基于偶极子模型的潜航器异常重力场及探测平台需求分析

汪海洪, 罗佳, 褚永海. 2021. 基于偶极子模型的潜航器异常重力场及探测平台需求分析. 地球物理学报, 64(7): 2426-2435, doi: 10.6038/cjg2021O0462
引用本文: 汪海洪, 罗佳, 褚永海. 2021. 基于偶极子模型的潜航器异常重力场及探测平台需求分析. 地球物理学报, 64(7): 2426-2435, doi: 10.6038/cjg2021O0462
WANG HaiHong, LUO Jia, CHU YongHai. 2021. Anomalous gravitational field of underwater vehicles and requirement analysis for the detection platform based on the dipole model. Chinese Journal of Geophysics (in Chinese), 64(7): 2426-2435, doi: 10.6038/cjg2021O0462
Citation: WANG HaiHong, LUO Jia, CHU YongHai. 2021. Anomalous gravitational field of underwater vehicles and requirement analysis for the detection platform based on the dipole model. Chinese Journal of Geophysics (in Chinese), 64(7): 2426-2435, doi: 10.6038/cjg2021O0462

基于偶极子模型的潜航器异常重力场及探测平台需求分析

  • 基金项目:

    国家自然科学基金项目(41974016, 41774010)资助

详细信息
    作者简介:

    汪海洪, 男, 1976年生, 副教授, 主要从事大地测量、地球物理方面研究.E-mail: hhwang@sgg.whu.edu.cn

  • 中图分类号: P223

Anomalous gravitational field of underwater vehicles and requirement analysis for the detection platform based on the dipole model

  • 重力探潜是一种具有发展潜力的非声学探潜技术,目前仍处于理论探索阶段.本文推导了垂直偶极子模型的引力和引力梯度垂向分量的解析公式,分析了它们的空间分布特征.基于偶极子模型给出了一种潜航器异常重力场的仿真方法,并通过实例验证了方法的有效性,分析了潜航器重力异常和重力垂直梯度的空间变化,及其对重力探潜传感器精度和平台稳定性的需求.根据实例分析结果可以得到以下结论:(1)利用重力异常信号探测潜航器不具备可行性,但是基于重力梯度的重力探潜方法具有实用化价值,值得进一步研究;(2)本文建立的偶极子模型能够有效用于估计潜航器异常重力场的量级、探测平台的精度需求和可探测范围,为重力探潜研究提供了一个重要的理论分析工具.

  • 加载中
  • 图 1 

    垂直引力偶极子模型

    Figure 1. 

    Vertical gravitational dipole

    图 2 

    偶极场的空间分布

    Figure 2. 

    Spatial distribution of gravitation field of vertical dipole

    图 3 

    不同α对应的重力异常(a)与重力垂直梯度(b)模最大值随高度的变化

    Figure 3. 

    Modulus maximum of (a) gravity anomaly and (b) vertical gravity gradient varying with height for different α

    图 4 

    潜艇重力异常绝对值的空间分布(α=1)

    Figure 4. 

    Spatial distribution of absolute gravity anomaly derived from the submarine in case of α=1

    图 5 

    潜艇垂直重力梯度绝对值的空间分布(α=1)

    Figure 5. 

    Spatial distribution of absolute vertical gravity gradient derived from the submarine in case of α=1

    图 6 

    (a) 重力异常和(b)重力垂直梯度绝对值在极角θ-斜距l平面内的等值线图

    Figure 6. 

    Contour maps in (θ, l) plane of absolute value of (a) gravity anomaly and (b) vertical gravity gradient.

    图 7 

    潜航器异常重力场量级的近似估值与精确值对比

    Figure 7. 

    Comparison between approximate and exact magnitudes of the anomalous gravitational field induced by the underwater vehicle

    表 1 

    重力异常和重力垂直梯度不同量级对应的最大高度

    Table 1. 

    Maximum heights corresponding to different magnitudes of gravity anomaly and vertical gravity gradient

    重力异常(m·s-2) 高度(m) 重力梯度(E) 高度*(m)
    10-7 41 100 68/60
    10-8 89 10-1 119/125
    10-9 189 10-2 212/220
    10-10 406 10-3 377/400
    10-11 875 10-4 669/650
    10-12 1884 10-5 1190/1220
    注:*最后一列斜线后的值为张志强等(2019)的结果.
    下载: 导出CSV

    表 2 

    不同高度重力探测平台的精度需求

    Table 2. 

    Accuracy requirement for the gravity detection platform

    高度(m) 100 300 500 1000 1500 2000
    重力异常(m·s-2) 6.69×10-9 2.48×10-10 5.35×10-11 6.69×10-12 1.98×10-12 8.36×10-13
    重力仪精度(m·s-2) 10-9 10-10 10-11 10-12 10-12 10-13
    平台稳定性(m) 2.17×10-3 8.03×10-5 1.73×10-5 2.17×10-6 6.42×10-7 2.71×10-7
    重力梯度(E) 2.01×10-1 2.48×10-3 3.21×10-4 2.01×10-5 3.96×10-6 1.25×10-6
    重力梯度仪精度(E) 10-1 10-3 10-4 10-5 10-6 10-6
    平台稳定性(m) 1.38×102 1.71 2.21×10-1 1.38×10-2 2.73×10-3 8.65×10-4
    下载: 导出CSV
  •  

    Angevine R G. 2005. Innovation and experimentation in the US Navy: the UPTIDE antisubmarine warfare experiments, 1969-721. Journal of Strategic Studies, 28(1): 77-105. doi: 10.1080/01402390500032070

     

    Fang E Z, Gui C Y, Wang H. 2020. Non-acoustic detection techniques for submarines. Defence Science & Technology Industry (in Chinese), (6): 66-68.

     

    Hofmann-Wellenhof B, Moritz H. 2006. Physical Geodesy. Vienna: Springer.

     

    Hu M Z, Li J C, Xing L L. 2014. Global bathymetry model predicted from vertical gravity gradient anomalies. Acta Geodaetica et Cartographica Sinica (in Chinese), 43(6): 558-565, 574. http://www.researchgate.net/publication/286558438_Global_bathymetry_model_predicted_from_vertical_gravity_gradient_anomalies

     

    Lanzagorta M, Uhlmann J, Venegas-Andraca S E. 2015. Quantum sensing in the maritime environment.//OCEANS 2015-MTS/IEEE Washington. Washington, DC, USA: IEEE, 1-9.

     

    Liu T. 2019. Review on the current situation and development of aviation antisubmarine. China New Telecommunications (in Chinese), 21(8): 74-77.

     

    Su Y M, Pang Y J. 2005. Principle of Submarine (in Chinese). Harbin: Harbin Engineering University Press.

     

    Sun L, Li H P, Bian S F, et al. 2010. Study on the submarine detection method based on the gravity gradient. Hydrographic Surveying and Charting (in Chinese), 30(2): 24-27, 45. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYCH201002008.htm

     

    Tang J T, Hu S G, Ren Z Y, et al. 2017. Analytical formulas for underwater and aerial object localization by gravitational field and gravitational gradient tensor. IEEE Geoscience and Remote Sensing Letters, 14(9): 1557-1560. doi: 10.1109/LGRS.2017.2722475

     

    Tang J T, Hu S G, Ren Z Y, et al. 2018. Localization of multiple underwater objects with gravity field and gravity gradient tensor. IEEE Geoscience and Remote Sensing Letters, 15(2): 247-251. doi: 10.1109/LGRS.2017.2784837

     

    Wang T W. 2005. The geomagnetic dipole field in the 20th century. Chinese Journal of Geophysics (in Chinese), 48(1): 52-55. http://onlinelibrary.wiley.com/doi/10.1002/cjg2.626/full

     

    Wei Z, Du D, Liu Y, et al. 2019. Research on the development of anti-submarine equipment and technology. Ship Science and Technology (in Chinese), 41(9): 154-157. http://en.cnki.com.cn/Article_en/CJFDTotal-JCKX201917032.htm

     

    Wu L, Tian J W. 2010. Automated gravity gradient tensor inversion for underwater object detection. Journal of Geophysics and Engineering, 7(4): 410-416. doi: 10.1088/1742-2132/7/4/008

     

    Wu L, Tian X, Ma J, et al. 2010. Underwater object detection based on gravity gradient. IEEE Geoscience and Remote Sensing Letters, 7(2): 362-365. doi: 10.1109/LGRS.2009.2035455

     

    Wu L, Ke X P, Hsu H, et al. 2013. Joint gravity and gravity gradient inversion for subsurface object detection. IEEE Geoscience and Remote Sensing Letters, 10(4): 865-869. doi: 10.1109/LGRS.2012.2226427

     

    Yang R J, Xiong X, Guo X Q, et al. 2014. Research on model and simulation of airborne magnetic anomaly detection sweep width based on magnetic dipole model. Acta Armamentarii (in Chinese), 35(9): 1458-1465. http://www.researchgate.net/publication/283599035_Research_on_model_and_simulation_of_airborne_magnetic_anomaly_detection_sweep_width_based_on_magnetic_dipole_model

     

    Ying G, Zhang Y T, Li Z N, et al. 2016. Research on geometric invariant of magnetic gradient tensors for a magnetic dipole source and its application. Chinese Journal of Geophysics (in Chinese), 59(2): 749-756, doi: 10.6038/cjg20160232.

     

    Zhang Z Q, Shi J, Yu Z, et al. 2018. Feasibility analysis of submarine detection method based on the airborne gravity gradient.//Proceedings of the 37th Chinese Control Conference. Wuhan, China: IEEE, 4587-4591.

     

    Zhang Z Q, Zheng H, Cui Y F. 2019. Research on the submarine detection method based on the airborne gravity vertical gradient. Hydrographic Surveying and Charting (in Chinese), 39(4): 6-9, 13.

     

    方尔正, 桂晨阳, 王欢. 2020. 潜艇的非声学探测技术. 国防科技工业, (6): 66-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGBG202006026.htm

     

    胡敏章, 李建成, 邢乐林. 2014. 由垂直重力梯度异常反演全球海底地形模型. 测绘学报, 43(6): 558-565, 574. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201406004.htm

     

    刘腾. 2019. 航空反潜的现状和发展综述. 中国新通信, 21(8): 74-77. doi: 10.3969/j.issn.1673-4866.2019.08.062

     

    苏玉民, 庞永杰. 2005. 潜艇原理. 哈尔滨: 哈尔滨工程大学出版社.

     

    孙岚, 李厚朴, 边少锋等. 2010. 基于重力梯度的潜艇探测方法研究. 海洋测绘, 30(2): 24-27, 45. doi: 10.3969/j.issn.1671-3044.2010.02.007

     

    王亶文. 2005. 二十世纪的地球偶极子磁场. 地球物理学报, 48(1): 52-55. doi: 10.3321/j.issn:0001-5733.2005.01.009

     

    魏征, 杜度, 刘洋等. 2019. 美国反潜装备技术发展研究. 舰船科学技术, 41(9): 154-157. doi: 10.3404/j.issn.1672-7649.2019.09.031

     

    杨日杰, 熊雄, 郭新奇等. 2014. 基于潜艇磁偶极子模型的航空磁探潜探测宽度模型与仿真. 兵工学报, 35(9): 1458-1465. doi: 10.3969/j.issn.1000-1093.2014.09.019

     

    尹刚, 张英堂, 李志宁等. 2016. 磁偶极子梯度张量的几何不变量及其应用. 地球物理学报, 59(2): 749-756, doi: 10.6038/cjg20160232.

     

    张志强, 郑晗, 崔银锋. 2019. 航空重力垂直梯度探测潜艇方法研究. 海洋测绘, 39(4): 6-9, 13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201904003.htm

  • 加载中

(7)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-12-01
修回日期:  2021-04-14
上线日期:  2021-07-10

目录