民航气象观测的中国中东部大气边界层廓线数据的评估与应用

徐孝泽, 张元杰, 宋树刚, 杨云帆, 李想, 高志球. 2022. 民航气象观测的中国中东部大气边界层廓线数据的评估与应用. 地球物理学报, 65(11): 4174-4193, doi: 10.6038/cjg2022P0432
引用本文: 徐孝泽, 张元杰, 宋树刚, 杨云帆, 李想, 高志球. 2022. 民航气象观测的中国中东部大气边界层廓线数据的评估与应用. 地球物理学报, 65(11): 4174-4193, doi: 10.6038/cjg2022P0432
XU XiaoZe, ZHANG YuanJie, SONG ShuGang, YANG YunFan, LI Xiang, GAO ZhiQiu. 2022. Evaluation and application of atmospheric boundary layer profiles from aircraft meteorological reports in central and eastern China. Chinese Journal of Geophysics (in Chinese), 65(11): 4174-4193, doi: 10.6038/cjg2022P0432
Citation: XU XiaoZe, ZHANG YuanJie, SONG ShuGang, YANG YunFan, LI Xiang, GAO ZhiQiu. 2022. Evaluation and application of atmospheric boundary layer profiles from aircraft meteorological reports in central and eastern China. Chinese Journal of Geophysics (in Chinese), 65(11): 4174-4193, doi: 10.6038/cjg2022P0432

民航气象观测的中国中东部大气边界层廓线数据的评估与应用

  • 基金项目:

    国家重点研发计划"重大自然灾害监测预警与防范"重点专项(2018YFC1506405),国家自然科学基金面上项目(42075070),国家自然科学青年基金(41705004),江苏省基础研究计划(自然科学基金)-青年基金项目(BK20170944)共同资助

详细信息
    作者简介:

    徐孝泽, 男, 1998年生, 硕士, 主要从事大气边界层研究.E-mail: xuxiaoze1998@163.com

    通讯作者: 张元杰, 男, 1988年生, 副研究员, 主要从事大气边界层物理研究.E-mail: yuanjiez@nuist.edu.cn
  • 中图分类号: P404

Evaluation and application of atmospheric boundary layer profiles from aircraft meteorological reports in central and eastern China

More Information
  • 本文从民航气象报告(AMDAR)数据库中提取了2008—2019年期间我国中东部18个机场飞机起飞和降落期间的大气边界层(ABL)廓线数据,并利用常规探空数据评估了不同季节和高度范围的AMDAR数据准确性及其随探空站与机场距离和飞行状态的变化.与常规探空数据相比,低层(P>850 hPa)的AMDAR温度和风分量的均方根误差(RMSE)均比较高层(850~500 hPa)小,且各高度层上的温度和风分量的RMSE都随间隔距离的增加而增大.相对而言,飞行状态对AMDAR数据准确性的影响很小.在间隔距离小于50 km且P>850 hPa高度层范围内,温度、纬向风和经向风的平均RMSE分别为0.68~0.83 K、1.48~1.62 m·s-1和1.73~1.81 m·s-1.相比于RMSE,对应的平均偏差都显著更小,且随间隔距离无明显变化.数据应用示例表明,AMDAR廓线数据由于其较高的时间分辨率,不仅可以反映ABL结构的日变化特征,还可用于研究ABL局地环流特征.基于18个机场AMDAR廓线数据分析发现,我国远内陆、干燥地区大气边界层高度(ABLH)具有较强的日变化,尤其是在春夏两季,而沿海和近内陆地区ABLH的日变化强度和季节差异都较小.

  • 加载中
  • 图 1 

    所选机场和常规探空站点区域分布

    Figure 1. 

    Distribution of the selected airports and the collocated radiosonde stations

    图 2 

    2008—2019年被选中机场温度(a)和风(b)的年平均小时廓线数及温度廓线数的日变化(c)

    Figure 2. 

    Annual mean numbers of hourly profiles of temperature (a) and wind (b) and diurnal variations of temperature profiles (c) at the selected airports during the period 2008—2019

    图 3 

    PEK机场2008年6月5日21时(a)和2008年6月8日13时(b)的位温廓线(BJT)

    Figure 3. 

    The potential temperature profiles at 2100 BJT 5 June 2008 (a) and 1300 BJT 8 June 2008 (b) at the PEK airport

    图 4 

    PEK机场2008—2019年夏季00时(a1—c1)和12时(a2—c2)的AMDAR数据和常规探空数据的平均廓线比较(BJT)

    Figure 4. 

    Summer averaged AMDAR and radiosonde profiles at 00 (a1—c1) and 12 UTC (a2—c2) from 2008 to 2019 at the PEK airport

    图 5 

    PEK机场(a1—d1)和TAO机场(a2—d2)各个季节和气压范围内的AMDAR和常规探空温度数据之间的比较

    Figure 5. 

    Comparisons between AMDAR and RAOB temperature data in different seasons and pressure ranges at the PEK airport (a1—d1) and the TAO airport (a2—d2)

    图 6 

    AMDAR与常规探空温度数据之间的拟合斜率(a1—d1)、拟合优度(a2—d2)、MBEs(a3—d3)和RMSEs(a4—d4)在各个季节和气压范围与间隔距离的关系

    Figure 6. 

    Relations between the fitting slopes (a1—d1), the goodness of fit (a2—d2), MBEs (a3—d3), and RMSEs (a4—d4) in different seasons and pressure ranges and the separation distance between AMDAR temperature data and RAOB temperature data

    图 7 

    PEK机场各个季节和气压范围内AMDAR纬向风和经向风数据和常规探空数据之间的比较

    Figure 7. 

    Comparisons between AMDAR and RAOB zonal wind and meridional wind data in different seasons and pressure ranges at the PEK airport

    图 8 

    图 6,但为纬向风

    Figure 8. 

    Similar to Fig. 6, but for the zonal wind

    图 9 

    P>850 hPa的气压范围内,各个季节温度(a1—d1,单位: K)、纬向风(a2—d2,单位: m·s-1)和经向风(a3—d3,单位: m·s-1)的总的RMSE与对应的上升(红色)和下降(蓝色)的RMSE的比较

    Figure 9. 

    Comparisons between the total RMSEs of temperature (a1—d1, unit of K), zonal wind (a2—d2, unit of m·s-1) and meridional wind (a3—d3, unit of m·s-1) and their corresponding ascent (red) and descent (blue) RMSEs in the pressure range of P > 850 hPa in different seasons

    图 10 

    PEK机场和SZX机场2008—2019年间夏季温度(单位: K)和风(单位: m·s-1)的平均日变化(BJT)

    Figure 10. 

    Summer mean diurnal variations of temperature (unit of K) and wind (unit of m·s-1) at the PEK and SZX airports from 2008 to 2019 (BJT)

    图 11 

    各个季节平均日最大和最小ABLH(单位: m)的空间分布

    Figure 11. 

    Spatial distributions of diurnal max and min ABLH (unit of m) in different seasons

    图 12 

    远内陆、近内陆和沿海地区各个季节ABLH平均日变化(BJT)

    Figure 12. 

    Mean diurnal variations of ABLH in the far inland region, near inland region and coastal region in different seasons (BJT)

    表 1 

    所选机场和常规探空站点的地理信息及其间隔距离

    Table 1. 

    Geographic information of the selected airports and the collocated radiosonde stations and their separation distances

    机场代码IATA 机场全称 AMDAR纬度(°N) AMDAR经度(°E) RAOB纬度(°N) RAOB经度(°E) 距离(km)
    1 TPE 台湾桃园国际机场 25.08 121.24 25.03 121.53 29
    2 HKG 香港赤腊角国际机场 22.32 113.94 22.32 114.17 23
    3 PEK 北京首都国际机场 40.08 116.61 39.93 116.28 36
    4 CSX 长沙黄花国际机场 28.19 113.23 28.20 113.08 15
    5 CAN 广州白云国际机场 23.40 113.31 22.32 114.17 138
    23.67 113.05 37
    6 KWL 桂林两江国际机场 25.22 110.05 25.33 110.30 27
    7 SZX 深圳宝安国际机场 22.64 113.82 22.32 114.17 47
    23.67 113.05 129
    8 CGO 郑州新郑国际机场 34.53 113.86 34.72 113.65 28
    9 XIY 西安咸阳国际机场 34.44 108.77 34.43 108.97 20
    10 XMN 厦门高崎国际机场 24.54 118.14 26.08 119.28 192
    24.48 118.08 8
    23.40 116.68 185
    11 HGH 杭州萧山国际机场 30.24 120.44 31.40 121.47 155
    30.23 120.17 27
    28.65 120.08 163
    12 NKG 南京禄口国际机场 31.74 118.88 32.00 118.80 27
    30.23 120.17 199
    13 PVG 上海浦东国际机场 31.16 121.82 31.40 121.47 42
    30.23 120.17 189
    14 TAO 青岛流亭国际机场 36.27 120.39 36.07 120.33 21
    15 SHA 上海虹桥国际机场 31.20 121.35 31.40 121.47 23
    30.23 120.17 153
    16 CKG 重庆江北国际机场 29.72 106.65 29.52 106.48 26
    17 CTU 成都双流国际机场 30.57 103.96 30.70 103.83 18
    18 YNT 烟台蓬莱国际机场 37.66 121.00 38.90 121.63 139
    36.07 120.33 173
    下载: 导出CSV

    表 2 

    当间隔距离介于0~50 km和100~200 km时,温度、纬向风和经向风的MBE和RMSE在不同季节和气压范围(P>850 hPa和850~500 hPa)内的平均值

    Table 2. 

    Mean RMSEs and MBEs for temperature, U and V in different seasons and pressure ranges (P > 850 hPa and 850~500 hPa) with the separation distance within 0~50 km and 100~200 km

    季节 间隔距离(km) 气压范围(hPa) T U V
    MBE(K) RMSE(K) MBE(m·s-1) RMSE(m·s-1) MBE(m·s-1) RMSE(m·s-1)
    春季 < 50 > 850 0.03 0.83 0.24 1.62 0.22 1.81
    850~500 -0.11 1.06 -0.06 2.08 0.09 2.12
    100~200 > 850 -0.02 1.89 0.22 2.47 0.12 2.41
    850-500 -0.34 1.71 -0.52 3.61 -0.14 3.08
    夏季 <50 >850 -0.08 0.76 0.11 1.51 0.20 1.76
    850~500 -0.20 0.86 -0.02 1.91 0.09 1.98
    100~200 >850 -0.13 1.46 -0.05 2.34 -0.01 2.29
    850~500 -0.25 1.09 -0.19 3.44 -0.16 2.89
    秋季 <50 >850 0.01 0.68 0.26 1.48 0.52 1.73
    850~500 -0.16 1.05 0 2.09 0.11 1.98
    100~200 >850 -0.18 1.47 0.09 2.20 0.48 2.33
    850~500 -0.32 1.61 0.05 3.29 -0.02 2.90
    冬季 <50 >850 0.06 0.77 0.29 1.59 0.34 1.73
    850~500 -0.10 1.23 -0.15 2.12 0.20 2.12
    100~200 >850 -0.14 1.74 0.19 2.28 0.38 2.18
    850~500 -0.58 2.34 -0.18 3.58 -0.01 3.17
    下载: 导出CSV

    表 3 

    所选机场在P>850和500~850 hPa的气压范围内上升和下降观测点在2008—2019年间的年平均数及占比

    Table 3. 

    Annual mean numbers and proportions of ascending data points and descending data point in the pressure ranges of P > 850 and 850~500 hPa at the selected airports during the period 2008—2019

    机场 P>850 hPa 850~500 hPa
    上升 下降 上升 下降
    观测数 占比 观测数 占比 观测数 占比 观测数 占比
    TPE 8301 0.48 7283 0.42 7770 0.39 9270 0.46
    HKG 20039 0.50 19111 0.48 12866 0.28 26193 0.58
    PEK 22150 0.59 9418 0.25 21087 0.60 7103 0.20
    CSX 4668 0.43 3858 0.36 5726 0.36 6454 0.40
    CAN 15033 0.54 7697 0.28 11825 0.34 12596 0.36
    KWL 4794 0.49 2121 0.22 4327 0.38 2897 0.25
    SZX 24004 0.55 17608 0.41 23398 0.48 18841 0.38
    CGO 3147 0.37 2051 0.24 3762 0.30 3916 0.32
    XIY 3158 0.38 1820 0.22 3957 0.23 6069 0.35
    XMN 4324 0.26 2552 0.15 6162 0.22 4954 0.18
    HGH 3784 0.34 2987 0.27 4614 0.31 5388 0.36
    NKG 3915 0.35 3019 0.27 5504 0.26 5554 0.27
    PVG 6512 0.54 3137 0.26 4335 0.43 2006 0.20
    TAO 9784 0.38 3805 0.15 10116 0.35 2961 0.10
    SHA 4166 0.43 3357 0.35 6607 0.34 9513 0.48
    CKG 4633 0.35 1974 0.15 4192 0.24 3310 0.19
    CTU 3447 0.45 2642 0.35 5385 0.31 7231 0.42
    YNT 2495 0.30 1175 0.14 3522 0.27 2252 0.17
    平均 7880 0.43 5058 0.27 7749 0.33 7310 0.31
    下载: 导出CSV
  •  

    Ballish B A, Kumar V K. 2008. Systematic differences in aircraft and radiosonde temperatures: implications for NWP and climate studies. Bulletin of the American Meteorological Society, 89(11): 1689-1708, doi:10.1175/2008BAMS2332.1.

     

    Benjamin S G, Schwartz B E, Cole R E. 1999. Accuracy of ACARS wind and temperature observations determined by collocation. Weather and Forecasting, 14(6): 1032-1038, doi:10.1175/1520-0434(1999)014〈1032:AOAWAT〉2.0.CO;2.

     

    Cardinali C, Isaksen L, Andersson E. 2003. Use and impact of automated aircraft data in a global 4DVAR data assimilation system. Monthly Weather Review, 131(8): 1865-1877, doi:10.1175//2569.1.

     

    Corner B R, Palmer R D, Larsen M F. 1999. A new radiosonde system for profiling the lower troposphere. Journal of Atmospheric and Oceanic Technology, 16(7): 828-836, doi:10.1175/1520-0426(1999)016〈0828:ANRSFP〉2.0.CO;2.

     

    Cui X A, Cao Y C, Zhao P T. 2015. Commentary on aircraft meteorological observation. Meteorological, Hydrological and Marine Instruments (in Chinese), 32(4): 96-99.

     

    Ding J F, Zhuge X Y, Wang Y, et al. 2015. Evaluation of Chinese aircraft meteorological data relay (AMDAR) weather reports. Journal of Atmospheric and Oceanic Technology, 32(5): 982-992, doi:10.1175/JTECH-D-14-00145.1.

     

    Ding J F, Zhuge X Y, Li X, et al. 2018. Evaluation of accuracy of Chinese AMDAR data for 2015. Journal of Atmospheric and Oceanic Technology, 35(5): 943-951, doi:10.1175/JTECH-D-17-0095.1.

     

    Drüe C, Frey W, Hoff A, et al. 2008. Aircraft type-specific errors in AMDAR weather reports from commercial aircraft. Quarterly Journal of the Royal Meteorological Society, 134(630): 229-239, doi:10.1002/qj.205.

     

    Gao F, Zhang X Y, Jacobs N A, et al. 2012. Estimation of TAMDAR observational error and assimilation experiments. Weather and Forecasting, 27(4): 856-877, doi:10.1175/WAF-D-11-00120.1.

     

    Guo H, Xu M, Hu Q. 2011. Changes in near-surface wind speed in China: 1969-2005. International Journal of Climatology, 31(3): 349-358, doi:10.1002/joc.2091.

     

    Guo J P, Miao Y C, Zhang Y, et al. 2016. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmospheric Chemistry and Physics, 16(20): 13309-13319, doi:10.5194/acp-2016-564.

     

    Guo J P, Li Y, Cohen J B, et al. 2019. Shift in the temporal trend of boundary layer height in China using long-term (1979-2016) radiosonde data. Geophysical Research Letters, 46(11): 6080-6089, doi:10.1029/2019GL082666.

     

    Hoehne W E. 1980. Precision of National Weather Service Upper Air Measurements. Sterling: National Oceanic and Atmospheric Administration, National Weather Service.

     

    Huang M, Gao Z Q, Miao S G, et al. 2017. Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015. Boundary-Layer Meteorology, 162(3): 503-522, doi:10.1007/s10546-016-0205-2.

     

    Ingleby B, Pauley P, Kats A, et al. 2016. Progress toward high-resolution, real-time radiosonde reports. Bulletin of the American Meteorological Society, 97(11): 2149-2161, doi:10.1175/BAMS-D-15-00169.1.

     

    Jia P Q, Hu Y, Wang J X. 2004. Reviews of meteorological observations from commercial aircrafts. Meteorological Science and Technology (in Chinese), 32(4): 213-218, doi:10.3969/j.issn.1671-6345.2004.04.003.

     

    Jiang D H, Wang C G, Wu D, et al. 2013. Diurnal variation of atmospheric boundary layer over Wushan station, Guangzhou using wind profiler radar. Journal of Tropical Meteorology (in Chinese), 29(1): 129-135, doi:10.3969/j.issn.1004-4965.2013.01.016.

     

    Jiang Q, Zhang L, Wang X F, et al. 2017. Quality control and quality analysis of aircraft meteorological data. Meteorological Monthly (in Chinese), 43(5): 598-609, doi:10.7519/j.issn.1000-0526.2017.05.009.

     

    Li D, Sun T, Liu M F, et al. 2016. Changes in wind speed under heat waves enhance urban heat islands in the Beijing metropolitan area. Journal of Applied Meteorology and Climatology, 55(11): 2369-2375, doi:10.1175/JAMC-D-16-0102.1.

     

    Li P, Tian J K. 2011. Characteristics of surface layer wind speed profiles over different underlying surfaces. Resources Science (in Chinese), 33(10): 2005-2010.

     

    Liu X W, Cao Z Y, Lan H B. 2007. Analysis of characteristics and quality of AMDAR data. Meteorological Science and Technology (in Chinese), 35(4): 480-483, doi:10.3969/j.issn.1671-6345.2007.04.006.

     

    Luo L Y, Luo Y, Zhong Y W, et al. 2018. Comparative analysis of temperature data obtained by AMDAR and conventional radiosonde. Meteorological and Environmental Sciences (in Chinese), 41(3): 115-119, doi:10.16765/j.cnki.1673-7148.2018.03.015.

     

    Mapes B E, Ciesielski P E, Johnson R H. 2003. Sampling errors in Rawinsonde-array budgets. Journal of the Atmospheric Science, 60(21): 2697-2714, doi:10.1175/1520-0469(2003)060〈2697:SEIRB〉2.0.CO;2.

     

    Miao S G, Dou J X, Chen F, et al. 2012. Analysis of observations on the urban surface energy balance in Beijing. Science China Earth Sciences, 55(11): 1881-1890, doi:10.1007/s11430-012-4411-6.

     

    Miao Y C, Hu X M, Liu S H, et al. 2015. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality. Journal of Advances in Modeling Earth Systems, 7(4): 1602-1626, doi:10.1002/2015MS000522.

     

    Miloshevich L M, Vömel H, Paukkunen A, et al. 2001. Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. Journal of Atmospheric and Oceanic Technology, 18(2): 135-156, doi:10.1175/1520-0426(2001)018〈0135:CACORH〉2.0.CO;2.

     

    Moninger W R, Mamrosh R D, Pauley P M. 2003. Automated meteorological reports from commercial aircraft. Bulletin of the American Meteorological Society, 84(2): 203-216, doi:10.1175/BAMS-84-2-203.

     

    Petersen R A. 2016. On the impact and benefits of AMDAR observations in operational forecasting-part I: a review of the impact of automated aircraft wind and temperature reports. Bulletin of the American Meteorological Society, 97(4): 585-602, doi:10.1175/BAMS-D-14-00055.1.

     

    Petersen R A, Cronce L, Mamrosh R, et al. 2016. On the impact and future benefits of AMDAR observations in operational forecasting: part II: water vapor observations. Bulletin of the American Meteorological Society, 97(11): 2117-2133, doi:10.1175/BAMS-D-14-00211.1.

     

    Rahn D A, Mitchell C J. 2016. Diurnal climatology of the boundary layer in southern California using AMDAR temperature and wind profiles. Journal of Applied Meteorology and Climatology, 55(5): 1123-1137, doi:10.1175/JAMC-D-15-0234.1.

     

    Santanello J A, Dirmeyer P A, Ferguson C R, et al. 2018. Land-atmosphere interactions: the LoCo perspective. Bulletin of the American Meteorological Society, 99(6): 1253-1272, doi:10.1175/BAMS-D-17-0001.1.

     

    Schwartz B, Benjamin S G. 1995. A comparison of temperature and wind measurements from ACARS-equipped aircraft and Rawinsondes. Weather and Forecasting, 10(3): 528-544, doi:10.1175/1520-0434(1995)010〈0528:ACOTAW〉2.0.CO;2.

     

    Seidel D J, Ao C O, Li K. 2010. Estimating climatological planetary boundary layer heights from radiosonde observations: comparison of methods and uncertainty analysis. Journal of Geophysical Research: Atmospheres, 115(D16): D16113, doi:10.1029/2009JD013680.

     

    Stull R B. 1988. An Introduction to Boundary Layer Meteorology. Dordrecht: Springer.

     

    Vogelezang D H P, Holtslag A A M. 1996. Evaluation and model impacts of alternative boundary-layer height formulations. Boundary-Layer Meteorology, 81(3-4): 245-269, doi:10.1007/BF02430331.

     

    World Meteorological Organization. 2003. Aircraft Meteorological Data Relay (AMDAR) Reference Manual. Geneva: Secretariat of the World Meteorological Organization.

     

    Yang P, Xiao Z N, Liu W D. 2013. Comparison of diurnal temperature variation in urban and rural areas in Beijing and its seasonal change. Chinese Journal of Atmospheric Sciences (in Chinese), 37(1): 101-112, doi:10.3878/j.issn.1006-9895.2012.

     

    Zhang Y J, Li D, Lin Z K, et al. 2019. Development and evaluation of a long-term data record of planetary boundary layer profiles from aircraft meteorological reports. Journal of Geophysical Research: Atmospheres, 124(4): 2008-2030, doi:10.1029/2018JD029529.

     

    Zhang Y J, Sun K, Gao Z Q, et al. 2020a. Diurnal climatology of planetary boundary layer height over the contiguous United States derived from AMDAR and reanalysis data. Journal of Geophysical Research: Atmospheres, 125(20): e32803, doi:10.1029/2020JD032803.

     

    Zhang Y J, Wang L, Santanello J A, et al. 2020b. Aircraft observed diurnal variations of the planetary boundary layer under heat waves. Atmospheric Research, 235: 104801, doi:10.1016/j.atmosres.2019.104801.

     

    Zhao X J, Zhang X L, Xu X F, et al. 2009. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmospheric Environment, 43(18): 2893-2900, doi:10.1016/j.atmosenv.2009.03.009.

     

    Zhu Y Q, Derber J C, Purser R J, et al. 2015. Variational correction of aircraft temperature bias in the NCEP's GSI analysis system. Monthly Weather Review, 143(9): 3774-3803, doi:10.1175/MWR-D-14-00235.1.

     

    Zhuang Z Q. 2003. BOXPLOT-an easy tool of describing statistics. Statistical Education (in Chinese), (1): 34-35.

     

    崔喜爱, 曹云昌, 赵培涛. 2015. 飞机气象观测研究述评. 气象水文海洋仪器, 32(4): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSW201504024.htm

     

    贾朋群, 胡英, 王金星. 2004. 民用航空气象观测综述. 气象科技, 32(4): 213-218, doi:10.3969/j.issn.1671-6345.2004.04.003.

     

    蒋德海, 王成刚, 吴兑等. 2013. 利用风廓线雷达资料对广州地区边界层日变化特征的分析研究. 热带气象学报, 29(1): 129-135, doi:10.3969/j.issn.1004-4965.2013.01.016.

     

    江勤, 张蕾, 王晓峰等. 2017. 飞机气象探测资料(AMDAR)质量控制与质量分析. 气象, 43(5): 598-609, doi:10.7519/j.issn.1000-0526.2017.05.009.

     

    李鹏, 田景奎. 2011. 不同下垫面近地层风速廓线特征. 资源科学, 33(10): 2005-2010. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201110026.htm

     

    刘小魏, 曹之玉, 兰海波. 2007. AMDAR资料特征及质量分析. 气象科技, 35(4): 480-483, doi:10.3969/j.issn.1671-6345.2007.04.006.

     

    罗林艳, 罗宇, 钟艳雯等. 2018. AMDAR气温资料和常规高空观测气温资料的对比分析. 气象与环境科学, 41(3): 115-119, doi:10.16765/j.cnki.1673-7148.2018.03.015.

     

    杨萍, 肖子牛, 刘伟东. 2013. 北京气温日变化特征的城郊差异及其季节变化分析. 大气科学, 37(1): 101-112, doi:10.3878/j.issn.1006-9895.2012.

     

    庄作钦. 2003. BOXPLOT——描述统计的一个简便工具. 统计教育, (1): 34-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJY200301016.htm

  • 加载中

(12)

(3)

计量
  • 文章访问数:  2013
  • PDF下载数:  89
  • 施引文献:  0
出版历程
收稿日期:  2021-06-21
修回日期:  2021-08-29
上线日期:  2022-11-10

目录