Deep structure beneath the overburdened area of the northern margin of Junggar Basin and its geologic implications: Evidence from 3D inversion of integrated geophysical data
-
摘要:
本文利用准噶尔北缘覆盖区的高精度地面重磁数据开展三维约束反演,揭示出准噶尔盆地北缘浅覆盖区内三维密度结构具有横向非均匀性,纵向有向深部延伸的趋势;深部广泛分布石炭纪、泥盆纪火山岩地层等高磁性体,零散分布热液蚀变导致的热退磁的火山岩;北西向分布的低密度低磁性物质,对应无磁性的断裂破碎带.结合多尺度边缘检测方法推断得到研究区隐伏断裂体系以及火山岩地层的空间展布.对贯穿研究区的综合地球物理探测剖面进行人机交互联合反演,结果显示控制扎河坝蛇绿岩带分布的南北界深大断裂在深部构成开口向下的对称扇形构造样式,说明此蛇绿岩带所代表的古洋盆具有双向俯冲的特征;结合区域地质资料,以及岩石地球化学研究成果,认为剖面穿过的3个酸性岩体均为形成于晚石炭世后造山拉张构造环境的A型花岗岩,可能是准噶尔东北缘造山作用结束的标志.最后结合大量地质、地球化学和地球物理资料,对准噶尔东北缘区域构造演化进行了讨论,认为扎河坝-阿尔曼太古洋盆于中奥陶世开始汇聚,古洋盆向南北两侧双向俯冲,在晚志留纪-早泥盆纪洋盆闭合.
Abstract:This work carried attempted to image deep structures beneath the overburden area in the northern margin of Junggar Basin based on 3D inversion of integrated geophysical data. It built on 1:50000 high-precision ground gravity and magnetic data from surveys in this area. The inversion results show that the density structure within the shallow cover of the study area has a horizontal non-uniformity and a vertical tendency to extend down to the deep subsurface. Magnetic bodies such as Carboniferous and Devonian volcanic strata are widely distributed at depth. Thermally demagnetized volcanic rocks caused by hydrothermal alteration are scattered in the study area. The low-density, low-magnetic materials distributed in the north-west direction may be attributed to fractured rocks within fault fragmentation zones. Combined with multi-scale edge detection results, we inferred the spatial spreading of hidden fault systems and volcanic stratigraphy in the study area. We conducted a joint human-machine inversion of the integrated geophysical profiles through the study area. The results show that the deep major faults controlling the distribution of the Zaheba ophiolite belt form a symmetrical fan-shaped tectonic pattern with downward openings at depth. It indicates that the oceanic basin represented by this ophiolite belt is characterized by two-way subduction. Combined with regional geology and petrogeochemistry research, we infer that the three acidic rock bodies crossed by the section are all A-type granites formed in a post-Late Carboniferous orogenic extension environment, which may be a sign of the end of orogeny in the northeastern margin of Junggar. Finally, we discuss the regional tectonic evolution of the northeastern margin of Junggar and suggest that the Zaheba-Almentai ocean basin began to converge in the Middle Ordovician; the paleo-ocean basin subducted in both directions to the north and south, and closed in the Late Silurian-Early Devonian.
-
Key words:
- Junggar Basin /
- Overburden area /
- Integrated geophysics /
- 3D inversion /
- Buried structure
-
-
-
Chen H, Deng J Z, Lü Q T, et al. 2015. Three-dimensional inversion of gravity and magnetic data at Jiujiang-Ruichang district and metallogenic indication. Chinese J. Geophys. (in Chinese), 58(12): 4478-4489, doi:10.6038/cjg20151212.
Deng Z, Meng G X, Tang H J, et al. 2019. 1: 50000 bedrock geological mapping in shallow overburden area: A case study of Kashkeneshakar Sheet (L45E009020) on the Northern Margin of Junggar Basin. Acta Geoscientica Sinica (in Chinese), 40(5): 651-660. http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201905002.htm
He G Q, Li M S, Jia J D, et al. 2001. A discussion on age and tectonic significance of ophiolite in eastern Junggar, Xinjiang. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 37(6): 852-858.
Huang X, Jin C W, Sun B S, et al. 1997. Study on the age of Armantai Ophiolite, Xinjiang by Nd-Sr isotope geology. Acta Petrologica Sinica (in Chinese), 13(1): 85-91.
Li D, He D F, Fan C, et al. 2013. Early Permian post-collisional magmatic events, East Junggar: Constraints from zircon SHRIMP U-Pb age, geochemistry and Hf isotope of rhyolite in the Yundukala area. Acta Petrologica Sinica (in Chinese), 29(1): 317-337. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201301026.htm
Li J Y, Xiao X C, Tang Y Q, et al. 1990. Main characteristics of late Paleozoic plate tectonics in the southern part of East Junggar, Xinjiang. Geological Review (in Chinese), 36(4): 305-316.
Li J Y. 1995. Main characteristics and emplacement processes of the East Junggar ophiolites, Xinjiang, China. Acta Petrologica Sinica (in Chinese), 11(8): 73-84.
Li J Y, He G Q, Xu X, et al. 2006. Crustal tectonic framework of Northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica (in Chinese), 80(1): 148-168.
Li R S, Ji W H, Xiao P X, et al. 2012. The periodical achievement and new cognitions of regional geological survey, Northern Xinjiang. Xinjiang Geology (in Chinese), 30(3): 253-257.
Li Y G, Oldenburg D W. 1996. 3-D inversion of magnetic data. Geophysics, 61(2): 394-408. doi: 10.1190/1.1443968
Li Y G, Oldenburg D W. 1998. 3-D inversion of gravity data. Geophysics, 63(1): 109-119. doi: 10.1190/1.1444302
Li Y G, Oldenburg D W. 2003. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophysical Journal International, 152(2): 251-265. doi: 10.1046/j.1365-246X.2003.01766.x
Liu W, Liu X J, Liu L J. 2013. Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes. Lithos, 179: 293-319. doi: 10.1016/j.lithos.2013.08.009
Liu Y R, Jian P, Zhang W, et al. 2016. Zircon SHRIMP U-Pb dating and O isotope of the Beitashan ophiolitic mélange in the East Junggar, Xinjiang, and its geological significance. Acta Petrologica Sinica (in Chinese), 32(2): 537-554.
Luo J, Xiao W J, He Z L, et al. 2017. Multistage evolution of Zhaheba-Aermantai ophiolite in eastern Junngar: Evidence from zircon U-Pb geochronology. Chinese Journal of Geology (in Chinese), 52(4): 1120-1139.
Luo J, Xiao W J, Wakabayashi J, et al. 2017. The Zhaheba ophiolite complex in Eastern Junggar (NW China): Long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids. Gondwana Research, 43: 17-40, doi:10.1016/j.gr.2015.04.004.
Luo T, Liao Q A, Zhang X H, et al. 2016. Geochronology and geochemistry of Carboniferous metabasalts in eastern Tianshan, Central Asia: Evidence of a back-arc basin. International Geology Review, 58(6): 756-772. doi: 10.1080/00206814.2015.1114433
Lü Q T, Qi G, Yan J Y. 2013. 3D geologic model of Shizishan ore field constrained by gravity and magnetic interactive modeling: A case history. Geophysics, 78(1): B25-B35. doi: 10.1190/geo2012-0126.1
Niu H C, Shan Q, Zhang B, et al. 2009. Discovery of garnet amphibolite in Zaheba ophiolitic mélange, eastern Junggar, NW China. Acta Petrologica Sinica (in Chinese), 25(6): 1484-1491. http://www.oalib.com/paper/1472626
Pan C Z, Qiu L, Ye X T, et al. 2016. Zircon U-Pb ages and Hf-O isotope compositions of the Zhaheba ophiolite in the northern margin of the Junggar terrane and their tectonic implications. East China Geology (in Chinese), 37(2): 106-112. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HSDZ201602006.htm
Qi G, Lü Q T, Yan J Y, et al. 2012. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit-A case study. Chinese J. Geophys. (in Chinese), 55(12): 4194-4206, doi:10.6038/j.issn.0001-5733.2012.12.031.
Qi G, Lü Q T, Yan J Y, et al. 2014. 3D Geological Modeling of Luzong Ore District Based on Priori Information Constrained. Acta Geologica Sinica (in Chinese), 88(4): 466-477. http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201404003&dbcode=CJFD&year=2014&dflag=pdfdown
Su Y P, Zheng J P, Griffin W L, et al. 2010. Zircon U-Pb and Hf isotopes of volcanic rocks from the Batamayineishan Formation in the eastern Junggar Basin. Chinese Science Bulletin, 55(36): 4150-4161. doi: 10.1007/s11434-010-4151-y
Su Y P, Zheng J P, Griffin W L, et al. 2012. Geochemistry and geochronology of Carboniferous volcanic rocks in the Eastern Junggar terrane, NW China: Implication for a tectonic transition. Gondwana Research, 22(3-4): 1009-1029. doi: 10.1016/j.gr.2012.01.004
Suo K, Zhang G B, Mei Y H, et al. 2018. Density and magnetic susceptibility distribution of central Yili Basin by three-dimensional inversion of gravity and magnetic data. Chinese J. Geophys. (in Chinese), 61(8): 3410-3419, doi:10.6038/cjg2018L0645.
Tan S Q. 2012. Carboniferous formation characteristics and exploration direction for Wulungu depression. Journal of Oil and Gas Technology (in Chinese), 34(4): 65-68, 77. http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=JHSX201204013&dbcode=CJFD&year=2012&dflag=pdfdown
Wang T, Jahn B M, Kovach V P, et al. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the central Asian orogenic belt. Lithos, 110(1-4): 359-372. doi: 10.1016/j.lithos.2009.02.001
Xiao W J, Windley B F, Yan Q R, et al. 2006. SHRIMP zircon age of the Aermantai Ophiolite in the North Xinjiang Area, China and its tectonic implications. Acta Geologica Sinica (in Chinese), 80(1): 32-37.
Xiao W J, Santosh M. 2014. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Research, 25(4): 1429-1444. doi: 10.1016/j.gr.2014.01.008
Xu X W, Jiang N, Li X H, et al. 2013. Tectonic evolution of the East Junggar terrane: Evidence from the Taheir tectonic window, Xinjiang, China. Gondwana Research, 24(2): 578-600. doi: 10.1016/j.gr.2012.11.007
Yan J Y, Lü Q T, Chen M C, et al. 2015. Identification and extraction of geological structure information based on multi-scale edge detection of gravity and magnetic fields: An example of the Tongling ore concentration area. Chinese J. Geophys. (in Chinese), 58(12): 4450-4464, doi:10.6038/cjg20151210.
Yan J Y, Meng G X, Yang Y Q, et al. 2017. Discovery and metallogenic characteristics of Layikeleke Magmatic Skarn type of rich copper-iron deposit, Eastern Junggar, Xinjiang. Geological Review (in Chinese), 63(2): 413-426.
Zhang H J, Zhu B P, Wu X G. 2019. Geochemistry and its tectonic implication for A-type alkali granite in Yundukala area, Xinjiang. Acta Scientiarum Naturalium Universitatis Sunyatseni (in Chinese), 58(1): 39-49.
Zhang Z C, Zhou G, Kusky T M, et al. 2009. Late Paleozoic volcanic record of the eastern Junggar terrane, Xinjiang, northwestern China: Major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution. Gondwana Research, 16(2): 201-215. doi: 10.1016/j.gr.2009.03.004
Zhao T Y, Zhu Z X, Liu G, et al. 2017. Geological characteristics and tectonic evolution of the oceanic plate in Eastern Junggar, Xinjiang. Xinjiang Geology (in Chinese), 35(4): 380-391.
陈辉, 邓居智, 吕庆田等. 2015. 九瑞矿集区重磁三维约束反演及深部找矿意义. 地球物理学报, 58(12): 4478-4489, doi:10.6038/cjg20151212. http://www.geophy.cn//CN/abstract/abstract12033.shtml
邓震, 孟贵祥, 汤贺军等. 2019. 浅覆盖区1: 5万基岩地质填图实践探索——以准噶尔北缘克什克涅绍喀尔(L45E009020)图幅为例. 地球学报, 40(5): 651-660. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201905002.htm
何国琦, 李茂松, 贾进斗等. 2001. 论新疆东准噶尔蛇绿岩的时代及其意义. 北京大学学报(自然科学版), 37(6): 852-858. doi: 10.3321/j.issn:0479-8023.2001.06.017
黄萱, 金成伟, 孙宝山等. 1997. 新疆阿尔曼太蛇绿岩时代的Nd-Sr同位素地质研究. 岩石学报, 13(1): 85-91. doi: 10.3321/j.issn:1000-0569.1997.01.007
李涤, 何登发, 樊春等. 2013. 东准噶尔早二叠世后碰撞岩浆活动: 蕴都卡拉流纹岩SHRIMP U-Pb年代学、地球化学和Hf同位素的制约. 岩石学报, 29(1): 317-337. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201301026.htm
李锦轶, 肖序常, 汤耀庆等. 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征. 地质论评, 36(4): 305-316. doi: 10.3321/j.issn:0371-5736.1990.04.003
李锦轶. 1995. 新疆东准噶尔蛇绿岩的基本特征和侵位历史. 岩石学报, 11(8): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.005.htm
李锦轶, 何国琦, 徐新等. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148-168. doi: 10.3321/j.issn:0001-5717.2006.01.017
李荣社, 计文化, 校培喜等. 2012. 北疆区域地质调查阶段性成果与新认识. 新疆地质, 30(3): 253-257. doi: 10.3969/j.issn.1000-8845.2012.03.002
刘亚然, 简平, 张维等. 2016. 新疆东准噶尔北塔山蛇绿混杂岩锆石SHRIMP U-Pb定年、氧同位素及其地质构造意义. 岩石学报, 32(2): 537-554. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201602018.htm
罗军, 肖文交, 何治亮等. 2017. 东准噶尔地区扎河坝-阿尔曼太蛇绿岩多期次岩浆演化特征: 来自锆石U-Pb年代学的证据. 地质科学, 52(4): 1120-1139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201504020.htm
牛贺才, 单强, 张兵等. 2009. 东准噶尔扎河坝蛇绿混杂岩中的石榴角闪岩. 岩石学报, 25(6): 1484-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200906019.htm
潘成泽, 邱林, 叶现韬等. 2016. 扎河坝蛇绿岩锆石U-Pb年龄、Hf-O同位素组成及其地质意义. 华东地质, 37(2): 106-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201602006.htm
祁光, 吕庆田, 严加永等. 2012. 先验地质信息约束下的三维重磁反演建模研究——以安徽泥河铁矿为例. 地球物理学报, 55(12): 4194-4206, doi:10.6038/j.issn.0001-5733.2012.12.031. http://www.geophy.cn//CN/abstract/abstract9114.shtml
祁光, 吕庆田, 严加永等. 2014. 基于先验信息约束的三维地质建模: 以庐枞矿集区为例. 地质学报, 88(4): 466-477. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201404003.htm
索奎, 张贵宾, 梅岩辉等. 2018. 重磁三维反演伊犁盆地中部密度和磁性结构. 地球物理学报, 61(8): 3410-3419, doi:10.6038/cjg2018L0645. http://www.geophy.cn//CN/abstract/abstract14641.shtml
谭绍泉. 2012. 乌伦古坳陷石炭系地层特征与勘探方向. 石油天然气学报, 34(4): 65-68, 77. doi: 10.3969/j.issn.1000-9752.2012.04.013
肖文交, Windley B F, 阎全人等. 2006. 北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义. 地质学报, 80(1): 32-37. doi: 10.3321/j.issn:0001-5717.2006.01.004
严加永, 吕庆田, 陈明春等. 2015. 基于重磁场多尺度边缘检测的地质构造信息识别与提取——以铜陵矿集区为例. 地球物理学报, 58(12): 4450-4464, doi:10.6038/cjg20151210. http://www.geophy.cn//CN/abstract/abstract12031.shtml
严加永, 孟贵祥, 杨岳清等. 2017. 新疆东准噶尔拉伊克勒克岩浆矽卡岩型富铜-铁矿的发现及其成矿特征. 地质论评, 63(2): 413-426. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201702015.htm
张海军, 朱伯鹏, 吴晓贵. 2019. 新疆蕴都卡拉A型碱性花岗岩岩石地球化学特征及其构造意义. 中山大学学报(自然科学版), 58(1): 39-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201901005.htm
赵同阳, 朱志新, 刘阁等. 2017. 新疆东准噶尔地区洋板块地质特征及构造演化. 新疆地质, 35(4): 380-391. doi: 10.3969/j.issn.1000-8845.2017.04.004
-