基于范阿伦双星EMFISIS观测数据的NWC和NAA人工甚低频台站信号的内磁层全球统计分布

项正, 林显浩, 陈薇, 王勇, 陆鹏, 龚文颖, 马文琛, 花漫, 刘阳希子. 2021. 基于范阿伦双星EMFISIS观测数据的NWC和NAA人工甚低频台站信号的内磁层全球统计分布. 地球物理学报, 64(11): 3860-3869, doi: 10.6038/cjg2021P0131
引用本文: 项正, 林显浩, 陈薇, 王勇, 陆鹏, 龚文颖, 马文琛, 花漫, 刘阳希子. 2021. 基于范阿伦双星EMFISIS观测数据的NWC和NAA人工甚低频台站信号的内磁层全球统计分布. 地球物理学报, 64(11): 3860-3869, doi: 10.6038/cjg2021P0131
XIANG Zheng, LIN XianHao, CHEN Wei, WANG Yong, LU Peng, GONG WenYing, MA WenChen, HUA Man, LIU YangXiZi. 2021. Global morphology of NWC and NAA very-low-frequency transmitter signals in the inner magnetosphere: A survey using Van Allen Probes EMFISIS measurements. Chinese Journal of Geophysics (in Chinese), 64(11): 3860-3869, doi: 10.6038/cjg2021P0131
Citation: XIANG Zheng, LIN XianHao, CHEN Wei, WANG Yong, LU Peng, GONG WenYing, MA WenChen, HUA Man, LIU YangXiZi. 2021. Global morphology of NWC and NAA very-low-frequency transmitter signals in the inner magnetosphere: A survey using Van Allen Probes EMFISIS measurements. Chinese Journal of Geophysics (in Chinese), 64(11): 3860-3869, doi: 10.6038/cjg2021P0131

基于范阿伦双星EMFISIS观测数据的NWC和NAA人工甚低频台站信号的内磁层全球统计分布

  • 基金项目:

    国家自然科学基金(41904143)和中国博士后科学基金(2019M662700)资助

详细信息
    作者简介:

    项正, 男, 武汉大学空间物理系特聘副研究员, 主要从事辐射带动力学方面的研究.E-mail: xiangzheng@whu.edu.cn

  • 中图分类号: P353

Global morphology of NWC and NAA very-low-frequency transmitter signals in the inner magnetosphere: A survey using Van Allen Probes EMFISIS measurements

  • 地球表面的人工甚低频台站信号可以穿透电离层泄漏进地球磁层导致内辐射带电子沉降到两极大气.因此研究人工甚低频台站信号的空间全球分布特性对于分析辐射带电子的损失具有重要科学意义.本文使用范阿伦双星从2013年到2018年共计6年的高质量的波动观测数据,统计了NWC(19.8 kHz)、NAA(24.0 kHz)两个人工VLF台站信号的全球分布,分析了台站信号的电场功率谱密度对地理经纬度、磁壳值L、磁地方时MLT、地磁活动水平的依赖性.结果表明,在内磁层中,人工台站VLF信号主要沿着台站位置对应的磁力线传播,夜侧强度高于日侧,冬季高于夏季.这种日夜和夏冬差异的形成是因为夜侧和冬季的日照强度较弱,电离层电子密度较低,VLF信号较容易穿透电离层进入磁层.此外人工VLF台站信号的全球分布受地磁活动的影响很弱.这些统计观测结果给出了NWC和NAA两个重要人工VLF台站信号强度的全球分布特征,为进一步分析人工VLF台站信号与地球辐射带电子的波粒相互作用提供了关键信息.

  • 加载中
  • 图 1 

    2013年12月27日范阿伦A星观测到的NAA和NWC台站VLF信号示例图

    Figure 1. 

    The example of NAA and NWC transmitter VLF signals measured by Van Allen Probe A on December 27, 2013

    图 2 

    不同MLT区间内NWC(第一行)、NAA(第二行)台站信号的平均电场功率谱密度(大图)和采样点数(小图)

    Figure 2. 

    Statistical distribution of the average signal electric field power spectral densities (larger panels) and sample numbers (smaller panels) of NWC (top row) and NAA (bottom row) transmitter signals as a function of geographic latitudes and longitudes on different MLT sectors (from left to right: all MLT, on the nightside and on the dayside).

    图 3 

    不同季节的NWC、NAA台站信号平均电场功率谱密度和采样点数随地理经纬度变化的统计图

    Figure 3. 

    Statistical distribution of the average signal electric field power spectral densities and sample numbers as a function of geographic latitude and longitudes in different seasons

    图 4 

    不同季节的NWC(第一行)、NAA(第二行)台站信号平均电场功率谱密度(大图)和采样点数(小图)

    Figure 4. 

    Statistical distribution of the average signal electric field power spectral densities (larger panels) and sample numbers (smaller panels) of NWC (top row) and NAA (bottom row) transmitter signals as a function of MLT and L- shell in different seasons (from left to right: all year, summer, winter, and the normalized differences between the distributions in summer and winter)

    图 5 

    不同地磁活动条件下NWC、NAA台站信号平均电场功率谱密度随MLT和L变化的统计图,从左至右分别为:平静(AE<300 nT),中等(100 nT<AE<1000 nT)

    Figure 5. 

    Statistical distribution of the average signal electric field power spectral densities (larger panels) and sample numbers (smaller panels) of NWC (top row) and NAA (bottom row) transmitter signals as a function of MLT and L-shell for different levels of geomagnetic activity (from left to right: weak, AE < 300 nT; moderate, 100 nT < AE < 1000 nT)

    图 6 

    不同季节和MLT区间内的NWC(第一行)、NAA(第二行)台站信号的平均电场功率谱密度随L-shell变化的曲线图,从左至右分别为夏季和冬季

    Figure 6. 

    Average signal electric field power spectral densities as a function of L-shell for NWC (top row) and NAA (bottom row) VLF transmitter signals in summer (left panels) and winter (right panels) for the different MLT ranges

    表 1 

    本文相关的台站信息表

    Table 1. 

    The information of the selected VLF transmitters

    台站 频率
    (kHz)
    功率
    (kW)
    经纬度 地磁共轭点
    经纬度
    对应的卫星
    频率段(kHz)
    GQD 19.6 100 54.91°N
    3.28°W
    49.86°S
    20.48°E
    19.11~20.05
    NWC 19.8 1000 21.82°S
    114.17°E
    38.33°N
    112.98°E
    19.11~20.05
    DHO38 23.4 300 53.09°N
    7.61°E
    44.58°S
    26.00°E
    23.15~24.29
    NAA 24 1000 44.64°N
    67.28°W
    67.51°S
    57.76°W
    23.15~24.29
    下载: 导出CSV
  •  

    Abel B, Thorne R M. 1998. Electron scattering loss in Earth's inner magnetosphere: 2. Sensitivity to model parameters. Journal of Geophysical Research: Space Physics, 103(A2): 2397-2407, doi:10.1029/97JA02920.

     

    Agapitov O V, Artemyev A V, Mourenas D, et al. 2014. Inner belt and slot region electron lifetimes and energization rates based on AKEBONO statistics of whistler waves. Journal of Geophysical Research: Space Physics, 119(4): 2876-2893, doi:10.1002/2014JA019886.

     

    Albert J M, Starks M J, Selesnick R S, et al. 2020. VLF transmitters and lightning-generated whistlers: 2. Diffusion of radiation belt electrons. Journal of Geophysical Research: Space Physics, 125(3): e2019JA027030, doi:10.1029/2019JA027030.

     

    Baker D N, Kanekal S G, Horne R B, et al. 2007. Low-altitude measurements of 2-6 MeV electron trapping lifetimes at 1.5 ≤ L ≤ 2.5. Geophysical Research Letters, 34(20): L20110, doi:10.1029/2007GL031007.

     

    Cao X, Ni B B, Summers D, et al. 2020. Hot plasma effects on the pitch-angle scattering rates of radiation belt electrons due to plasmaspheric hiss. The Astrophysical Journal, 896(2): 118, doi:10.3847/1538-4357/ab9107.

     

    Chen Y P, Yang G B, Ni B B, et al. 2016. Development of ground-based ELF/VLF receiver system in Wuhan and its first results. Advances in Space Research, 57(9): 1871-1880, doi:10.1016/j.asr.2016.01.023.

     

    Chen Y P, Ni B B, Gu X D, et al. 2017. First observations of low latitude whistlers using WHU ELF/VLF receiver system. Science China-Technological Sciences, 60(1): 166-174, doi:10.1007/s11431-016-6103-5.

     

    Claudepierre S G, Ma Q, Bortnik J, et al. 2020. Empirically estimated electron lifetimes in the Earth's radiation belts: Comparison with theory. Geophysical Research Letters, 47(3): e2019GL086056, doi:10.1029/2019GL086056.

     

    Clilverd M A, Horne R B. 1996. Ground-based evidence of latitude-dependent cyclotron absorption of whistler mode signals originating from VLF transmitters. Journal of Geophysical Research: Space Physics, 101(A2): 2355-2367, doi:10.1029/95JA03153.

     

    Clilverd M A, Rodger C J, Nunn D. 2004. Radiation belt electron precipitation fluxes associated with lightning. Journal of Geophysical Research: Space Physics, 109(A12): A12208, doi:10.1029/2004JA010644.

     

    Cunningham G S, Botek E, Pierrard V, et al. 2020. Observation of high-energy electrons precipitated by NWC transmitter from PROBA-V low-Earth orbit satellite. Geophysical Research Letters, 47(16): e2020GL089077, doi:10.1029/2020GL089077.

     

    Fu S, Yi J, Ni B B, et al. 2020. Combined scattering of radiation belt electrons by low-frequency hiss: Cyclotron, Landau, and bounce resonances. Geophysical Research Letters, 47(5): e2020GL086963, doi:10.1029/2020GL086963.

     

    Gamble R J, Rodger C J, Clilverd M A, et al. 2008. Radiation belt electron precipitation by man-made VLF transmissions. Journal of Geophysical Research: Space Physics, 113(A10): A10211, doi:10.1029/2008JA013369.

     

    Graf K L, Inan U S, Piddyachiy D, et al. 2009. DEMETER observations of transmitter-induced precipitation of inner radiation belt electrons. Journal of Geophysical Research: Space Physics, 114(A7): A07205, doi:10.1029/2008JA013949.

     

    Green A, Li W, Ma Q, et al. 2020. Properties of lightning generated whistlers based on Van Allen Probes observations and their global effects on radiation belt electron loss. Geophysical Research Letters, 47(17): e2020GL089584, doi:10.1029/2020GL089584.

     

    Gu X D, Yin Q, Ni B B, et al. 2017a. A statistical analysis of the global distribution of inner magnetospheric lower-band chorus waves based on Van Allen Probes EMFISIS observations. Chinese Journal of Geophysics (in Chinese), 60(4): 1249-1258, doi:10.6038/cjg20170401.

     

    Gu X D, Yin Q, Zhou R X, et al. 2017b. A statistical analysis of the global distribution of inner magnetospheric upper-band chorus waves based on Van Allen Probes EMFISIS observations. Chinese Journal of Geophysics (in Chinese), 60(4): 1259-1267, doi:10.6038/cjg20170402.

     

    Gu X D, Xia S J, Fu S, et al. 2020. Dynamic responses of radiation belt electron fluxes to magnetic storms and their correlations with magnetospheric plasma wave activities. The Astrophysical Journal, 891(2): 127, doi:10.3847/1538-4357/ab71fc.

     

    Hua M, Li W, Ni B B, et al. 2020. Very-Low-Frequency transmitters bifurcate energetic electron belt in near-earth space. Nature Communications, 11: 4847, doi:10.1038/s41467-020-18545-y.

     

    Hua M, Ni B B, Li W, et al. 2021. Statistical distribution of bifurcation of Earth's inner energetic electron belt at tens of keV. Geophysical Research Letters, 48(3): e2020GL091242, doi:10.1029/2020GL091242.

     

    Imhof W L, Reagan J B, Voss H D, et al. 1983. Direct observation of radiation belt electrons precipitated by the controlled injection of VLF signals from a ground-based transmitter. Geophysical Research Letters, 10(4): 361-364, doi:10.1029/GL010i004p00361.

     

    Inan U S, Chang H C, Helliwell R A, et al. 1985. Precipitation of radiation belt electrons by man-made waves: A comparison between theory and measurement. Journal of Geophysical Research: Space Physics, 90(A1): 359-369, doi:10.1029/JA090iA01p00359.

     

    Koons H C, Edgar B C, Vampola A L. 1981. Precipitation of inner zone electrons by whistler mode waves from the VLF transmitters UMS and NWC. Journal of Geophysical Research: Space Physics, 86(A2): 640-648, doi:10.1029/JA086iA02p00640.

     

    Kulkarni P, Inan U S, Bell T F, et al. 2008. Precipitation signatures of ground-based VLF transmitters. Journal of Geophysical Research: Space Physics, 113(A7): A07214, doi:10.1029/2007JA012569.

     

    Li W, Ma Q, Thorne R M, et al. 2015. Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on radiation belt electron dynamics. Journal of Geophysical Research: Space Physics, 120(5): 3393-3405, doi:10.1002/2015JA021048.

     

    Ma Q, Mourenas D, Li W, et al. 2017. VLF waves from ground-based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons. Geophysical Research Letters, 44(13): 6483-6491, doi:10.1002/2017GL073885.

     

    Ma Q L, Li W, Thorne R M, et al. 2016. Electron scattering by magnetosonic waves in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 121(1): 274-285, doi:10.1002/2015JA021992.

     

    Ma X, Xiang Z, Ni B B, et al. 2020. On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm. Earth and Planetary Physics, 4(6): 598-610, doi:10.26464/epp2020060.

     

    Meredith N P, Horne R B, Clilverd M A, et al. 2019. An investigation of VLF transmitter wave power in the inner radiation belt and slot region. Journal of Geophysical Research: Space Physics, 124(7): 5246-5259, doi:10.1029/2019JA026715.

     

    Ni B B, Bortnik J, Thorne R M, et al. 2013. Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss. Journal of Geophysical Research: Space Physics, 118(12): 7740-7751, doi:10.1002/2013JA019260.

     

    Ni B B, Li W, Thorne R M, et al. 2014. Resonant scattering of energetic electrons by unusual low-frequency hiss. Geophysical Research Letters, 41(6): 1854-1861, doi:10.1002/2014GL059389.

     

    Ni B B, Hua M, Zhou R X, et al. 2017. Competition between outer zone electron scattering by plasmaspheric hiss and magnetosonic waves. Geophysical Research Letters, 44(8): 3465-3474, doi:10.1002/2017GL072989.

     

    Ni B B, Huang H, Zhang W X, et al. 2019. Parametric sensitivity of the formation of reversed electron energy spectrum caused by plasmaspheric hiss. Geophysical Research Letters, 46(8): 4134-4143, doi:10.1029/2019GL082032.

     

    Ross J P J, Meredith N P, Glauert S A, et al. 2019. Effects of VLF transmitter waves on the inner belt and slot region. Journal of Geophysical Research: Space Physics, 124(7): 5260-5277, doi:10.1029/2019JA026716.

     

    Sauvaud J A, Maggiolo R, Jacquey C, et al. 2008. Radiation belt electron precipitation due to VLF transmitters: Satellite observations. Geophysical Research Letters, 35(9): L09101, doi:10.1029/2008GL033194.

     

    Selesnick R S, Albert J M, Starks M J. 2013. Influence of a ground-based VLF radio transmitter on the inner electron radiation belt. Journal of Geophysical Research: Space Physics, 118(2): 628-635, doi:10.1002/jgra.50095.

     

    Vampola A L, Kuck G A. 1978. Induced precipitation of inner zone electrons, 1. Observations. Journal of Geophysical Research: Space Physics, 83(A6): 2543-2551, doi:10.1029/JA083iA06p02543.

     

    Xia Z Y, Chen L J, Zhima Z, et al. 2020. Spectral broadening of NWC transmitter signals in the ionosphere. Geophysical Research Letters, 47(13): e2020GL088103, doi:10.1029/2020GL088103.

     

    Xiang Z, Tu W C, Li X L, et al. 2017. Understanding the mechanisms of radiation belt dropouts observed by Van Allen Probes. Journal of Geophysical Research: Space Physics, 122(10): 9858-9879, doi:10.1002/2017JA024487.

     

    Xiang Z, Tan J Q, Ni B B, et al. 2017. A statistical analysis of the global distribution of plasmaspheric hiss based on Van Allen Probes wave observations. Acta Physica Sinica (in Chinese), 66(3): 039401, doi:10.7498/aps.66.039401.

     

    Xiang Z, Tu W C, Ni B B, et al. 2018. A statistical survey of radiation belt dropouts observed by Van Allen Probes. Geophysical Research Letters, 45(16): 8035-8043, doi:10.1029/2018GL078907.

     

    Xiang Z, Li X L, Temerin M A, et al. 2020a. On energetic electron dynamics during geomagnetic quiet times in Earth's inner radiation belt due to atmospheric collisional loss and CRAND as a source. Journal of Geophysical Research: Space Physics, 125(2): e2019JA027678, doi:10.1029/2019JA027678.

     

    Xiang Z, Li X L, Ni B B, et al. 2020b. Dynamics of energetic electrons in the slot region during geomagnetically quiet times: Losses due to wave-particle interactions versus a source from cosmic ray albedo neutron decay (CRAND). Journal of Geophysical Research: Space Physics, 125(9): e2020JA028042, doi:10.1029/2020JA028042.

     

    Yi J, Gu X D, Li Z P, et al. 2019. Modeling and analysis of NWC signal propagation amplitude based on LWPC and IRI models. Chinese Journal of Geophysics (in Chinese), 62(9): 3223-3234, doi:10.6038/cjg2019N0190.

     

    Yi J, Gu X D, Cheng W, et al. 2020. A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters. Earth and Planetary Physics, 4(3): 238-245, doi:10.26464/epp2020023.

     

    Zhou R X, Gu X D, Yang K X, et al. 2020. A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 1. Automatic detection and analysis method. Earth and Planetary Physics, 4(2): 120-130, doi:10.26464/epp2020018.

     

    顾旭东, 殷倩, 倪彬彬等. 2017a. 基于Van Allen Probes EMFISIS波动仪器观测的内磁层下频带哨声合声波全球分布的统计分析. 地球物理学报, 60(4): 1249-1258, doi:10.6038/cjg20170401. http://www.geophy.cn//CN/abstract/abstract13595.shtml

     

    顾旭东, 殷倩, 周若贤等. 2017b. 基于Van Allen Probes EMFISIS波动仪器观测的内磁层上频带哨声合声波全球分布的统计分析. 地球物理学报, 60(4): 1259-1267, doi:10.6038/cjg20170402. http://www.geophy.cn//CN/abstract/abstract13596.shtml

     

    项正, 谈家强, 倪彬彬等. 2017. 基于范阿伦卫星观测数据的等离子体层嘶声全球分布的统计分析. 物理学报, 66(3): 039401, doi:10.7498/aps.66.039401.

     

    易娟, 顾旭东, 李志鹏等. 2019. 基于LWPC和IRI模型的NWC台站信号传播幅度建模分析. 地球物理学报, 62(9): 3223-3234, doi:10.6038/cjg2019N0190. http://www.geophy.cn//CN/abstract/abstract15142.shtml

  • 加载中

(6)

(1)

计量
  • 文章访问数:  462
  • PDF下载数:  89
  • 施引文献:  0
出版历程
收稿日期:  2021-02-24
修回日期:  2021-04-17
上线日期:  2021-11-10

目录