基于深度学习的位场边界识别方法

张志厚, 姚禹, 石泽玉, 王虎, 乔中坤, 王生仁, 覃礼貌, 杜世回, 罗锋, 刘慰心. 2022. 基于深度学习的位场边界识别方法. 地球物理学报, 65(5): 1785-1801, doi: 10.6038/cjg2022P0403
引用本文: 张志厚, 姚禹, 石泽玉, 王虎, 乔中坤, 王生仁, 覃礼貌, 杜世回, 罗锋, 刘慰心. 2022. 基于深度学习的位场边界识别方法. 地球物理学报, 65(5): 1785-1801, doi: 10.6038/cjg2022P0403
ZHANG ZhiHou, YAO Yu, SHI ZeYu, WANG Hu, QIAO ZhongKun, WANG ShengRen, QIN LiMao, DU ShiHui, LUO Feng, LIU WeiXin. 2022. Deep learning for potential field edge detection. Chinese Journal of Geophysics (in Chinese), 65(5): 1785-1801, doi: 10.6038/cjg2022P0403
Citation: ZHANG ZhiHou, YAO Yu, SHI ZeYu, WANG Hu, QIAO ZhongKun, WANG ShengRen, QIN LiMao, DU ShiHui, LUO Feng, LIU WeiXin. 2022. Deep learning for potential field edge detection. Chinese Journal of Geophysics (in Chinese), 65(5): 1785-1801, doi: 10.6038/cjg2022P0403

基于深度学习的位场边界识别方法

  • 基金项目:

    四川省科技厅计划项目(2021YJ0031), 中央高校基本科研业务费(2682021GF019, 2682020CX14), 西藏自治区科技计划项目(XZ202001ZY0011G), 国家重点研发计划项目(2018YFC1505401)和中国中铁股份有限公司科技研究开发计划项目(CZ01-重点-05)联合资助

详细信息
    作者简介:

    张志厚, 男, 博士, 副教授, 硕士生导师, 主要从事地球物理研究. E-mail: logicprimer@163.com

  • 中图分类号: P631

Deep learning for potential field edge detection

  • 边界识别是位场数据处理中极为重要的一种技术, 现有的边界识别方法属于无监督式机器运算, 其识别精度与地质体的空间分布存在很大关系, 尤其是对深部复杂异常体的识别存在边界模糊的特点.为了进一步提高边界识别的精度, 受深度学习卓越非线性映射能力和监督式学习优点的启发, 本文提出了基于深度学习的位场边界识别方法, 深度学习网络结构是一种融合了多尺度特征和全局注意力机制的密集跳跃连接网络(PFD-Net).该网络结构首先以改进的U-net为骨干网络获取位场边界特征信息, 然后在嵌套的标准卷积模块之间进行密集跳跃连接来缩减编码阶段到解码阶段的语义鸿沟, 以及减少训练阶段梯度消失等问题, 随后再采用全局注意力机制模块将多尺度的高低层特征信息进行融合, 以此进一步加强边界的全局及细节定位.模型试验表明, PFD-Net网络能够准确识别出异常体的边界信息, 且对于含噪声数据, 其预测结果的质量不会降低, 该网络表现出较强的泛化性和鲁棒性.最后将本文方法应用于藏东南某铁路隧道西段的航空磁测数据, 取得了良好的边界识别结果并能够获得更多的构造信息.

  • 加载中
  • 图 1 

    CNN端到端示意图

    Figure 1. 

    Schematic diagram of CNN end-to-end

    图 2 

    位场边界识别PFD-Net总体结构图

    Figure 2. 

    Schematic diagram of potential field edge detection PFD-Net

    图 3 

    骨干网络结构—改进的U-Net

    Figure 3. 

    Backbone network structure——the improved U-Net

    图 4 

    PFD-Net网络结构

    Figure 4. 

    PFD-Net network structure

    图 5 

    密集跳跃连接结构

    Figure 5. 

    Dense skip connection structure

    图 6 

    全局注意力的上采样模块结构

    Figure 6. 

    Global attention upsample module structure

    图 7 

    PFD-Net训练误差及验证误差

    Figure 7. 

    Training error and validation error of PFD-Net

    图 8 

    三维模型透视图及正演结果

    Figure 8. 

    Perspective drawing of three-dimensional model and forward calculation

    图 9 

    四种模型边界识别结果

    Figure 9. 

    Forward data and edge detection result of four kinds of models

    图 10 

    THDR识别结果

    Figure 10. 

    Edge detection result of THDR

    图 11 

    EASTA识别结果

    Figure 11. 

    Edge detection result of EASTA

    图 12 

    NSED识别结果

    Figure 12. 

    Edge detection result of NSED

    图 13 

    NVSED识别结果

    Figure 13. 

    Edge detection result of NVSED

    图 14 

    磁性体三维模型透视图

    Figure 14. 

    3D perspective view of the magnetic body model

    图 15 

    未化极磁性体模型检验效果

    Figure 15. 

    Test effect of unpolarized magnetic model

    图 16 

    藏东南某铁路隧道西段地质地形图(a)、航磁异常(b)和本文方法的识别结果(c)

    Figure 16. 

    Geological topographic map of the western section of a certain railway tunnel in southeastern Tibet (a), aeromagnetic anomalies (b), and the detection results of this method (c)

    表 1 

    长方体模型参数

    Table 1. 

    Cuboid model parameters

    模型编号 编号 中心点坐标/(km, km, km) 模型大小/(km×km×km) 物性参数
    模型一 1 (0.7, 0.9, 0.45) 0.4×0.6×0.3 1.0 g·cm-3
    2 (2.2, 0.7, 0.45) 0.6×0.4×0.3 1.0 g·cm-3
    3 (0.9, 2.4, 0.45) 0.6×0.4×0.3 1.0 g·cm-3
    4 (2.4, 2.2, 0.45) 0.4×0.6×0.3 1.0 g·cm-3
    模型二 1 (0.6, 1.5, 0.3) 0.6×1.0×0.2 0.2 A·m-1
    2 (2.5, 1.5, 0.9) 0.6×1.0×0.2 1.0 A·m-1
    模型三 1 (1.55, 1.55, 0.2) 0.3×0.3×0.3 1.5 g·cm-3
    2 (1.55, 1.55, 0.6) 1.9×1.9×0.5 1.0 g·cm-3
    下载: 导出CSV

    表 2 

    未化极磁性体模型参数

    Table 2. 

    Model parameters of unpolarized magnetic body

    编号 中心点坐标/(km, km, km) 模型大小/(km×km×km) 物性参数/(A·m-1) 磁化偏角/(°)
    1 (0.9, 2.0, 0.8) 0.6×1.4×0.4 1.0 15
    2 (2.5, 2.35, 0.55) 0.6×0.7×0.3 1.0 15
    3 (2.2, 0.9, 0.55) 0.4×0.4×0.3 1.0 15
    下载: 导出CSV
  •  

    Astort A, Colavitto B, Sagripanti L, et al. 2019. Crustal and mantle structure beneath the southern payenia volcanic province using gravity and magnetic data. Tectonics, 38(1): 144-158, doi: 10.1029/2017TC004806.

     

    Badrinarayanan V, Kendall A, Cipolla R. 2017. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495, doi: 10.1109/TPAMI.2016.2644615.

     

    Bai Y B, Gao C, Singh S, et al. 2018. A framework of rapid regional tsunami damage recognition from post-event TerraSAR-X imagery using deep neural networks. IEEE Geoscience and Remote Sensing Letters, 15(1): 43-47.

     

    Beiki M, Clark D A, Austin J R, et al. 2012. Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data. Geophysics, 77(6): J23-J37, doi: 10.1190/geo2011-0437.1.

     

    Beiki M, Keating P, Clark D A. 2014. Interpretation of magnetic and gravity gradient tensor data using normalized source strength—A case study from McFaulds Lake, Northern Ontario, Canada. Geophysical Prospecting, 62(5): 1180-1192, doi: 10.1111/1365-2478.12115.

     

    Chen L C, Zhu Y K, Papandreou G, et al. 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. //Proceeding of the 15th European Conference on Computer Vision (ECCV 2018). Munich, Germany: Springer, 833-851.

     

    Cordell L. 1979. Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico. //Geological Society Guidebook, 30th Field Conference. New Mexico, 59-64.

     

    Davoudi N, Deán-Ben X L, Razansky D. 2019. Deep learning optoacoustic tomography with sparse data. Nature Machine Intelligence, 1(10): 453-460, doi: 10.1038/s42256-019-0095-3.

     

    Deng S J, Tian Y, Hu X P, et al. 2012. Application of new advanced CNN structure with adaptive thresholds to color edge detection. Communications in Nonlinear Science and Numerical Simulation, 17(4): 1637-1648, doi: 10.1016/j.cnsns.2011.09.007.

     

    Gadirov V G, Eppelbaum L V, Kuderavets R S, et al. 2018. Indicative features of local magnetic anomalies from hydrocarbon deposits: examples from Azerbaijan and Ukraine. Acta Geophysica, 66(6): 1463-1483, doi: 10.1007/s11600-018-0224-0.

     

    Gavazzi B, Maire P L, Munschy M, et al. 2016. Fluxgate vector magnetometers: A multisensor device for ground, UAV, and airborne magnetic surveys. The Leading Edge, 35(9): 795-797, doi: 10.1190/tle35090795.1.

     

    Greenspan H, Ginneken B V, Summers R M. 2016. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Transactions on Medical Imaging, 35(5): 1153-1159, doi: 10.1109/TMI.2016.2553401.

     

    Guo H, Han S, Zheng Q, et al. 2019. Oblique derivative edge detection method research on full tensor magnetic gradient data. Chinese Journal of Geophysics (in Chinese), 62(9): 3580-3590, doi: 10.6038/cjg2019M0599.

     

    Guo R W, Dosso S E, Liu J X, et al. 2011. Non-linearity in Bayesian 1-D magnetotelluric inversion. Geophysical Journal International, 185(2): 663-675, doi: 10.1111/j.1365-246X.2011.04996.x.

     

    Hidalgo-Gato M C, Barbosa V C F. 2015. Edge detection of potential field sources using scale-space monogenic signal: Fundamental principles. Geophysics, 80(5): J27-J36, doi: 10.1190/geo2015-0025.1.

     

    Hinton G E, Srivastava N, Krizhevsky A, et al. 2012. Improving neural networks by preventing co-adaptation of feature detectors. https://arxiv.org/pdf/1207.0580v1.pdf.

     

    Hu S G, Tang J T, Ren Z Y, et al. 2019. Multiple underwater objects localization with magnetic gradiometry. IEEE Geoscience and Remote Sensing Letters, 16(2): 296-300, doi: 10.1109/LGRS.2018.2870839.

     

    Jiang F B, Dai Q W, Dong L. 2016. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks. Applied Geophysics, 13(2): 267-278, doi: 10.1007/s11770-016-0561-1.

     

    Jiang F Y, Gao L K. 2012. Edge enhancement of gravity anomalies and gravity gradient tensors using an improved small sub-domain filtering method. Applied Geophysics, 9(2): 119-130, doi: 10.1007/s11770-012-0321-9.

     

    Jiang K, Wang Z Y, Yi P, et al. 2020. ATMFN: Adaptive-threshold-based multi-model fusion network for compressed face hallucination. IEEE Transactions on Multimedia, 22(10): 2734-2747, doi: 10.1109/TMM.2019.2960586.

     

    Kamm J, Lundin I A, Bastani M, et al. 2015. Joint inversion of gravity, magnetic, and petrophysical data—A case study from a gabbro intrusion in Boden, Sweden. Geophysics, 80(5): B131-B152, doi: 10.1190/geo2014-0122.1.

     

    Kim Y, Nakata N. 2018. Geophysical inversion versus machine learning in inverse problems. The Leading Edge, 37(12): 894-901, doi: 10.1190/tle37120894.1.

     

    Krahenbuhl R A, Li Y G. 2017. Investigation of magnetic inversion methods in highly magnetic environments under strong self-demagnetization effect. Geophysics, 82(6): J83-J97, doi: 10.1190/geo2016-0676.1.

     

    Krizhevsky A, Sutskever I, Hinton G E. 2012. ImageNet classification with deep convolutional neural networks. //Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, NV, 1097-1105.

     

    LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521(7553): 436- 444, doi: 10.1038/nature14539.

     

    Li H C, Xiong P F, An J, et al. 2018. Pyramid attention network for semantic segmentation. https://arxiv.org/abs/1805.10180.

     

    Li J F, Liu Y H, Yin C C, et al. 2020a. Fast imaging of time-domain airborne EM data using deep learning technology. Geophysics, 85(5): E163-E170.

     

    Li S C, Liu B, Ren Y X, et al. 2020b. Deep-learning inversion of seismic data. IEEE Transactions on Geoscience and Remote Sensing, 58(3): 2135-2149, doi: 10.1109/TGRS.2019.2953473.

     

    Li S R, Yang C C, Sun H, et al. 2019. Seismic fault detection using an encoder-decoder convolutional neural network with a small training set. Journal of Geophysics and Engineering, 16(1): 175-189, doi: 10.1093/jge/gxy015.

     

    Liu B, Guo Q, Li S C, et al. 2020. Deep learning inversion of electrical resistivity data. IEEE Transactions on Geoscience and Remote Sensing, 58(8): 5715-5728, doi: 10.1109/TGRS.2020.2969040.

     

    Liu H N, Zhang Z F, Chen K. 2020. Bayesian inversion of Rayleigh surface wave dispersion and its application in active fault investigation. Progress in Geophysics (in Chinese), 35(4): 1584-1589, doi: 10.6038/pg2020DD0259.

     

    Liu S, Hu X Y, Zhang H L, et al. 2017. 3D magnetization vector inversion of magnetic data: improving and comparing methods. Pure and Applied Geophysics, 174(12): 4421-4444, doi: 10.1007/s00024-017-1654-3.

     

    Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic segmentation. //Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 3431-3440.

     

    Luo F, Du S H, Ding Z H, et al. 2021. Analysis and prediction of geothermal characteristics of an underground engineering in the upper side of Jiali active fault. Journal of Engineering Geology (in Chinese), doi: 10.13544/j.cnki.jeg.2021-0124.

     

    Ma G Q. 2013. Edge detection of potential field data using improved local phase filter. Exploration Geophysics, 44(1): 36-41, doi: 10.1071/EG12022.

     

    Ma G Q, Huang D N, Yu P, et al. 2012. Application of improved balancing filters to edge identification of potential field data. Chinese Journal of Geophysics (in Chinese), 55(12): 4288-4295, doi: 10.6038/j.issn.0001-5733.2012.12.040.

     

    Ma G Q, Liu C, Huang D N. 2015. The removal of additional edges in the edge detection of potential field data. Journal of Applied Geophysics, 114: 168-173, doi: 10.1016/j.jappgeo.2015.01.007.

     

    Nawaz M A, Curtis A. 2019. Rapid discriminative variational Bayesian inversion of geophysical data for the spatial distribution of geological properties. Journal of Geophysical Research: Solid Earth, 124(6): 5867-5887, doi: 10.1029/2018JB016652.

     

    Noh H, Hong S, Han B. 2015. Learning deconvolution network for semantic segmentation. //Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 1520-1528.

     

    Pan C C, Schoppe O, Parra-Damas A, et al. 2019. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell, 179(7): 1661-1676. e19, doi: 10.1016/j.cell.2019.11.013.

     

    Prutkin I, Saleh A. 2009. Gravity and magnetic data inversion for 3D topography of the Moho discontinuity in the northern Red Sea area, Egypt. Journal of Geodynamics, 47(5): 237-245, doi: 10.1016/j.jog.2008.12.001.

     

    Puzyrev V. 2019. Deep learning electromagnetic inversion with convolutional neural networks. Geophysical Journal International, 218(2): 817-832, doi: 10.1093/gji/ggz204.

     

    Qiao W F, Shen L, Dai Y S, et al. 2018. Building Extraction from high resolution remote sensing images by combining dilated convolutional residual networks and pyramid pooling representation. Geography and Geo-Information Science (in Chinese), 34(5): 56-62, doi: 10.3969/j.issn.1672-0504.2018.05.010.

     

    Ronneberger O, Fischer P, Brox T. 2015. U-net: Convolutional networks for biomedical image segmentation. //18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 234-241.

     

    Russakovsky O, Deng J, Su H, et al. 2015. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3): 211-252, doi: 10.1007/s11263-015-0816-y.

     

    Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Networks, 61: 85-117, doi: 10.1016/j.neunet.2014.09.003.

     

    Schoppe O, Pan C C, Coronel J, et al. 2020. Deep learning-enabled multi-organ segmentation in whole-body mouse scans. Nature Communications, 11: 5626, doi: 10.1038/s41467-020-19449-7.

     

    Sertcelik I, Kafadar O. 2012. Application of edge detection to potential field data using eigenvalue analysis of structure tensor. Journal of Applied Geophysics, 84: 86-94, doi: 10.1016/j.jappgeo.2012.06.005.

     

    Shi Y Z, Wu X M, Fomel S. 2019. SaltSeg: Automatic 3D salt segmentation using a deep convolutional neural network. Interpretation, 7(3): SE113-SE122, doi: 10.1190/INT-2018-0235.1.

     

    Sun J J, Li Y G. 2015. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics, 80(4): ID1-ID18, doi: 10.1190/geo2014-0049.1.

     

    Tang J T, Hu S G, Ren Z Y, et al. 2018. Localization of multiple underwater objects with gravity field and gravity gradient tensor. IEEE Geoscience and Remote Sensing Letters, 15(2): 247-251, doi: 10.1109/LGRS.2017.2784837.

     

    Tang J T, Shi Q B, Hu S G, et al. 2019. Edge detection based on curvature of gravity gradient tensors. Chinese Journal of Geophysics (in Chinese), 62(5): 1872-1884, doi: 10.6038/cjg2019M0427.

     

    Wang H, Yan J Y, Fu G M, et al. 2020. Current status and application prospect of deep learning in geophysics. Progress in Geophysics (in Chinese), 35(2): 642-655, doi: 10.6038/pg2020CC0476.

     

    Wang W Y. 2010. Spatial variation law of the extreme value positions of total horizontal derivative for potential field data. Chinese Journal of Geophysics (in Chinese), 53(9): 2257-2270, doi: 10.3969/j.issn.0001-5733.2010.09.027.

     

    Wang W Y, Zhang G C, Liang J S. 2010. Spatial variation law of vertical derivative zero points for potential field data. Applied Geophysics, 7(3): 197-209, doi: 10.1007/s11770-010-0255-z.

     

    Williams P K, Stevens R. 2002. Hydrogeological investigations in the Nzega area of western Tanzania. Exploration Geophysics, 33(2): 110-114, doi: 10.1071/EG02110.

     

    Wu X M, Liang L M, Shi Y Z, et al. 2019. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 84(3): IM35-IM45, doi: 10.1190/geo2018-0646.1.

     

    Xia M, Cui Y C, Zhang Y H, et al. 2021. DAU-Net: a novel water areas segmentation structure for remote sensing image. International Journal of Remote Sensing, 42(7): 2594-2621, doi: 10.1080/01431161.2020.1856964.

     

    Xian C H, Qian K, Zhang Z T, et al. 2020. Multi-Scale progressive fusion network for single image deraining. https://arxiv.org/pdf/2011.11865.pdf.

     

    Xie W, Wang Y C, Liu X Q, et al. 2019. Nonlinear joint PP-PS AVO inversion based on improved Bayesian inference and LSSVM. Applied Geophysics, 16(1): 64-76, doi: 10.1007/s11770-019-0750-9.

     

    Xing Y Y, Yang F, Tang Y J, et al. 2020. Ultrasound fetal head edge detection using fusion UNet ++. Journal of Image and Graphics (in Chinese), 25(2): 366-377, doi: 10.11834/jig.190242.

     

    Xiong W, Ji X, Ma Y, et al. 2018. Seismic fault detection with convolutional neural network. Geophysics, 83(5): O97-O103, doi: 10.1190/geo2017-0666.1.

     

    Xu B, Wang N Y, Chen T Q, et al. (2015-11-27). Empirical evaluation of rectified activations in convolutional network. https://arxiv.org/abs/1505.00853.

     

    Yan T J, Wu Y G, Yuan Y, et al. 2016. Edge detection of potential field data using an enhanced analytic signal tilt angle. Chinese Journal of Geophysics (in Chinese), 59(7): 2694-2702, doi: 10.6038/cjg20160732.

     

    Yannah M, Martens K, van Camp M, et al. 2019. Geophysical exploration of an old dumpsite in the perspective of enhanced landfill mining in Kermt area, Belgium. Bulletin of Engineering Geology and the Environment, 78(1): 55-67, doi: 10.1007/s10064-017-1169-2.

     

    Yu P, Zhang Q, Zhang C. 2019. A new method of balanced edge detection for the gravity potential-field based on horizontal analytical signal. Chinese Journal of Geophysics (in Chinese), 62(10): 3734-3743, doi: 10.6038/cjg2019M0500.

     

    Yuan Y, Huang D N, Yu Q L, et al. 2014. Edge detection of potential field data with improved structure tensor methods. Journal of Applied Geophysics, 108: 35-42, doi: 10.1016/j.jappgeo.2014.06.013.

     

    Yuan Y, Yu Q L. 2015. Edge detection in potential-field gradient tensor data by use of improved horizontal analytical signal methods. Pure and Applied Geophysics, 172(2): 461-472, doi: 10.1007/s00024-014-0880-1.

     

    Zhang J, Yang X, Li W G, et al. 2020a. Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method. Automation in Construction, 113: 103119, doi: 10.1016/j.autcon.2020.103119.

     

    Zhang Z H, Liao X L, Cao Y Y, et al. 2021a. Joint gravity and gravity gradient inversion based on deep learning. Chinese Journal of Geophysics (in Chinese), 64(4): 1435-1452, doi: 10.6038/cjg2021O0151.

     

    Zhang Z H, Lu R Q, Liao X L, et al. 2021b. Inversion of magnetic anomaly and magnetic gradient anomaly based on fully convolution network. Progress in Geophysics (in Chinese), 36(1): 325-337, doi: 10.6038/pg2021EE022.

     

    Zhang Z Z, Lan C L, Zeng W J, et al. 2020b. Relation-aware global attention for person re-identification. //Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 3183-3192.

     

    Zhao H S, Shi J P, Qi X J, et al. 2017. Pyramid scene parsing network. //Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA: IEEE, 6230-6239.

     

    Zhou S, Huang D N, Jiao J. 2016. A filter to detect edge of potential field data based on three-dimensional structural tensors. Chinese Journal of Geophysics (in Chinese), 59(10): 3847-3858, doi: 10.6038/cjg20161028.

     

    Zhou W N, Du X J, Li J Y. 2013. The limitation of curvature gravity gradient tensor for edge detection and a method for overcoming it. Journal of Applied Geophysics, 98: 237-242, doi: 10.1016/j.jappgeo.2013.09.008.

     

    Zhou Z W, Siddiquee M M R, Tajbakhsh N, et al. 2020. UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 39(6): 1856-1867, doi: 10.1109/TMI.2019.2959609.

     

    Zunino A, Benvenuto F, Armadillo E, et al. 2009. Iterative deconvolution and semiblind deconvolution methods in magnetic archaeological prospecting. Geophysics, 74(4): L43-L51, doi: 10.1190/1.3129263.

     

    郭华, 韩松, 郑强等. 2019. 全张量磁梯度数据的斜导数特征值边界识别方法研究. 地球物理学报, 62(9): 3580-3590, doi: 10.6038/cjg2019M0599. http://www.igg-journals.cn/article/doi/10.6038/cjg2019M0599

     

    刘昊楠, 张致付, 陈凯. 2020. 瑞利面波频散曲线贝叶斯反演及其在活断层调查中的应用. 地球物理学进展, 35(4): 1584-1589, doi: 10.6038/pg2020DD0259.

     

    罗锋, 杜世回, 丁子豪等. 2021. 断裂北盘某地下工程地温特征分析及预测. 工程地质学报, doi: 10.13544/j.cnki.jeg.2021-0124.

     

    马国庆, 黄大年, 于平等. 2012. 改进的均衡滤波器在位场数据边界识别中的应用. 地球物理学报, 55(12): 4288-4295, doi: 10.6038/j.issn.0001-5733.2012.12.040. http://www.igg-journals.cn/article/doi/10.6038/j.issn.0001-5733.2012.12.040

     

    乔文凡, 慎利, 戴延帅等. 2018. 联合膨胀卷积残差网络和金字塔池化表达的高分影像建筑物自动识别. 地理与地理信息科学, 34(5): 56-62, doi: 10.3969/j.issn.1672-0504.2018.05.010.

     

    汤井田, 史庆斌, 胡双贵等. 2019. 基于重力梯度张量曲率的边界识别. 地球物理学报, 62(5): 1872-1884, doi: 10.6038/cjg2019M0427. http://www.igg-journals.cn/article/doi/10.6038/cjg2019M0427

     

    王昊, 严加永, 付光明等. 2020. 深度学习在地球物理中的应用现状与前景. 地球物理学进展, 35(2): 642-655, doi: 10.6038/pg2020CC0476.

     

    王万银. 2010. 位场总水平导数极值位置空间变化规律研究. 地球物理学报, 53(9): 2257-2270, doi: 10.3969/j.issn.0001-5733.2010.09.027. http://www.igg-journals.cn/article/doi/10.3969/j.issn.0001-5733.2010.09.027

     

    邢妍妍, 杨丰, 唐宇姣等. 2020. 融合型UNet++网络的超声胎儿头部边缘检测. 中国图象图形学报, 25(2): 366-377, doi: 10.11834/jig.190242.

     

    颜廷杰, 吴燕冈, 袁园等. 2016. 应用加强解析信号倾斜角进行位场数据的边界检测. 地球物理学报, 59(07): 2694-2702, doi: 10.6038/cjg20160732. http://www.igg-journals.cn/article/doi/10.6038/cjg20160732

     

    于平, 张琦, 张冲. 2019. 基于水平方向解析信号的均衡重力位场边界识别方法. 地球物理学报, 62(10): 3734-3743, doi: 10.6038/cjg2019M0500. http://www.igg-journals.cn/article/doi/10.6038/cjg2019M0500

     

    张志厚, 廖晓龙, 曹云勇等. 2021a. 基于深度学习的重力异常与重力梯度异常联合反演. 地球物理学报, 64(4): 1435-1452, doi: 10.6038/cjg2021O0151. http://www.igg-journals.cn/article/doi/10.6038/cjg2021O0151

     

    张志厚, 路润琪, 廖晓龙等. 2021b. 基于全卷积神经网络的磁异常及磁梯度异常反演. 地球物理学进展, 36(1): 325-337, doi: 10.6038/pg2021EE022.

     

    周帅, 黄大年, 焦健. 2016. 基于三维构造张量的位场边界识别滤波器. 地球物理学报, 59(10): 3847-3858, doi: 10.6038/cjg20161028. http://www.igg-journals.cn/article/doi/10.6038/cjg20161028

  • 加载中

(16)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-06-11
修回日期:  2022-01-17
上线日期:  2022-05-10

目录