D H, Timur A. 1979. Attenuation of seismic waves in dry and saturated rocks; I, Laboratory measurements. Geophysics, 44(4): 681-690. doi: 10.1190/1.1440969

     

    Wang Z J, Nur A. 1990. Dispersion analysis of acoustic velocities in rocks. The Journal of the Acoustical Society of America, 87(6): 2384-2395. doi: 10.1121/1.399551

     

    Wei X, Wang S X, Zhao J G, et al. 2015a. Laboratory study of velocity dispersion of the seismic wave in fluid-saturated sandstones. Chinese Journal of Geophysics (in Chinese), 58(9): 3380-3388, doi: 10.6038/cjg20150930.

     

    Wei X, Wang S X, Zhao J G, et al. 2015b. Laboratory investigation of influence factors on VP and VS in tight sandstone. Geophysical Prospecting for Petroleum (in Chinese), 54(1): 9-16.

     

    Yang Z F, Cao H, Yao F C, et al. 2014. Seismic Rock Physical Analysis of Complex Porous Reservoir and Its Application. China Petroleum Exploration (in Chinese), 19(3): 50-56.

     

    Yao Q L, Han D H. 2013. Progresses on velocity dispersion and wave attenuation measurements at seismic frequency. //83rd Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 2883-2888.

     

    Yin H J, Zhao J G, Tang G Y, et al. 2017. Pressure and fluid effect on frequency-dependent elastic moduli in fully saturated tight sandstone. Journal of Geophysical Research: Solid Earth, 122(11): 8925-8942. doi: 10.1002/2017JB014244

     

    Yin H J. 2018. Rock physics experimental and modeling studies for reservoir rocks at broad frequency band [Ph. D. thesis] (in Chinese). Beijing: China University of Petroleum (Beijing).

     

    Yin H J, Borgomano J V M, Wang S X, et al. 2019. Fluid Substitution and Shear Weakening in Clay-Bearing Sandstone at Seismic Frequencies. Journal of Geophysical Research: Solid Earth, 124(2): 1254-1272. doi: 10.1029/2018JB016241

     

    Zhao L M. 2019. Rock physics experimental and modeling studies on sandstones′ acoustical dispersion and attenuation at seismic frequencies[Ph. D. thesis] (in Chinese). Beijing: China University of Petroleum (Beijing).

     

    Zhao L M, Tang G Y, Sun C, et al. 2020. Dual attenuation peaks revealing mesoscopic and microscopic fluid flow in partially oil- saturated Fontainebleau sandstones. Geophysical Journal International, 224(3): 1670-1683. doi: 10.1093/gji/ggaa551

     

    Zhao L X, Han D H, Yao Q L, et al. 2015. Seismic reflection dispersion due to wave-induced fluid flow in heterogeneous reservoir rocks. Geophysics, 80(3): D221-D235. doi: 10.1190/geo2014-0307.1

     

    Zhao L X, Yuan H M, Yang J K, et al. 2017. Mobility effect on poroelastic seismic signatures in partially saturated rocks with applications in time-lapse monitoring of a heavy oil reservoir. Journal of Geophysical Research: Solid Earth, 122(11): 8872-8891 doi: 10.1002/2017JB014303

     

    Zhao L X, Wang Y R, Yao Q L, et al. 2021. Extended Gassmann equation with dynamic volumetric strain: modeling wave dispersion and attenuation of heterogeneous porous rocks. Geophysics, 86(3): MR149-MR164. doi: 10.1190/geo2020-0395.1

     

    李闯, 赵建国, 王宏斌等. 2020. 致密碳酸盐岩跨频段岩石物理实验及频散分析. 地球物理学报, 63(2): 627-637, doi: 10.6038/cjg2019M0294. http://www.geophy.cn/article/doi/10.6038/cjg2019M0294

     

    龙腾, 赵建国, 刘欣泽等. 2020. 碳酸盐岩跨频段岩石物理测量与理论建模——不同孔隙结构对碳酸盐岩频散与衰减的影响研究. 地球物理学报, 63(12): 218-232, doi: 10.6038/cjg2020O0234. http://www.igg-journals.cn/article/doi/10.6038/cjg2020O0234

     

    欧阳芳, 赵建国, 李智等. 2021a. 基于等效介质理论的孔隙纵横比分布反演. 地球物理学报, 64(3): 1016-1033, doi: 10.6038/cjg2021O0348. http://www.igg-journals.cn/article/doi/10.6038/cjg2021O0348

     

    欧阳芳, 赵建国, 李智等. 2021b. 基于微观孔隙结构特征的速度频散和衰减模拟. 地球物理学报, 64(3): 1034-1047, doi: 10.6038/cjg2021O0355. http://www.igg-journals.cn/article/doi/10.6038/cjg2021O0355

     

    未晛, 王尚旭, 赵建国等. 2015a. 含流体砂岩地震波频散实验研究. 地球物理学报, 58(9): 3380-3388, doi: 10.6038/cjg20150930. http://www.igg-journals.cn/article/doi/10.6038/cjg20150930

     

    未晛, 王尚旭, 赵建国等. 2015b. 致密砂岩纵、横波速度影响因素的实验研究. 石油物探, 54(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201501002.htm

     

    杨志芳, 曹宏, 姚逢昌等. 2014. 复杂孔隙结构储层地震岩石物理分析及应用. 中国石油勘探, 19(3): 50-56. doi: 10.3969/j.issn.1672-7703.2014.03.006

     

    殷晗钧. 2018. 储层岩石宽频带岩石物理实验及建模研究[博士论文]. 北京: 中国石油大学(北京).

     

    赵立明. 2019. 砂岩地震频段声波频散衰减岩石物理实验及建模研究[博士论文]. 北京: 中国石油大学(北京).

  • 加载中

(19)

(5)

计量
  • 文章访问数:  2141
  • PDF下载数:  94
  • 施引文献:  0
出版历程
收稿日期:  2021-06-29
修回日期:  2022-03-31
上线日期:  2022-05-10

目录