基于最小二乘反演的半航空瞬变电磁纯二次场数据运动噪声去除方法

杨洋, 张衡, 周长宇, 陈成栋, 孙怀凤. 2022. 基于最小二乘反演的半航空瞬变电磁纯二次场数据运动噪声去除方法. 地球物理学报, 65(6): 2351-2364, doi: 10.6038/cjg2022P0301
引用本文: 杨洋, 张衡, 周长宇, 陈成栋, 孙怀凤. 2022. 基于最小二乘反演的半航空瞬变电磁纯二次场数据运动噪声去除方法. 地球物理学报, 65(6): 2351-2364, doi: 10.6038/cjg2022P0301
YANG Yang, ZHANG Heng, ZHOU ChangYu, CHEN ChengDong, SUN HuaiFeng. 2022. Motion noise removal method of semi-airborne transient electromagnetic pure secondary field data based on least square inversion. Chinese Journal of Geophysics (in Chinese), 65(6): 2351-2364, doi: 10.6038/cjg2022P0301
Citation: YANG Yang, ZHANG Heng, ZHOU ChangYu, CHEN ChengDong, SUN HuaiFeng. 2022. Motion noise removal method of semi-airborne transient electromagnetic pure secondary field data based on least square inversion. Chinese Journal of Geophysics (in Chinese), 65(6): 2351-2364, doi: 10.6038/cjg2022P0301

基于最小二乘反演的半航空瞬变电磁纯二次场数据运动噪声去除方法

  • 基金项目:

    国家自然科学基金(42004056, 42074145)和山东省自然科学基金(ZR2020QD052, ZR2019MD019)联合资助

详细信息
    作者简介:

    杨洋, 男, 1987年生, 博士, 副教授, 主要从事人工源电磁数据处理及有效信息提取方面的教学与科研工作. E-mail: yang.yang@sdu.edu.cn

    通讯作者: 孙怀凤, 男, 1982年生, 博士, 教授, 博士生导师, 主要从事瞬变电磁正反演与应用方面的教学与科研工作. E-mail: sunhuaifeng@gmail.com
  • 中图分类号: P631

Motion noise removal method of semi-airborne transient electromagnetic pure secondary field data based on least square inversion

More Information
  • 半航空瞬变电磁法(Semi-Airborne Transient Electromagnetic Method, SATEM)通过在地面布置发射源, 在空中接收信号, 是一种新兴的地球物理勘探方法.在数据采集过程中, 由于接收线圈持续运动和摆动, 产生较大的运动噪声, 导致采集的数据不能直接使用.同时, 瞬变电磁只在关断之后进行数据采集, 获得的数据是非全时的, 为数据预处理过程中的运动噪声去除带来困难.为有效去除非全时半航空瞬变电磁数据中的运动噪声, 本文首先将非全时电磁数据延拓至全时长, 基于傅里叶级数构造了半航空瞬变电磁晚期数据运动噪声超定线性方程组, 通过最小二乘反演求解运动噪声, 并将所获得运动噪声从原数据中剔除.通过对仿真数据和实测数据进行去噪, 其能够有效识别并剔除数据中的运动噪声, 去噪效果良好.

  • 加载中
  • 图 1 

    半航空瞬变电磁勘探

    Figure 1. 

    Semi-airborne transient electromagnetic exploration

    图 2 

    半航空瞬变电磁二次场衰减曲线

    Figure 2. 

    Decay curve of semi-airborne transient electromagnetic secondary field

    图 3 

    半航空瞬变电磁双极性矩形波响应剖面

    Figure 3. 

    Semi-airborne transient electromagnetic bipolar rectangular wave response profile

    图 4 

    数据预处理

    Figure 4. 

    Data preprocessing

    图 5 

    含运动噪声非全时瞬变电磁信号仿真

    Figure 5. 

    Simulation of non-full-time transient electromagnetic signal with motion noise

    图 6 

    勒让德多项式拟合非全时含噪仿真信号运动噪声

    Figure 6. 

    Motion noise of non-full-time noisy simulation signal fitted by Legendre polynomials

    图 7 

    仿真信号衰减曲线和勒让德多项式阶数选取

    Figure 7. 

    Decay curve of simulated original signal and selection of the order of Legendre polynomials

    图 8 

    勒让德多项式拟合基线频谱分析

    Figure 8. 

    Spectral analysis of baseline fitted by Legendre polynomials

    图 9 

    傅里叶正交基及小波变换拟合非全时含噪仿真信号运动噪声

    Figure 9. 

    Fitting motion noise of non-full-time noisy simulation signal by Fourier orthogonal basis and wavelet transform

    图 10 

    仿真原始信号、仿真含噪信号与去噪后信号衰减曲线对比

    Figure 10. 

    Comparison of the decay curve of simulated original signal, simulated noisy signal and denoised signal

    图 11 

    勒让德多项式拟合实测非全时纯噪声信号运动噪声

    Figure 11. 

    Motion noise of measured non-full-time pure noise signal fitted by Legendre polynomial

    图 12 

    实测纯噪声数据勒让德多项式阶数选取

    Figure 12. 

    Selection of the order of Legendre polynomials for measured pure noise data

    图 13 

    勒让德多项式拟合基线频谱分析

    Figure 13. 

    Spectral analysis of baseline fitted by Legendre polynomials

    图 14 

    傅里叶正交基拟合非全时纯噪声数据的运动噪声

    Figure 14. 

    Motion noise of non-full-time pure noise data fitted by Fourier orthogonal basis

    图 15 

    勒让德多项式拟合实测非全时电磁信号运动噪声

    Figure 15. 

    Motion noise of measured non-full-time electromagnetic signal fitted by Legendre polynomial

    图 16 

    实测非全时数据勒让德多项式最高阶数选取

    Figure 16. 

    Selection of the highest order of Legendre polynomials for measured non-full-time data

    图 17 

    勒让德多项式拟合基线频谱分析

    Figure 17. 

    Spectral analysis of baseline fitted by Legendre polynomials

    图 18 

    傅里叶正交基拟合实测非全时电磁信号运动噪声

    Figure 18. 

    Motion noise of measured non-full-time electromagnetic signal fitted by Fourier orthogonal basis

    图 19 

    非全时实测瞬变电磁信号所有半周期去噪前、后叠加衰减曲线对比

    Figure 19. 

    Comparison of superimposed decay curves before and after all half-period denoising of non-full-time measured transient electromagnetic signals

  •  

    Bracewell R. 1966. The Fourier transform and its applications. American Journal of Physics, 34(8): 712, doi: 10.1119/1.1973431.

     

    Buselli G, Pik J P, Hwang H S. 1998. AEM noise reduction with remote referencing. Exploration Geophysics, 29(1-2): 71-76. doi: 10.1071/EG998071

     

    Davis A C, Macnae J, Robb T. 2006. Pendulum motion in airborne HEM systems. Exploration Geophysics, 37(4): 355-362. doi: 10.1071/EG06355

     

    Ji Y J, Li D S, Yuan G Y, et al. 2016. Noise reduction of time domain electromagnetic data: application of a combined wavelet denoising method. Radio Science, 51(6): 680-689. doi: 10.1002/2016RS005985

     

    Ji Y J, Wang Y, Xu J, et al. 2013. Development and application of the grounded long wire source airborneelectromagnetic exploration system based on an unmanned airship. Chinese Journal of Geophysics (in Chinese), 56(11): 3640-3650, doi: 10.6038/cjg20131105.

     

    Ji Y J, Xu J, Wu Q, et al. 2014. Apparent resistivity inversion of electrical source semi-airborne electromagnetic data based on neural network. Chinese Journal of Radio Science (in Chinese), 29(5): 973-980.

     

    Kass M A, Li Y G, Krahenbuhl R, et al. 2010. Enhancement of TEM data and noise characterization by principal component analysis. Colorado: Colorado School of Mines Golden Dept of Geophysics.

     

    Lane R, Green A, Golding C, et al. 2000. An example of 3D conductivity mapping using the TEMPEST airborne electromagnetic system. Exploration Geophysics, 31(1-2): 162-172. doi: 10.1071/EG00162

     

    Lemire D. 2001. Baseline asymmetry, tau projection, B-field estimation and automatic half-cycle rejections. Montreal: THEM Geophysics Inc.

     

    Li S Y, Lin J, Yang G H, et al. 2013. Ground-airborne electromagnetic signals de-noising using a combined wavelet transform algorithm. Chinese Journal of Geophysics (in Chinese), 56(9): 3145-3152, doi: 10.6038/cjg20130927.

     

    Liu F B, Geng Z, Zhang Q M, et al. 2017. The application of the EEMD method to the suppression of the motion induced noise in the grounded wire source airborne transient electromagnetic system. Geophysical and Geochemical Exploration (in Chinese), 41(1): 123-128.

     

    Mao X X, Mao L F, Yang C, et al. 2021. Research on wavelet denoising method for semi-airborne transient electromagnetic data. Progress in Geophysics (in Chinese), 36(3): 1287-1296, doi: 10.6038/pg2021EE0157.

     

    Munkholm M S. 1997. Motion-induced noise from vibration of a moving TEM detector coil: characterization and suppression. Journal of Applied Geophysics, 37(1): 21-29. doi: 10.1016/S0926-9851(97)00004-9

     

    Nabighian N M. 1988. Electromagnetic Methods in Applied Geophysics-Volume 1: Theory. Tulsa, OK: Society of Exploration Geophysicists, 217-231.

     

    Sun H F, Zhang N Y, Liu S B, et al. 2019. L1-norm based nonlinear inversion of transient electromagnetic data. Chinese Journal of Geophysics (in Chinese), 62(12): 4860-4873, doi: 10.6038/cjg2019M0690.

     

    Wang Y, Ji Y J, Li S Y, et al. 2013. A wavelet-based baseline drift correction method for grounded electrical source airborne transient electromagnetic signals. Exploration Geophysics, 44(4): 229-237. doi: 10.1071/EG12078

     

    Xue S Y, Yin C C, Su Y, et al. 2020. Airborne electromagnetic data denoising based on dictionary learning. Applied Geophysics, 17(2): 306-313. doi: 10.1007/s11770-020-0810-1

     

    Yang Y, Li D Q, Tong T G, et al. 2018. Denoising controlled-source electromagnetic data using least-squares inversion. Geophysics, 83(4): E229-E244. doi: 10.1190/geo2016-0659.1

     

    Yin C C. 2018. Airborne Electromagnetic Theory and Exploration Technology (in Chinese). Beijing: Science Press.

     

    Yin D W, Lin J, Zhu K G, et al. 2013. Simulation research on coil motion noise removal for time domain airborne electromagnetic data. Journal of Jilin University (Earth Science Edition) (in Chinese), 43(5): 1639-1645.

     

    Zhang X Y, Cao P, Liu W L, et al. 2019. Moving window mean filter algorithm for semi-airborne transient electromagnetic baseline drift. Progress in Geophysics (in Chinese), 34(2): 849-852, doi: 10.6038/pg2019CC0524.

     

    Zhu K G, Li N. 2009. Preprocessing of helicopter-borne time domain electromagnetic data. //Proceedings of the Ninth China International Geo-Electromagnetic Workshop (in Chinese). Guilin: Chinese Geophysical Society, 199-201.

     

    嵇艳鞠, 王远, 徐江等. 2013. 无人飞艇长导线源时域地空电磁勘探系统及其应用. 地球物理学报, 56(11): 3640-3650, doi: 10.6038/cjg20131105. http://www.geophy.cn/article/doi/10.6038/cjg20131105

     

    嵇艳鞠, 徐江, 吴琼等. 2014. 基于神经网络电性源半航空视电阻率反演研究. 电波科学学报, 29(5): 973-980. https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201405031.htm

     

    李肃义, 林君, 阳贵红等. 2013. 电性源时域地空电磁数据小波去噪方法研究. 地球物理学报, 56(9): 3145-3152, doi: 10.6038/cjg20130927. http://www.geophy.cn/article/doi/10.6038/cjg20130927

     

    刘富波, 耿智, 张启卯等. 2017. 接地导线源航空瞬变电磁系统EEMD法去除传感器运动噪声. 物探与化探, 41(1): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201701019.htm

     

    毛鑫鑫, 毛立峰, 杨聪等. 2021. 半航空瞬变电磁数据小波降噪方法研究. 地球物理学进展, 36(3): 1287-1296, doi: 10.6038/pg2021EE0157.

     

    孙怀凤, 张诺亚, 柳尚斌等. 2019. 基于L1范数的瞬变电磁非线性反演. 地球物理学报, 62(12): 4860-4873, doi: 10.6038/cjg2019M0690. http://www.geophy.cn/article/doi/10.6038/cjg2019M0690

     

    殷长春. 2018. 航空电磁理论与勘查技术. 北京: 科学出版社.

     

    尹大伟, 林君, 朱凯光等. 2013. 时间域航空电磁数据线圈运动噪声去除方法仿真研究. 吉林大学学报(地球科学版), 43(5): 1639-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201305035.htm

     

    张向阳, 曹平, 刘文连等. 2019. 基于移动窗口均值滤波算法处理地空瞬变电磁基线漂移. 地球物理学进展, 34(2): 849-852, doi: 10.6038/pg2019CC0524.

     

    朱凯光, 李楠. 2009. 直升机时间域航空电磁数据预处理技术研究. //第九届中国国际地球电磁学术讨论会论文集. 桂林: 中国地球物理学会, 199-201.

  • 加载中

(19)

计量
  • 文章访问数:  351
  • PDF下载数:  74
  • 施引文献:  0
出版历程
收稿日期:  2021-05-06
修回日期:  2021-09-10
上线日期:  2022-06-10

目录