基于数据驱动的时间序列b值计算新方法(TbDD): 以2021年云南漾濞MS6.4地震序列为例

姜丛, 蒋长胜, 尹凤玲, 张延保, 毕金孟, 龙锋, 司政亚, 尹欣欣. 2021. 基于数据驱动的时间序列b值计算新方法(TbDD): 以2021年云南漾濞MS6.4地震序列为例. 地球物理学报, 64(9): 3126-3134, doi: 10.6038/cjg2021P0385
引用本文: 姜丛, 蒋长胜, 尹凤玲, 张延保, 毕金孟, 龙锋, 司政亚, 尹欣欣. 2021. 基于数据驱动的时间序列b值计算新方法(TbDD): 以2021年云南漾濞MS6.4地震序列为例. 地球物理学报, 64(9): 3126-3134, doi: 10.6038/cjg2021P0385
JIANG Cong, JIANG ChangSheng, YIN FengLing, ZHANG YanBao, BI JinMeng, LONG Feng, SI ZhengYa, YIN XinXin. 2021. A new method for calculating b-value of time sequence based on data-driven (TbDD): A case study of the 2021 Yangbi MS6.4 earthquake sequence in Yunnan. Chinese Journal of Geophysics (in Chinese), 64(9): 3126-3134, doi: 10.6038/cjg2021P0385
Citation: JIANG Cong, JIANG ChangSheng, YIN FengLing, ZHANG YanBao, BI JinMeng, LONG Feng, SI ZhengYa, YIN XinXin. 2021. A new method for calculating b-value of time sequence based on data-driven (TbDD): A case study of the 2021 Yangbi MS6.4 earthquake sequence in Yunnan. Chinese Journal of Geophysics (in Chinese), 64(9): 3126-3134, doi: 10.6038/cjg2021P0385

基于数据驱动的时间序列b值计算新方法(TbDD): 以2021年云南漾濞MS6.4地震序列为例

  • 基金项目:

    国家自然科学基金(41804094,U2039204),国家科技基础资源调查专项课题(2018FY100504),中国地震科学实验场专项(2019CSES0106,2019CSES0105)联合资助

详细信息
    作者简介:

    姜丛, 女, 1997年生, 硕士研究生, 主要从事地震监测技术研究.E-mail: 994569363@qq.com

    通讯作者: 蒋长胜, 男, 1979年生, 博士生导师、研究员, 主要从事地震监测技术与地震预测理论研究.E-mail: jiangcs@cea-igp.ac.cn 尹凤玲, 女, 1984年生, 副研究员, 主要从事地球动力学与地震活动性研究.E-mail: yinfengling@cea-igp.ac.cn
  • 中图分类号: P315

A new method for calculating b-value of time sequence based on data-driven (TbDD): A case study of the 2021 Yangbi MS6.4 earthquake sequence in Yunnan

More Information
  • 时间序列的b值在天然地震和工业开采诱发地震的危险性分析中具有重要的应用潜力,但长期以来受到计算规则设置的人为主观性、计算结果的可靠性和时序对突变识别精度不高等问题影响,制约了不同结果的可比较性和共识性科学认识的提炼.本文借鉴基于数据驱动(data-driven)的地震活动参数计算思路,采用连续函数形式的OK1993模型、时间轴随机段落划分、贝叶斯信息准则模型选择等技术环节,构建了基于数据驱动的时间序列b值计算新方法TbDD.利用合成地震目录的理论测试,并分别与固定地震数目的窗长和步长、固定地震数目的步长和累积窗长等传统的固定窗口法进行了比较研究.结果表明,TbDD方法可较好地还原合成地震目录的b0值输入参数,在计算规则设置的客观性和对b值突变过程的准确识别上具有明显优势.此外,我们还对新近发生的2021年5月21日云南漾濞MS6.4地震序列进行了实际案例应用.结果显示,此次序列的b值在MS6.4主震前为0.7左右、震前20 h出现了约0.1幅度的下降,表明在序列发生前震区的差应力水平较高.而b值在MS6.4主震发生后起伏明显、逐渐增加至0.8左右,这一现象可能与震区在主震后早期较为剧烈的应力调整有关.进一步针对随机模型的数量以及时间轴的随机段落划分设置对TbDD方法b值计算结果的影响程度进行了测试,发现b值受随机模型数量影响较小、具备较强的稳定性,时间轴的随机段落划分设置可影响b值时序微观起伏变化的识别.本文发展的TbDD方法在对时间序列b值计算的准确性、余震趋势跟踪的高精度要求,以及工业开采诱发地震风险管控等领域有较好的应用潜力,所获得的2021年云南漾濞MS6.4地震序列的b值计算结果也对理解此次地震序列的孕育过程有参考价值.

  • 加载中
  • 图 1 

    对TbDD方法测试的理论地震目录

    Figure 1. 

    Synthetic earthquake catalogs for testing the TbDD method

    图 2 

    对理论地震目录的TbDD方法计算结果及其与固定窗口法的比较

    Figure 2. 

    The calculation results from the TbDD method and its comparison with the fixed window method by using the synthetic earthquake catalogs

    图 3 

    对2021年5月21日云南漾濞MS6.4地震序列的TbDD方法计算结果及其与固定窗口法的比较

    Figure 3. 

    The calculation results from the TbDD method and its comparison with the fixed window method for the Yangbi MS6.4 earthquake sequence of May 21, 2021 in Yunnan

    图 4 

    对2021年5月21日云南漾濞MS6.4地震序列采用多种计算模式设置的TbDD方法计算结果的比较

    Figure 4. 

    Comparison of the results of the TbDD method using multiple sets of calculation models for the MS6.4 Yangbi, Yunnan earthquake sequence

  •  

    Ader T, Chendorain M, Free M, et al. 2020. Design and implementation of a traffic light system for deep geothermal well stimulation in Finland. Journal of Seismology, 24(5): 991-1014. doi: 10.1007/s10950-019-09853-y

     

    Fiedler B, Hainzl S, Zöller G, et al. 2018. Detection of Gutenberg-Richter b-value changes in earthquake time series. Bulletin of the Seismological Society of America, 108(5A): 2778-2787, doi:10.1785/0120180091.

     

    Gulia L, Wiemer S. 2019. Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777): 193-199, doi:10.1038/s41586-019-1606-4.

     

    Hainzl S. 2016. Rate-dependent incompleteness of earthquake catalogs. Seismological Research Letters, 87(2A): 337-344. doi: 10.1785/0220150211

     

    Hallo M, Oprsal I, Eisner L, et al. 2014. Prediction of magnitude of the largest potentially induced seismic event. Journal of Seismology, 18(3): 421-431. doi: 10.1007/s10950-014-9417-4

     

    Hutton K, Woessner J, Hauksson E. 2010. Earthquake monitoring in southern California for seventy-seven years (1932-2008). Bulletin of the Seismological Society of America, 100(2): 423-446. doi: 10.1785/0120090130

     

    Iwata T. 2013. Estimation of completeness magnitude considering daily variation in earthquake detection capability. Geophysical Journal International, 194(3): 1909-1919. doi: 10.1093/gji/ggt208

     

    Jiang C S, Han L B, Long F, et al. 2021. Spatiotemporal heterogeneity of b values revealed by a data-driven approach for June 17, 2019 MS6.0, Changning Sichuan, China earthquake sequence. Natural Hazards and Earth System Sciences, 21: 2233-2244, doi:10.5194/nhess-2021-3.

     

    Kagan Y Y. 2004. Short-term properties of earthquake catalogs and models of earthquake source. Bulletin of the Seismological Society of America, 94(4): 1207-1228. doi: 10.1785/012003098

     

    Kamer Y, Hiemer S. 2013. Comment on "Analysis of the b-values before and after the 23 October 2011 MW7.2 Van-Ercis, Turkey, earthquake". Tectonophysics, 608: 1448-1451, doi:10.1016/j.tecto.2013.07.040.

     

    Kamer Y, Hiemer S. 2015. Data-driven spatial b value estimation with applications to California seismicity: To b or not to b. Journal of Geophysical Research: Solid Earth, 120(7): 5191-5214, doi:10.1002/2014JB011510.

     

    Mori J, Abercrombie R E. 1997. Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation. Journal of Geophysical Research: Solid Earth, 102(B7): 15081-15090. doi: 10.1029/97JB01356

     

    Murru M, Console R, Falcone G, et al. 2007. Spatial mapping of the b value at Mount Etna, Italy, using earthquake data recorded from 1999 to 2005. Journal of Geophysical Research: Solid Earth, 112(B12): B12303, doi:10.1029/2006JB004791.

     

    Nandan S, Ouillon G, Wiemer S, et al. 2017. Objective estimation of spatially variable parameters of epidemic type aftershock sequence model: Application to California. Journal of Geophysical Research: Solid Earth, 122(7): 5118-5143. doi: 10.1002/2016JB013266

     

    Ogata Y, Katsura K. 1993. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophysical Journal International, 113(3): 727-738. doi: 10.1111/j.1365-246X.1993.tb04663.x

     

    Ogata Y. 2011. Significant improvements of the space-time ETAS model for forecasting of accurate baseline seismicity. Earth, Planets and Space, 63(3): 6. doi: 10.5047/eps.2010.09.001

     

    Omi T, Ogata Y, Hirata Y, et al. 2013. Forecasting large aftershocks within one day after the main shock. Scientific Reports, 3: 2218, doi:10.1038/srep02218.

     

    Rubner Y, Tomasi C, Guibas L J. 2000. The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision, 40(2): 99-121. doi: 10.1023/A:1026543900054

     

    Sambridge M, Bodin T, Gallagher K, et al. 2013. Transdimensional inference in the geosciences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1984): 20110547, doi:10.1098/rsta.2011.0547.

     

    Schorlemmer D, Wiemer S. 2005. Microseismicity data forecast rupture area. Nature, 434(7037): 1086-1086. doi: 10.1038/4341086a

     

    Schwarz G. 1978. Estimating the dimension of a model. The Annals of Statistics, 6(2): 461-464. https://www.jstor.org/stable/pdf/2958889.pdf

     

    Shi H X, Meng L Y, Zhang X M, et al. 2018. Decrease in b value prior to the Wenchuan earthquake (MS8.0). Chinese Journal of Geophysics (in Chinese), 61(5): 1874-1882, doi:10.6038/cjg2018M0024.

     

    Si Z Y, Jiang C S. 2019. Research on parameter calculation for the Ogata-Katsura 1993 model in terms of the frequency-magnitude distribution based on a data-driven approach. Seismological Research Letters, 90(3): 1318-1329. doi: 10.1785/0220180372

     

    Svec L, Burden S, Dilley A. 2007. Applying Voronoi diagrams to the redistricting problem. The UMAP Journal, 28(3): 313-329. https://sites.math.washington.edu/~billey/classes/honors.350/articles/Week.8.lukas.svec.pdf

     

    Toda S, Stein R S, Reasenberg P A, et al. 1998. Stress transferred by the 1995 MW=6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities. Journal of Geophysical Research: Solid Earth, 103(B10): 24543-24565. doi: 10.1029/98JB00765

     

    Van Der Elst N J, Page M T, Weiser D A, et al. 2016. Induced earthquake magnitudes are as large as (statistically) expected. Journal of Geophysical Research: Solid Earth, 121(6): 4575-4590. doi: 10.1002/2016JB012818

     

    Van Der Elst N J. 2021. B-positive: A robust estimator of aftershock magnitude distribution in transiently incomplete catalogs. Journal of Geophysical Research: Solid Earth, 126(2): e2020JB021027, doi:10.1029/2020JB021027.

     

    Wang R, Chang Y, Miao M, et al. 2021. Assessing earthquake forecast performance based on b value in Yunnan Province, China. Entropy, 23(6): 730. doi: 10.3390/e23060730

     

    Wiemer S, Wyss M. 1997. Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times? Journal of Geophysical Research: Solid Earth, 102(B7): 15115-15128. doi: 10.1029/97JB00726

     

    Wyss M. 1973. Towards a physical understanding of the earthquake frequency distribution. Geophysical Journal of the Royal Astronomical Society, 31(4): 341-359. doi: 10.1111/j.1365-246X.1973.tb06506.x

     

    Xie W Y, Hattori K, Han P. 2019. Temporal variation and statistical assessment of the b value off the Pacific Coast of Tokachi, Hokkaido, Japan. Entropy, 21(3): 249, doi:10.3390/e21030249.

     

    史海霞, 孟令媛, 张雪梅等. 2018. 汶川地震前的b值变化. 地球物理学报, 61(5): 1874-1882, doi:10.6038/cjg2018M0024. http://www.geophy.cn//CN/abstract/abstract14506.shtml

  • 加载中

(4)

计量
  • 文章访问数:  809
  • PDF下载数:  413
  • 施引文献:  0
出版历程
收稿日期:  2021-06-07
修回日期:  2021-08-16
上线日期:  2021-09-10

目录