极光电激流的地方时和季节变化特性研究: CHAMP卫星观测

仲云芳, 王慧, 郑志超, 何杨帆, 张科灯, 孙璐媛, 高洁. 2021. 极光电激流的地方时和季节变化特性研究: CHAMP卫星观测. 地球物理学报, 64(11): 3870-3881, doi: 10.6038/cjg2021O0459
引用本文: 仲云芳, 王慧, 郑志超, 何杨帆, 张科灯, 孙璐媛, 高洁. 2021. 极光电激流的地方时和季节变化特性研究: CHAMP卫星观测. 地球物理学报, 64(11): 3870-3881, doi: 10.6038/cjg2021O0459
ZHONG YunFang, WANG Hui, ZHENG ZhiChao, HE YangFan, ZHANG KeDeng, SUN LuYuan, GAO Jie. 2021. Seasonal and local time variations of auroral electrojet: CHAMP observation. Chinese Journal of Geophysics (in Chinese), 64(11): 3870-3881, doi: 10.6038/cjg2021O0459
Citation: ZHONG YunFang, WANG Hui, ZHENG ZhiChao, HE YangFan, ZHANG KeDeng, SUN LuYuan, GAO Jie. 2021. Seasonal and local time variations of auroral electrojet: CHAMP observation. Chinese Journal of Geophysics (in Chinese), 64(11): 3870-3881, doi: 10.6038/cjg2021O0459

极光电激流的地方时和季节变化特性研究: CHAMP卫星观测

  • 基金项目:

    国家自然科学基金(41974182)和中央高校基本科研专项基金(2042021kf0208)资助

详细信息
    作者简介:

    仲云芳, 女, 1998年3月生, 武汉大学博士研究生, 主要从事电离层和磁层方面的研究.E-mail: yunfang.zhong@whu.edu.cn

    通讯作者: 王慧, 女, 1977年生, 武汉大学电子信息学院教授, 博士生导师, 主要从事磁层-电离层-热层耦合方面的观测和模拟研究.E-mail: h.wang@whu.edu.cn
  • 中图分类号: P352

Seasonal and local time variations of auroral electrojet: CHAMP observation

More Information
  • 极光电激流是极区电流系的重要组成部分.本文利用CHAMP卫星10年的高精度标量磁场数据研究了极光电激流的地方时和季节变化特征,并对卫星与地面台站观测到的极光电激流进行了对比分析.结果表明,日侧极光电激流主要受太阳辐射的影响,而夜侧极光电激流主要受亚暴的影响.极光电激流具有明显的年、半年变化特征.夏季东向电激流和日侧西向电激流强于冬季,而夜间西向电激流冬季强于夏季.东向电激流和日侧的西向电激流在两至点增强,夜侧的西向电激流则在两分点增强.西向电激流与AL、SML指数有较好的相关性,东向电激流与SMU指数有较好的相关性,而与AU指数有一定差异,这与地磁台站的有效探测范围有关.

  • 加载中
  • 图 1 

    极光电激流强度随MLT和MLat的变化图

    Figure 1. 

    MLT and MLat variations of the auroral electrojet

    图 2 

    极光电激流强度随MLT和SZA的变化图

    Figure 2. 

    MLT and SZA variations of the auroral electrojet

    图 3 

    极光电激流随MLT和DTA的变化图

    Figure 3. 

    MLT and DTA variations of the auroral electrojet

    图 4 

    (上图)极光电激流随季节和MLT的变化,(中图)极光电激流的年变化图,(下图)极光电激流的半年变化图

    Figure 4. 

    (Top) Seasonal and MLT variations of the auroral electrojet. (Middle) Annual variations of the auroral electrojet. (Bottom) Semiannual variations of the auroral electrojet

    图 5 

    北半球极光电激流与极光活动指数的季节和世界时分布

    Figure 5. 

    Seasonal and universal time variations of auroral electrojet and auroral electrojet indices

    图 6 

    东向电激流(06-18 MLT)和西向电激流(18-06 MLT)的事件数随MLat的分布

    Figure 6. 

    Event number of the eastward electrojet (06-18 MLT) and westward electrojet (18-06 MLT) as a function of magnetic latitude

  •  

    Ahn B H, Emery B A, Kroehl H W, et al. 1999. Climatological characteristics of the auroral ionosphere in terms of electric field and ionospheric conductance. Journal of Geophysical Research: Space Physics, 104(A5): 10031-10040, doi:10.1029/1999JA900043.

     

    Akasofu S I, Perreault P D, Yasuhara F, et al. 1973. Auroral substorms and the interplanetary magnetic field. Journal of Geophysical Research, 78(31): 7490-7508, doi:10.1029/JA078i031p07490.

     

    Baker D N, Pulkkinen T I, Angelopoulos V, et al. 1996. Neutral line model of substorms: Past results and present view. Journal of Geophysical Research: Space Physics, 101(A6): 12975-13010, doi:10.1029/95JA03753.

     

    D'Onofrio M, Partamies N, Tanskanen E. 2014. Eastward electrojet enhancements during substorm activity. Journal of Atmospheric and Solar-Terrestrial Physics, 119: 129-137, doi:10.1016/j.jastp.2014.07.007.

     

    Davis T N, Sugiura M. 1966. Auroral electrojet activity index AE and its universal time variations. Journal of Geophysical Research, 71(3): 785-801, doi:10.1029/JZ071i003p00785.

     

    Guo J P, Pulkkinen T I, Tanskanen E I, et al. 2014a. Annual variations in westward auroral electrojet and substorm occurrence rate during solar cycle 23. Journal of Geophysical Research: Space Physics, 119(3): 2061-2068, doi:10.1002/2013JA019742.

     

    Guo J P, Liu H X, Feng X S, et al. 2014b. MLT and seasonal dependence of auroral electrojets: IMAGE magnetometer network observations. Journal of Geophysical Research: Space Physics, 119(4): 3179-3188, doi:10.1002/2014JA019843.

     

    Huang T, Lühr H, Wang H. 2017. Global characteristics of auroral Hall currents derived from the Swarm constellation: dependences on season and IMF orientation. Annales Geophysicae, 35(6): 1249-1268, doi:10.5194/angeo-35-1249-2017.

     

    Kamide Y, Akasofu S I. 1976. The Auroral electrojet and field-aligned current. Planetary and Space Science, 24(3): 203-213, doi:10.1016/0032-0633(76)90017-9.

     

    Kamide Y, Nakamura R. 1996. The convection electrojet and the substorm electrojet. Annales Geophysicae, 14(6): 589-592, doi:10.1007/s00585-996-0589-2.

     

    Kamide Y, Kokubun S. 1996. Two-component auroral electrojet: Importance for substorm studies. Journal of Geophysical Research: Space Physics, 101(A6): 13027-13046, doi:10.1029/96JA00142.

     

    Klimenko M V, Klimenko V V, Despirak I V, et al. 2018. Disturbances of the thermosphere-ionosphere-plasmasphere system and auroral electrojet at 30°E longitude during the St. Patrick's Day geomagnetic storm on 17-23 March 2015. Journal of Atmospheric and Solar-Terrestrial Physics, 180: 78-92, doi:10.1016/j.jastp.2017.12.017.

     

    Liou K, Newell P T, Sibeck D G, et al. 2001. Observation of IMF and seasonal effects in the location of auroral substorm onset. Journal of Geophysical Research: Space Physics, 106(A4): 5799-5810, doi:10.1029/2000JA003001.

     

    Lui A T Y, Akasofu S I, Hones E W, et al. 1976. Observation of the plasma sheet during a contracted oval substorm in a prolonged quiet period. Journal of Geophysical Research, 81(7): 1415-1419, doi:10.1029/JA081i007p01415.

     

    Lui A T Y. 1996. Current disruption in the Earth's magnetosphere: Observations and models. Journal of Geophysical Research: Space Physics, 101(A6): 13067-13088, doi:10.1029/96JA00079.

     

    Lyatsky W, Newell P T, Hamza A. 2001. Solar illumination as cause of the equinoctial preference for geomagnetic activity. Geophysical Research Letters, 28(12): 2353-2356, doi:10.1029/2000GL012803.

     

    McPherron R L, Baker D N, Pulkkinen T I, et al. 2013. Changes in solar wind-magnetosphere coupling with solar cycle, season, and time relative to stream interfaces. Journal of Atmospheric and Solar-Terrestrial Physics, 99: 1-13, doi:10.1016/j.jastp.2012.09.003.

     

    Newell P T, Meng C I, Lyons K M. 1996. Suppression of discrete aurorae by sunlight. Nature, 381(6585): 766-767, doi:10.1038/381766a0.

     

    Newell P T, Sotirelis T, Skura J P, et al. 2002. Ultraviolet insolation drives seasonal and diurnal space weather variations. Journal of Geophysical Research: Space Physics, 107(A10): 1305, doi:10.1029/2001JA000296.

     

    Newell P T, Sotirelis T, Wing S. 2010. Seasonal variations in diffuse, monoenergetic, and broadband aurora. Journal of Geophysical Research: Space Physics, 115(A3): A03216, doi:10.1029/2009JA014805.

     

    Newell P T, Gjerloev J W. 2011. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research: Space Physics, 116(A12): A12211, doi:10.1029/2011JA016779.

     

    Nishida A. 1968. Geomagnetic Dp 2 fluctuations and associated magnetospheric phenomena. Journal of Geophysical Research, 73(5): 1795-1803, doi:10.1029/JA073i005p01795.

     

    Ohtani S, Gjerloev J W, Johnsen M G, et al. 2019. Solar illumination dependence of the auroral electrojet intensity: Interplay between the solar zenith angle and dipole tilt. Journal of Geophysical Research: Space Physics, 124(8): 6636-6653, doi:10.1029/2019JA026707.

     

    Olsen N. 1996. A new tool for determining ionospheric currents from magnetic satellite data. Geophysical Research Letters, 23(24): 3635-3638, doi:10.1029/96GL02896.

     

    Pulkkinen T I, Tanskanen E I, Viljanen A, et al. 2011. Auroral electrojets during deep solar minimum at the end of solar cycle 23. Journal of Geophysical Research: Space Physics, 116(A4): A04207, doi:10.1029/2010JA016098.

     

    Reigber C, Lühr H, Schwintzer P. 2002. CHAMP mission status. Advances in Space Research, 30(2): 129-134, doi:10.1016/S0273-1177(02)00276-4.

     

    Ritter P, Lühr H, Viljanen A, et al. 2004. Ionospheric currents estimated simultaneously from CHAMP satellite and IMAGE ground-based magnetic field measurements: a statistical study at auroral latitudes. Annales Geophysicae, 22(2): 417-430, doi:10.5194/angeo-22-417-2004.

     

    Russell C T, McPherron R L. 1973. Semiannual variation of geomagnetic activity. Journal of Geophysical Research, 78(1): 92-108, doi:10.1029/JA078i001p00092.

     

    Shue J H, Kamide Y. 2001. Effects of solar wind density on auroral electrojets. Geophysical Research Letters, 28(11): 2181-2184, doi:10.1029/2000GL012858.

     

    Shue J H, Kamide Y. 2006. Reduction in the westward auroral electrojet by a southward turning of the interplanetary magnetic field: A new interpretation. Geophysical Research Letters, 33(22): L22105, doi:10.1029/2006GL028091.

     

    Singh A K, Rawat R, Pathan B M. 2013. On the UT and seasonal variations of the standard and SuperMAG auroral electrojet indices. Journal of Geophysical Research: Space Physics, 118(8): 5059-5067, doi:10.1002/jgra.50488.

     

    Wang H, Lühr H, Ma S Y. 2005a. Solar zenith angle and merging electric field control of field-aligned currents: A statistical study of the Southern Hemisphere. Journal of Geophysical Research: Space Physics, 110(A3): A03306, doi:10.1029/2004JA010530.

     

    Wang H, Lühr H, Ma S Y, et al. 2005b. Statistical study of the substorm onset: its dependence on solar wind parameters and solar illumination. Annales Geophysicae, 23(6): 2069-2079, doi:10.5194/angeo-23-2069-2005

     

    Wang H, Lühr H, Ridley A, et al. 2008. Storm time dynamics of auroral electrojets: CHAMP observation and the space weather modeling framework comparison. Annales Geophysicae, 26(3): 555-570, doi:10.5194/angeo-26-555-2008.

     

    Wu Q, Rosenberg T J, Lanzerotti L J, et al. 1991. Seasonal and diurnal variations of the latitude of the westward auroral electrojet in the nightside polar cap. Journal of Geophysical Research: Space Physics, 96(A2): 1409-1419, doi:10.1029/90JA02379.

     

    Xu W Y. 2009. Variations of the auroral electrojet belt during substorms. Chinese Journal of Geophysics (in Chinese), 52(3): 607-615. http://www.onacademic.com/detail/journal_1000039268114710_5be8.html

     

    Zhang J, Wang H, Zhang K D, et al. 2017. Statistical study of longitudinal variations of Hall currents at high latitudes: CHAMP observation. Chinese Journal of Geophysics (in Chinese), 60(10): 3707-3717, doi:10.6038/cjg20171002.

     

    徐文耀. 2009. 亚暴期间极光电集流带的变化. 地球物理学报, 52(3): 607-615. http://www.geophy.cn//CN/abstract/abstract944.shtml

     

    张静, 王慧, 张科灯等. 2017. 极区Hall电流经度差异特征的统计学研究: CHAMP卫星观测. 地球物理学报, 60(10): 3707-3717, doi:10.6038/cjg20171002. http://www.geophy.cn//CN/abstract/abstract14039.shtml

  • 加载中

(6)

计量
  • 文章访问数:  315
  • PDF下载数:  119
  • 施引文献:  0
出版历程
收稿日期:  2020-12-01
修回日期:  2021-09-06
上线日期:  2021-11-10

目录