青藏高原东南缘深部多参数属性变化与中强震孕育响应关系

刘冠男, 柳存喜, 王志. 2021. 青藏高原东南缘深部多参数属性变化与中强震孕育响应关系. 地球物理学报, 64(11): 3948-3969, doi: 10.6038/cjg2021P0061
引用本文: 刘冠男, 柳存喜, 王志. 2021. 青藏高原东南缘深部多参数属性变化与中强震孕育响应关系. 地球物理学报, 64(11): 3948-3969, doi: 10.6038/cjg2021P0061
LIU GuanNan, LIU CunXi, WANG Zhi. 2021. The response of moderate-large earthquake initiations to multi-parameter variations of deep structures in southeastern Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 64(11): 3948-3969, doi: 10.6038/cjg2021P0061
Citation: LIU GuanNan, LIU CunXi, WANG Zhi. 2021. The response of moderate-large earthquake initiations to multi-parameter variations of deep structures in southeastern Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 64(11): 3948-3969, doi: 10.6038/cjg2021P0061

青藏高原东南缘深部多参数属性变化与中强震孕育响应关系

  • 基金项目:

    国家自然科学基金面上项目(42074047),国家自然科学基金重大研究计划(91955204,92058210),第二批青藏高原科学考察研究计划(2019QZKK2704)和数学地质四川省重点实验室开放基金(scsxdz2020yb03)联合资助

详细信息
    作者简介:

    刘冠男, 地球物理学专业在读博士研究生, 主要从事青藏高原及其周缘的地震层析成像研究.E-mail: liuguannan@stu.cdut.edu.cn

    通讯作者: 王志, 博士, 教授, 从事地球物理及大陆动力学方面的研究.E-mail: zhiwang@scsio.ac.cn
  • 中图分类号: P315;P541

The response of moderate-large earthquake initiations to multi-parameter variations of deep structures in southeastern Tibetan plateau

More Information
  • 本研究通过反演294,777高质量纵-横波震相走时数据对,获得了青藏高原东南缘地壳及上地幔的高分辨率P波、S波速度和泊松比多参数三维结构图像,同时结合多参数的梯度场,分析了深部多参数属性变化与近50年来强震(震级≥ 5.0,M5+)孕育之间的响应关系.研究表明:(1)青藏高原东南缘多参数结构呈现出明显的横向不均性,松潘-甘孜块体的中下地壳为低速和高泊松比异常,反映了具有塑性特征的物质存在,该属性特征对强震的触发具有较显著的影响;(2)通过对过去50年内发生在青藏高原东南缘的强震(M5+)空间分布特征研究发现,绝大多数强震发生在地震层析成像边界带(Tomographic Edge Zone,TEZ).本研究结果表明,63.3%~78.4%的强震事件发生在P波速度和泊松比TEZ上,而8.4%~20.1%和11.7%~16.7%的强震事件分别发生在参数高异常带(High-Value Zone,HVZ)和参数低异常带(Low-Value Zone,LVZ)上.S波速度参数的TEZ孕震构造特征比例与P波相比有一定的下降(45.7%~46.3%),相应的HVZ和LVZ孕震构造特征比例稍有上升趋势(36.4%~36.7%、17.3%~17.6%).以上两个特征表明,在青藏高原东南缘,强震触发的主要控制因素可能是块体间的强烈的相互作用,同时,孕震区流体侵入在地震诱发中扮演了重要的角色.根据本次及作者前期的研究认为,青藏高原东南缘区域内绝大多数强震事件与TEZ之间的正相关的响应关系并不是一个偶然现象,可能是地震孕育和地壳构造之间存在的某种关联性.本研究所揭示的地震孕育特征为青藏高原东南缘乃至整个青藏高原的中长期防灾减灾以及重大工程建设等提供了重要的参考信息.

  • 加载中
  • 图 1 

    研究区域的板块构造示意图以及近50年来(1970年至2020年)强震事件(M5+)分布

    Figure 1. 

    Schematic illustration of tectonics and distribution of large earthquakes (M5+) occurred in the past 50 years (1970—2020) in the study region

    图 2 

    本研究中使用的台站和地震事件分布图

    Figure 2. 

    Distributions of seismic stations and earthquakes used in this study

    图 3 

    棋盘分辨率测试(CRTs)结果

    Figure 3. 

    The results of Checkboard Resolution Tests

    图 4 

    三维地震波速度和泊松比模型的水平切片

    Figure 4. 

    Plain views of 3-D seismic velocity and Poisson′s ratio models

    图 5 

    插图所示测线的地震波速度和泊松比垂直剖面

    Figure 5. 

    Profiles of seismic velocity and Poisson′s ratio along the lines shown in the insert map

    图 6 

    TEZ的概念图

    Figure 6. 

    The conceptual graph of TEZ

    图 7 

    三维地震波速度和泊松比扰动的水平梯度

    Figure 7. 

    Horizontal gradients of 3-D seismic velocity and Poisson′s ratio perturbations

    图 8 

    青藏高原东南缘强震事件(M5+)分布与构造参数属性变化之间的关系图

    Figure 8. 

    Relationships between the distributions of M5+ earthquakes and the property variations of multi-parameters in SE Tibetan plateau

  •  

    Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5): 358-362, doi:10.1038/NGEO830.

     

    Chevrot S, van der Hilst R D. 2000. The Poisson ratio of the Australian crust: geological and geophysical implications. Earth and Planetary Science Letters, 183(1-2): 121-132, doi:10.1016/S0012-821X(00)00264-8.

     

    Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706, doi:10.1130/0091-7613(2000)028〈0703:tobtem〉2.3.co;2

     

    Deng Q D, Zhang P Z, Ran K Y, et al. 2002. Basic characteristics of active tectonics of China. Science in China Series D: Earth Sciences, 46(4): 356-372, doi:10.1360/03yd9032.

     

    Deng Q D. 2007. Active Tectonic Map of China (in Chinese). Beijing: Seismological Press.

     

    Deng W Z, Chen J H, Guo B, et al. 2014. Fine velocity structure of the Longmenshan fault zone by double-difference tomography. Chinese Journal of Geophysics (in Chinese), 57(4): 1101-1110, doi:10.6038/cjg20140408.

     

    Ellis S, Van Dissen R, Eberhart-Phillips D, et al. 2017. Detecting hazardous New Zealand faults at depth using seismic velocity gradients. Earth and Planetary Science Letters, 463: 333-343, doi:10.1016/j.epsl.2017.01.038.

     

    Hicks S P, Rietbrock A, Ryder I M A, et al. 2014. Anatomy of a megathrust: The 2010 M8.8 Maule, Chile earthquake rupture zone imaged using seismic tomography. Earth and Planetary Science Letters, 405: 142-155, doi:10.1016/j.epsl.2014.08.028.

     

    Hu Y P, Wang Z, Liu G N, et al. 2017. Crustal structure imaging of multi-geophysical parameters and generating mechanisms of large earthquakes in North-South Seismic Zone. Chinese Journal of Geophysics (in Chinese), 60(6): 2113-2129, doi:10.6038/cjg20170608.

     

    Hu Y P, Wang Z. 2018. Plate interactions, crustal deformation and magmatism along the eastern margins of the Tibetan Plateau. Tectonophysics, 740-741: 10-26, doi:10.1016/J.TECTO.2018.05.011.

     

    Huang J L, Zhao D P, Zheng S H. 2002. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J. Geophys. Res. : Solid Earth, 107(B10): 2255, doi:10.1029/2000JB000137.

     

    Huang R Q, Wang Z, Pei S P, et al. 2009. Crustal ductile flow and its contribution to tectonic stress in Southwest China. Tectonophysics, 473(3-4): 476-489, doi:10.1016/J.TECTO.2009.04.001.

     

    Huang Z X, Li Y H, Xu Y. 2013. Lithospheric S-wave velocity structure of the North-South Seismic Belt of China from surface wave tomography. Chinese Journal of Geophysics (in Chinese), 56(4): 1121-1131, doi:10.6038/cjg20130408.

     

    Humphreys E, Clayton R W. 1988. Adaptation of back projection tomography to seismic travel time problems. J. Geophys. Res. : Solid Earth, 93(B2): 1073-1085, doi:10.1029/JB093IB02P01073.

     

    Jiang W W, Jiang D D, Xu Y, et al. 2014. Features of crust and lithosphere velocity structures along the north-south tectonic belt and adjacent regions in China. Chinese Journal of Geophysics (in Chinese), 57(12): 3944-3956, doi:10.6038/cjg20141208.

     

    Laske G, Masters G, Ma Z, et al. 2013. Update on CRUST 1.0-A 1-degree Global Model of Earth's Crust. EGU General Assembly Conference Abstracts. https://igppweb.ucsd.edu/~gabi/crust1.html.

     

    Lei J S, Zhao D P. 2009. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (MS8.0). Geochemistry, Geophysics, Geosystems, 10: Q10010, doi:10.1029/2009GC002590.

     

    Lei J S, Zhao D P, Su J R, et al. 2009. Fine seismic structure under the Longmenshan fault zone and the mechanism of the large Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 52(2): 339-345.

     

    Lei J S, Zhao D P, Su Y J. 2009. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. : Solid Earth, 114(B5): B05302, doi:10.1029/2008JB005881.

     

    Lei J S, Li Y, Xie F R, et al. 2014a. Pn anisotropic tomography and dynamics under eastern Tibetan plateau. J. Geophys. Res. : Solid Earth, 119(3): 2174-2198, doi:10.1002/2013JB010847.

     

    Lei J S, Zhang G W, Xie F R. 2014b. The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications. Earthquake Science, 27(1): 15-25, doi:10.1007/S11589-013-0045-9.

     

    Lei J S, Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet. Geochemistry, Geophysics, Geosystems, 17(5): 1861-1884, doi:10.1002/2016GC006262.

     

    Lei J S, Zhao D P, Xu X W, et al. 2018. Deep structure of the Longmenshan fault zone and mechanism of the 2008 Wenchuan earthquake. Chinese Science Bulletin (in Chinese), 63(19): 1906-1916, doi:10.1360/N972018-00415.

     

    Lei J S, Zhao D P, Xu X W, et al. 2019. Is there a big mantle wedge under eastern Tibet. Physics of the Earth and Planetary Interiors, 292: 100-113, doi:10.1016/J.PEPI.2019.04.005.

     

    Li C, van der Hilst R D, Meltzer A S, et al. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1-2): 157-168, doi:10.1016/j.epsl.2008.07.016.

     

    Li Z W, Xu Y, Huang R Q, et al. 2011. Crustal P-wave velocity structure of the Longmenshan region and its tectonic implications for the 2008 Wenchuan earthquake. Science China Earth Sciences, 54(9): 1386-1393, doi:10.1007/s11430-011-4177-2.

     

    Liang C T, Huang Y L, Wang C L, et al. 2018. Progress in the studies of the seismic gap between the 2008 Wenchuan and 2013 Lushan earthquakes. Chinese Journal of Geophysics (in Chinese), 61(5): 1996-2010, doi:10.6038/cjg2018M0254.

     

    Liu G N, Wang Z. 2020. Correlations of the deep structural characteristics, tidal stress variation and earthquake initiation along the Xianshuihe-Anninghe fault zone. Chinese Journal of Geophysics (in Chinese), 63(3): 928-943, doi:10.6038/cjg2020N0206.

     

    Lü Z Q, Lei J S. 2016. 3-D S-wave velocity structure around the 2015 MS8.1 Nepal earthquake source areas and strong earthquake mechanism. Chinese Journal of Geophysics (in Chinese) 59(12): 4529-4543, doi:10.6038/cjg20161216.

     

    Meade B J. 2007. Present-day kinematics at the India-Asia collision zone. Geology, 35(1): 81-84, doi:10.1130/G22924A.1.

     

    Nelson K D, Zhao W J, Brown L D, et al. 1996. Partially molten middle crust beneath southern Tibet: synthesis of project IDEPTH results. Science, 274(5293): 1684-1688, doi:10.1126/science.274.5293.1684.

     

    Pei S P, Su J R, Zhang H J, et al. 2010. Three-dimensional seismic velocity structure across the 2008 Wenchuan MS8.0 earthquake, Sichuan, China. Tectonophysics, 491(1-4): 211-217, doi:10.1016/j.tecto.2009.08.039.

     

    Pei S P, Niu F L, Ben-Zion Y, et al. 2019. Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault. Nature Geoscience, 12(5): 387-392, doi:10.1038/s41561-019-0347-1.

     

    Rippe D, Unsworth M. 2010. Quantifying crustal flow in Tibet with magnetotelluric data. Physics of the Earth and Planetary Interiors, 179(3-4): 107-121, doi:10.1016/J.PEPI.2010.01.009.

     

    Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788-790, doi:10.1126/science.276.5313.788.

     

    Sobel I, Feldman G. 1968. A 3×3 isotropic gradient operator for image processing. Stanford Artificial Intelligence Project.

     

    Sun C M. 2010. Full Record of Historical Earthquakes in Sichuan (Volume Ⅰ)(in Chinese). Chengdu: Sichuan People's Publishing House, 1-1044.

     

    Tapponnier P, Peltzer G, Dain A Y L, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12): 611-616, doi:10.1130/0091-7613(1982)10〈611:PETIAN〉2.0.CO;2.

     

    Thurber C H. 1993. Local earthquake tomography: velocity and VP/VS theory. //Iyer H M, Hirahara K eds. Seismic Tomography: Theory and Practice. London: Chapman & Hall, 563-580.

     

    Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bull. Seismol. Soc. Am. , 90(6): 1353-1368, doi:10.1785/0120000006.

     

    Wang C Y, Chan W W, Mooney W D. 2003. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications. J. Geophys. Res. : Solid Earth, 108(B9): 2442, doi:10.1029/2002/JB001973.

     

    Wang H, Liu M, Shen X H, et al. 2010a. Balance of seismic moment in the Songpan-Ganze region, eastern Tibet: Implications for the 2008 Great Wenchuan earthquake. Tectonophysics, 491(1-4): 154-164, doi:10.1016/J.TECTO.2009.09.022.

     

    Wang Q, Hawkesworth C J, Wyman D, et al. 2016. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature Communications, 7: 11888, doi:10.1038/ncomms11888.

     

    Wang X B, Zhang G, Fang H, et al. 2014a. Crust and upper mantle resistivity structure at middle section of Longmenshan, eastern Tibetan plateau. Tectonophysics, 619-620: 143-148, doi:10.1016/J.TECTO.2013.09.011.

     

    Wang Z, Fukao Y, Pei S P. 2009. Structural control of rupturing of the MW7.9 2008 Wenchuan Earthquake, China. Earth and Planetary Science Letters, 279(1-2): 131-138. doi: 10.1016/j.epsl.2008.12.038

     

    Wang Z, Zhao D P, Wang J. 2010b. Deep structure and seismogenesis of the north-south seismic zone in southwest China. J. Geophys. Res. : Solid Earth, 115(B12): B12334, doi:10.1029/2010JB007797.

     

    Wang Z, Huang R Q, Wang J, et al. 2011a. Regional flow in the lower crust and upper mantle under the southeastern Tibetan Plateau. International Journal of Geosciences, 2(4): 631-639, doi:10.4236/IJG.2011.24064.

     

    Wang Z, Wang J, Chen Z L, et al. 2011b. Seismic imaging, crustal stress and GPS data analyses: Implications for the generation of the 2008 Wenchuan Earthquake (M7.9), China. Gondwana Res. , 19(1): 202-212, doi:10.1016/J.GR.2010.05.004.

     

    Wang Z, Wang X B, Huang R Q, et al. 2012. Structural heterogeneities in Southeast Tibet: Implications for regional flow in the lower crust and upper mantle. Int. J. Geophys. , 2012: 975497, doi:10.1155/2012/975497.

     

    Wang Z, Huang R Q, Pei S P. 2014b. Crustal deformation along the Longmen-Shan fault zone and its implications for seismogenesis. Tectonophysics, 610: 128-137, doi:10.1016/J.TECTO.2013.11.004.

     

    Wang Z, Su J R, Liu C X, et al. 2015. New insights into the generation of the 2013 Lushan Earthquake (MS7.0), China. J. Geophys. Res. : Solid Earth, 120(5): 3507-3526, doi:10.1002/2014JB011692.

     

    Wang Z, Wang X B, Huang R Q, et al. 2017. Deep structure imaging of multi-geophysical parameters and seismogenesis in the Longmenshan fault zone. Chinese Journal of Geophysics (in Chinese), 60(6): 2068-2079, doi:10.6038/cjg20170604.

     

    Wang Z, Kao H. 2019. The significance of tomographic edge zones for large earthquakes in Taiwan. J. Geophys. Res. : Solid Earth, 124(11): 11822-11839, doi:10.1029/2019JB017875.

     

    Wang Z, Wang J, Yang X Q. 2021. The role of fluids in the 2008 MS8.0 Wenchuan earthquake, China. J. Geophys. Res. : Solid Earth, 126(2): e2020JB019959, doi:10.1029/2020JB019959.

     

    Wei W, Zhao D P. 2016. Tomography of the source zone of the 2015 M7.8 Nepal earthquake. Physics of the Earth and Planetary Interiors, 253: 58-63, doi:10.1016/j.pepi.2016.01.008.

     

    Wu J P, Yang T, Wang W L, et al. 2013. Three-dimensional P-wave velocity structure around Xiaojiang fault system and its tectonic implications. Chinese Journal of Geophysics (in Chinese), 56(7): 2257-2267, doi:10.6038/cjg20130713.

     

    Xin H L, Zhang H J, Kang M, et al. 2019. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel time tomography. Seismological Research Letters, 90(1): 229-241, doi:10.1785/0220180209.

     

    Xu Y, Huang R Q, Li Z W, et al. 2009. S-wave velocity structure of the Longmen Shan and Wenchuan earthquake area. Chinese Journal of Geophysics (in Chinese), 52(2): 329-338.

     

    Xu X W, Wen X Z, Zheng R Z, et al. 2003. The latest type of tectonic evolution and its dynamic origin in Chuandian active block. Science in China Series D-Earth Sciences (in Chinese), 33(S1): 151-162, doi:10.1360/zd2003-33-S1-151.

     

    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280, doi:10.1146/ANNUREV.EARTH.28.1.211.

     

    Zhang G, Wang X B, Fang H, et al. 2015. Crust and upper mantle electrical resistivity structure in the Panxi Region of the Eastern Tibetan Plateau and its significance. Acta Geologica Sinica-English Edition, 89(2): 531-541, doi:10.1111/1755-6724.12445.

     

    Zhang H J, Thurber C, Bedrosian P. 2009. Joint inversion for VP, VS, and VP/VS at SAFOD, Parkfield, California. Geochemistry, Geophysics, Geosystems, 10: Q11002, doi:10.1029/2009GC002709.

     

    Zhao D P, Hasegawa A, Horiuchi S. 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res. : Solid Earth, 97(B13): 19909-19928, doi:10.1029/92JB00603.

     

    Zhao D P, Kanamori H, Negishi H, et al. 1996. Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter. Science, 274(5294): 1891-1894, doi:10.1126/SCIENCE.274.5294.1891.

     

    Zhao D P, Liu X, Hua Y Y. 2018. Tottori earthquakes and Daisen volcano: Effects of fluids, slab melting and hot mantle upwelling. Earth and Planetary Science Letters, 485: 121-129, doi:10.1016/j.epsl.2017.12.040.

     

    Zhao G Z, Unsworth M J, Zhan Y, et al. 2012. Crustal structure and rheology of the Longmenshan and Wenchuan MW7.9 earthquake epicentral area from magnetotelluric data. Geology, 40(12): 1139-1142, doi:10.1130/G33703.1.

     

    邓起东, 张培震, 冉勇康等. 2002. 中国活动构造基本特征. 中国科学D辑: 地球科学, 32(12): 1020-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm

     

    邓启东. 2007. 中国活动构造图. 北京: 地震出版社.

     

    邓文泽, 陈九辉, 郭飚等. 2014. 龙门山断裂带精细速度结构的双差层析成像研究. 地球物理学报, 57(4): 1101-1110, doi:10.6038/cjg20140408. http://www.geophy.cn//CN/abstract/abstract10289.shtml

     

    胡亚平, 王志, 刘冠男等. 2017. 南北地震带地壳结构多参数成像及强震触发机制研究. 地球物理学报, 60(6): 2113-2129, doi:10.6038/cjg20170608. http://www.geophy.cn//CN/abstract/abstract13760.shtml

     

    黄忠贤, 李红谊, 胥颐. 2013. 南北地震带岩石圈S波速度结构面波层析成像. 地球物理学报, 56(4): 1121-1131, doi:10.6038/cjg20130408. http://www.geophy.cn//CN/abstract/abstract9428.shtml

     

    江为为, 姜迪迪, 胥颐等. 2014. 南北构造带及邻域地壳、岩石层速度结构特征研究. 地球物理学报, 57(12): 3944-3956, doi:10.6038/cjg20141208. http://www.geophy.cn//CN/abstract/abstract11025.shtml

     

    雷建设, 赵大鹏, 苏金蓉等. 2009. 龙门山断裂带地壳精细结构与汶川地震发震机理. 地球物理学报, 52(2): 339-345. http://www.geophy.cn//CN/abstract/abstract913.shtml

     

    雷建设, 赵大鹏, 徐锡伟等. 2018. 龙门山断裂带深部结构与2008年汶川地震发震机理. 科学通报, 63(19): 1906-1916, doi:10.1360/N972018-00415.

     

    李志伟, 胥颐, 黄润秋等. 2011. 龙门山地区的P波速度结构与汶川地震的深部构造特征. 中国科学: 地球科学, 41(3): 283-290. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103001.htm

     

    梁春涛, 黄焱羚, 王朝亮等. 2018. 汶川和芦山地震之间地震空区综合研究进展. 地球物理学报, 61(5): 1996-2010, doi:10.6038/cjg2018M0254. http://www.geophy.cn//CN/abstract/abstract14522.shtml

     

    刘冠男, 王志. 2020. 鲜水河-安宁河断裂带深部构造特征、固体潮应力变化与地震触发相关性研究. 地球物理学报, 63(3): 928-943, doi:10.6038/cjg2020N0206. http://www.geophy.cn//CN/abstract/abstract15369.shtml

     

    吕子强, 雷建设. 2016. 2015年尼泊尔MS8.1地震震源区S波三维速度结构与强震发生机理研究. 地球物理学报, 59(12): 4529-4543, doi:10.6038/cjg20161216. http://www.geophy.cn//CN/abstract/abstract13301.shtml

     

    孙成民. 2010. 四川地震全纪录(上卷). 成都: 四川人民出版社, 1-1044.

     

    王志, 王绪本, 黄润秋等. 2017. 龙门山断裂带多参数深部结构成像与地震成因研究. 地球物理学报, 60(6): 2068-2079, doi:10.6038/cjg20170604. http://www.geophy.cn//CN/abstract/abstract13756.shtml

     

    吴建平, 杨婷, 王未来等. 2013. 小江断裂带周边地区三维P波速度结构及其构造意义. 地球物理学报, 56(7): 2257-2267, doi:10.6038/cjg20130713. http://www.geophy.cn//CN/abstract/abstract9609.shtml

     

    胥颐, 黄润秋, 李志伟等. 2009. 龙门山构造带及汶川震源区的S波速度结构. 地球物理学报, 52(2): 329-338. http://www.geophy.cn//CN/abstract/abstract911.shtml

     

    徐锡伟, 闻学泽, 郑荣章等. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学D辑: 地球科学, 33(增刊Ⅰ): 151-162, doi:10.1360/zd2003-33-S1-151.

  • 加载中

(8)

计量
  • 文章访问数:  419
  • PDF下载数:  241
  • 施引文献:  0
出版历程
收稿日期:  2021-01-25
修回日期:  2021-05-18
上线日期:  2021-11-10

目录