2021年5月21日云南漾濞MS6.4地震序列发震构造

段梦乔, 赵翠萍, 周连庆, 赵策, 左可桢. 2021. 2021年5月21日云南漾濞MS6.4地震序列发震构造. 地球物理学报, 64(9): 3111-3125, doi: 10.6038/cjg2021P0423
引用本文: 段梦乔, 赵翠萍, 周连庆, 赵策, 左可桢. 2021. 2021年5月21日云南漾濞MS6.4地震序列发震构造. 地球物理学报, 64(9): 3111-3125, doi: 10.6038/cjg2021P0423
DUAN MengQiao, ZHAO CuiPing, ZHOU LianQing, ZHAO Ce, ZUO KeZhen. 2021. Seismogenic structure of the 21 May 2021 MS6.4 Yunnan Yangbi earthquake sequence. Chinese Journal of Geophysics (in Chinese), 64(9): 3111-3125, doi: 10.6038/cjg2021P0423
Citation: DUAN MengQiao, ZHAO CuiPing, ZHOU LianQing, ZHAO Ce, ZUO KeZhen. 2021. Seismogenic structure of the 21 May 2021 MS6.4 Yunnan Yangbi earthquake sequence. Chinese Journal of Geophysics (in Chinese), 64(9): 3111-3125, doi: 10.6038/cjg2021P0423

2021年5月21日云南漾濞MS6.4地震序列发震构造

  • 基金项目:

    中国地震局地震预测研究所基本科研业务费专项"金沙江下游水库区地震加密监测和震情跟踪"(2021IEF0710);国家自然科学基金项目(41774054)资助

详细信息
    作者简介:

    段梦乔, 女, 在读博士研究生, 主要从事数字地震学研究.E-mail: duanmengqiao126@163.com

    通讯作者: 赵翠萍, 女, 1967年生, 主要从事数字地震学研究.E-mail: zhaocp@ief.ac.cn 周连庆, 男, 1982年生, 主要从事数字地震学研究.E-mail: zhoulq@ief.ac.cn
  • 中图分类号: P315

Seismogenic structure of the 21 May 2021 MS6.4 Yunnan Yangbi earthquake sequence

More Information
  • 2021年5月21日云南省大理州漾濞县发生MS6.4地震.地震序列表现为"前-主-余"型,余震频次较高.为获得此次地震序列的活动特征和震源区潜在的发震构造,本文首先计算2010年以来震源区地震b值随时间的变化.其次对漾濞地震序列进行精定位,并反演地震震源机制解和构造应力场.结果表明:(1)震源区地震b值自2020年12月逐渐降低.2021年5月18日起地震活动逐渐增强,b值短暂回升.MS6.4地震发生前又迅速下降.目前b值已恢复至均值水平,意味着区域发生强震的危险性逐渐降低.(2)结合精定位和震源机制解结果发现,漾濞地震序列的发震断层以SE走向的高倾角右旋走滑兼正断型断层为主.兼有多条NE走向和NNE走向的左旋走滑兼正断型的高倾角次级断层.(3)震源区受控于NNW向水平挤压,NEE向水平拉张的构造应力作用.主震前构造应力控制作用增强.

  • 加载中
  • 图 1 

    震源区及邻区主要断裂带和历史MS≥5地震空间分布图

    Figure 1. 

    The spatial distribution of main fault zones and historical MS≥5 earthquakes in the focal area and adjacent areas

    图 2 

    地震震级-时间(M-T)关系图

    Figure 2. 

    The Magnitude-Time (M-T) diagram of earthquakes

    图 3 

    震源区台站分布图

    Figure 3. 

    The distribution of stations in the focal area

    图 4 

    (a) P波、S波走时-震中距图, (b) 初始一维速度模型

    Figure 4. 

    (a) Travel time-epicenter distance curve of P and S waves. (b) The initial 1D velocity model

    图 5 

    (a) 2010年1月1日至2021年6月30日震源区地震b值随时间变化图像, (b) 2021年5月1日至2021年6月30日震源区地震b值随时间变化图像(黑色虚线代表平均b值,灰色条棒代表地震频次)

    Figure 5. 

    (a) The image of the b-value changing with time in the focal area from January 1, 2010 to June 30, 2021.(b) The image of the b-value changing with time in the focal area from May 1, 2021 to June 30, 2021 (The black dotted line represents average b-value, and the gray bar represents the earthquake frequency)

    图 6 

    使用Bootstrap重采样法得到的E-W向(a)、S-N向(b)和Z垂向(c)误差标准差分布直方图

    Figure 6. 

    Distribution histograms of standard deviation error of E-W (a), S-N (b) and Z (c) by the Bootstrap method

    图 7 

    精定位前后前震的空间分布和各剖面地震深度分布图

    Figure 7. 

    The spatial distribution of unrelocated and relocated foreshocks and the depth distribution of each profile

    图 8 

    精定位前后余震空间分布及各剖面地震深度分布图

    Figure 8. 

    The spatial distribution of unrelocated and relocated aftershocks and the depth distribution of each profile

    图 A1 

    漾濞MS6.4地震余震精定位后的空间分布图

    Figure A1. 

    The spatial distribution of relocated aftershocks of the MS6.4 Yangbi earthquake

    图 9 

    CAP方法反演得到MS6.4主震的波形拟合和深度拟合图

    Figure 9. 

    The MS6.4 mainshock waveform fitting and depth fitting diagrams by the CAP method

    图 A2 

    同一地震两种震源机制解对比图

    Figure A2. 

    Comparison diagram of two focal mechanism solutions for the same earthquake

    图 10 

    CAP方法与Earth-X得到的震源机制解空间分布图(震源球上方或两侧数字与附录中的地震序号一致)

    Figure 10. 

    The spatial distribution of focal mechanism solutions by CAP method and Earth-X (Numbers above or on both sides of focal spheres are consistent with numbers in Appendix)

    图 11 

    震源区潜在的发震构造和构造应力方向示意图红色沙滩球代表断层上MS≥5.0地震的震源机制解.

    Figure 11. 

    Schematic diagram of potential seismogenic structure and tectonic stress direction in the focal area The red beach balls represent focal mechanism solutions of MS≥5.0 earthquakes on the fault.

    表 附表 1 

    CAP方法反演M≥3.5地震震源机制结果

    Table 附表 1. 

    The focal mechanism solutions of M≥3.5 earthquakes by the CAP method

    序号 发震时刻 经度/(°) 纬度/(°) 节面Ⅰ 节面Ⅱ 深度/km 震级MW
    年月日 时分秒 走向/(°) 倾角/(°) 滑动角/(°) 走向/(°) 倾角/(°) 滑动角/(°)
    1 20210518 21:39:36 99.93 25.65 40 78 8 308 82 168 7.5 4.34
    2 20210519 20:05:57 99.92 25.66 223 60 19 123 74 149 7 4.60
    3 20210521 20:56:03 99.93 25.63 4 57 -51 128 49 -134 6.5 4.30
    4 20210521 21:21:25 99.92 25.63 40 74 -12 133 79 -164 6.8 5.26
    5 20210521 21:21:57 99.96 25.63 208 67 -33 312 60 -153 5.4 4.61
    6 20210521 21:48:35 99.87 25.67 44 80 -13 136 77 -170 6 6.16
    7 20210521 21:53:48 99.98 25.62 239 78 7 148 83 168 4.7 4.80
    8 20210521 21:55:29 99.89 25.67 241 72 3 150 87 162 5 4.78
    9 20210521 21:56:38 99.95 25.64 240 64 -12 335 79 -154 6.5 4.82
    10 20210521 22:03:37 99.93 25.57 221 65 30 117 63 152 10 3.38
    11 20210521 22:15:16 99.96 25.59 230 72 6 138 84 162 7.4 4.55
    12 20210521 22:31:11 99.97 25.59 39 74 -40 142 52 -160 9.2 5.05
    13 20210521 22:59:37 99.94 25.63 203 73 11 110 80 163 8 4.05
    14 20210521 23:13:54 99.94 25.64 211 73 -16 306 75 -162 5.3 3.98
    15 20210521 23:23:35 99.98 25.60 218 82 9 127 81 172 6.3 4.51
    16 20210522 00:51:41 99.87 25.70 32 81 -12 124 78 -171 6.2 4.28
    17 20210522 01:36:06 99.94 25.62 21 90 -7 111 83 180 7.4 4.16
    18 20210522 09:48:01 99.90 25.67 43 85 -8 134 82 -175 6.9 4.21
    19 20210522 20:14:37 99.93 25.61 39 73 -26 137 65 -161 5.8 4.75
    20 20210527 19:52:46 99.93 25.65 14 73 -11 107 80 -163 6.3 4.22
    下载: 导出CSV
  •  

    Aki K. 1965. Maximum likelihood estimate of b in the formula log N=a-bM and its confidence limits. Bulletin of the Earthquake Research Institute, University of Tokyo, 43(2): 237-239. http://www.researchgate.net/publication/302172746_Maximum_likelihood_estimate_of_b_in_the_formula_log_N_a-bM_and_its_confidence_limits

     

    Chang Z F, Zhang Y F, Li J L, et al. 2014. The geological and geomorphic characteristic of Late Quaternary activity of the Deqin-Zhongdian-Daju Fault. Journal of Seismological Research (in Chinese), 37(1): 46-52. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201401007.htm

     

    Chang Z F, Chang H, Li J L, et al. 2016a. The characteristic of active normal faulting of the southern segment of Weixi-Qiaohou Fault. Journal of Seismological Research (in Chinese), 39(4): 579-586. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201604007.htm

     

    Chang Z F, Chang H, Zang Y, et al. 2016b. Recent active features of Weixi-Qiaohou fault and its relationship with the Honghe Fault. Journal of Geomechanics (in Chinese), 22(3): 517-530. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201603009.htm

     

    Chen A G. 2018. Seismic anisotropy and microseismic analysis of the upper crust in the key structural areas of the South-north seismic zone [Master's thesis](in Chinese). Beijing: Institute of Earthquake Forecasting, China Earthquake Administration.

     

    Chen Y, Liu J, Yang W. 2015. Pattern characteristics of foreshock sequences. Earthquake Research in China (in Chinese), 31(2): 177-187.

     

    Deng Q D. 2007. Map of Active Tectonics in China (in Chinese). Beijing: Seismological Press.

     

    Efron B, Gong G. 1983. A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician, 37(1): 36-48. http://www.mendeley.com/research/efron-gong-1983-american-statistician-leisurely-look-bootstrap-jackknife-crossvalidationpdf/

     

    Efron B, Tibshirani R. 1991. Statistical data analysis in the computer age. Science, 253(5018): 390-395. doi: 10.1126/science.253.5018.390

     

    Fang L H, Wu J P, Su J R, et al. 2018. Relocation of mainshock and aftershock sequence of the MS7.0 Sichuan Jiuzhaigou earthquake. Chinese Science Bulletin (in Chinese), 63(7): 649-662, doi:10.1360/N972017-01184.

     

    Gulia L, Wiemer S. 2019. Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777): 193-199. doi: 10.1038/s41586-019-1606-4

     

    Helmstetter A, Sornette D, Grasso J R. 2003. Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws. Journal of Geophysical Research: Solid Earth, 108(B1): 2046. http://arxiv.org/abs/cond-mat/0205499

     

    Jiang J Z, Li J, Fu H. 2019. Seismicity analysis of the 2016 MS5.0 Yunlong earthquake, Yunnan, China and its tectonic implications. Pure and Applied Geophysics, 176(3): 1225-1241. doi: 10.1007/s00024-018-2067-7

     

    Li J, Jiang J Z, Yang J Q. 2020. Microseismic detection and relocation of the 2017 MS4.8 and MS5.1 Yangbi earthquake sequence, Yunnan. Acta Seismologica Sinica (in Chinese), 42(5): 527-542, doi:10.11939/jass.20190161.

     

    Long F, Yi G X, Wang S W, et al. 2019. Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China. Earth and Planetary Physics, 3(3): 253-267, doi:10.26464/epp2019027.

     

    Mogi K. 1979. Global variation of seismic activity. Tectonophysics, 57(2-4): T43-T50. doi: 10.1016/0040-1951(79)90142-2

     

    Nanjo K Z, Yoshida A. 2017. Anomalous decrease in relatively large shocks and increase in the p and b values preceding the April 16, 2016, M7.3 earthquake in Kumamoto, Japan. Earth, Planets and Space, 69(1): 13, doi:10.1186/s40623-017-0598-2.

     

    Pan R, Jiang J Z, Fu H, et al. 2019. Focal mechanism and focal depth determination of Yunnan Yangbi MS5.1 and MS4.8 earthquakes in 2017. Journal of Seismological Research (in Chinese), 42(3): 338-348. http://en.cnki.com.cn/Article_en/CJFDTotal-DZYJ201903005.htm

     

    Ren J J, Zhang S M, Hou Z H, et al. 2007. Study of late quaternary slip rate in the mid-segment of the Tongdian-Weishan fault. Seismology and Geology (in Chinese), 29(4): 756-764. http://www.researchgate.net/publication/289632739_Study_of_late_quaternary_slip_rate_in_the_mid-segment_of_the_Tongdian-Weishan_fault

     

    Shi Y T, Gao Y, Su Y J, et al. 2012. Shear-wave splitting beneath Yunnan area of Southwest China. Earthquake Science, 25(1): 25-34. doi: 10.1007/s11589-012-0828-4

     

    Suyehiro S. 1966. Difference between aftershocks and foreshocks in the relationship of magnitude to frequency of occurrence for the great Chilean earthquake of 1960. Bulletin of the Seismological Society of America, 56(1): 185-200. doi: 10.1785/BSSA0560010185

     

    Tian J H, Luo Y, Zhao L. 2019. Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes. Earth and Planetary Physics, 3(3): 243-252. doi: 10.26464/epp2019024

     

    Tormann T, Enescu B, Woessner J, et al. 2015. Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nature Geoscience, 8(2): 152-158, doi:10.1038/ngeo2343.

     

    Vavryuk V. 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1): 69-77. doi: 10.1093/gji/ggu224

     

    Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: method and application to the Northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6): 1353-1368. doi: 10.1785/0120000006

     

    Wang H, Cao J L, Jing Y, et al. 2012. Spatiotemporal pattern of b-value before major earthquakes in the Sichuan-Yunnan region. Seismology and Geology (in Chinese), 34(3): 531-543. http://www.researchgate.net/publication/287719766_Spatiotemporal_pattern_of_b-value_before_major_earthquakes_in_the_Sichuan-Yunnan_region

     

    Wiemer S, Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90(4): 859-869. doi: 10.1785/0119990114

     

    Wu K T, Yue M S, Wu H Y, et al. 1976. Certain characteristics of Haicheng earthquake (M=7.3) sequence. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 19(2): 95-109. http://www.researchgate.net/publication/284386493_Certain_characteristics_of_Haicheng_earthquake_M_73_sequence

     

    Xin H L, Zhang H J, Kang M, et al. 2019. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography. Seismological Research Letters, 90(1): 229-241, doi:10.1785/0220180209.

     

    Xu X W, Wen X Z, Zheng R Z, et al. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Science in China Series D: Earth Sciences, 46: 210-226, doi:10.1360/03dz0017.

     

    Xue Y, Liu J, Yu H Z, et al. 2012. Seismicity characteristics of the 2011 M9.0 Tohoku earthquake near the East Coast of Honshu in Japan. Chinese Science Bulletin, 57(8): 886-893, doi:10.1007/s11434-011-4885-1.

     

    Yang Z G, Liu J, Zhang X M, et al. 2021. A preliminary report of the Yangbi, Yunnan, MS6.4 earthquake of May 21, 2021. Earth and Planetary Physics, 5(4): 362-364, doi:10.26464/epp2021036.

     

    Yang Z X, Chen Y T, Zheng Y J, et al. 2003. Accurate relocation of earthquakes in central-western China using the double-difference earthquake location algorithm. Science in China Series D: Earth Sciences, 46(2): 181-188, doi:10.1360/03dz0014.

     

    Zhang H J, Thurber C. 2006. Development and applications of double-difference seismic tomography. Pure and Applied Geophysics, 163(2-3): 373-403. doi: 10.1007/s00024-005-0021-y

     

    Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1): 91-104. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/1/91

     

    Zheng Y, Ma H S, Lü J, et al. 2009. Source mechanism of strong aftershocks (MS ≥ 5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Science in China Series D: Earth Sciences, 52(6): 739-753, doi:10.1007/s11430-009-0074-3.

     

    Zhu L P, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5): 1634-1641. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=86/5/1634

     

    Zhu L P, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3): 619-627. doi: 10.1046/j.1365-246X.2002.01610.x

     

    Zoback M L. 1992. First- and second-order patterns of stress in the lithosphere: The World Stress Map Project. Journal of Geophysical Research: Solid Earth, 97(B8): 11703-11728. doi: 10.1029/92JB00132

     

    常祖峰, 张艳凤, 李鉴林等. 2014. 德钦-中甸-大具断裂晚第四纪活动的地质与地貌表现. 地震研究, 37(1): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201401007.htm

     

    常祖峰, 常昊, 李鉴林等. 2016a. 维西-乔后断裂南段正断层活动特征. 地震研究, 39(4): 579-586. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201604007.htm

     

    常祖峰, 常昊, 臧阳等. 2016b. 维西-乔后断裂新活动特征及其与红河断裂的关系. 地质力学学报, 22(3): 517-530. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201603009.htm

     

    陈安国. 2018. 南北地震带重点构造区上地壳地震各向异性与微震分析[硕士论文]. 北京: 中国地震局地震预测研究所.

     

    陈颙, 刘杰, 杨文. 2015. 前震序列的图像特征研究. 中国地震, 31(2): 177-187. doi: 10.3969/j.issn.1001-4683.2015.02.001

     

    邓起东. 2007. 中国活动构造图. 北京: 地震出版社.

     

    房立华, 吴建平, 苏金蓉等. 2018. 四川九寨沟MS7.0地震主震及其余震序列精定位. 科学通报, 63(7): 649-662. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201807007.htm

     

    李姣, 姜金钟, 杨晶琼. 2020. 2017年漾濞MS4.8和MS5.1地震序列的微震检测及重定位. 地震学报, 42(5): 527-542, doi:10.11939/jass.20190161.

     

    潘睿, 姜金钟, 付虹等. 2019. 2017年云南漾濞MS5.1及MS4.8地震震源机制解和震源深度测定. 地震研究, 42(3): 338-348. doi: 10.3969/j.issn.1000-0666.2019.03.005

     

    任俊杰, 张世民, 侯治华等. 2007. 滇西北通甸-巍山断裂中段的晚第四纪滑动速率. 地震地质, 29(4): 756-764. doi: 10.3969/j.issn.0253-4967.2007.04.006

     

    王辉, 曹建玲, 荆燕等. 2012. 川滇地区强震活动前b值的时空分布特征. 地震地质, 34(3): 531-543. doi: 10.3969/j.issn.0253-4967.2012.03.013

     

    吴开统, 岳明生, 武宦英等. 1976. 海城地震序列的特征. 地球物理学报, 19(2): 95-109. http://www.geophy.cn//CN/abstract/abstract5500.shtml

     

    徐锡伟, 闻学泽, 郑荣章等. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学(D辑), 33(S1): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1016.htm

     

    薛艳, 刘杰, 余怀忠等. 2012. 2011年日本本州东海岸附近9.0级地震活动特征. 科学通报, 57(8): 634-640. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201208007.htm

     

    杨智娴, 陈运泰, 郑月军等. 2003. 双差地震定位法在我国中西部地区地震精确定位中的应用. 中国科学(D辑), 33(S1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1013.htm

     

    郑勇, 马宏生, 吕坚等. 2009. 汶川地震强余震(MS ≥ 5.6)的震源机制解及其与发震构造的关系. 中国科学(D辑: 地球科学), 39(4): 413-426. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200904004.htm

  • 加载中

(13)

(1)

计量
  • 文章访问数:  784
  • PDF下载数:  471
  • 施引文献:  0
出版历程
收稿日期:  2021-07-13
修回日期:  2021-08-02
上线日期:  2021-09-10

目录