松辽盆地北部地热场深部控制因素研究: 基于大地电磁探测的结果

牛璞, 韩江涛, 曾昭发, 侯贺晟, 刘立家, 马国庆, 管彦武. 2021. 松辽盆地北部地热场深部控制因素研究: 基于大地电磁探测的结果. 地球物理学报, 64(11): 4060-4074, doi: 10.6038/cjg2021O0453
引用本文: 牛璞, 韩江涛, 曾昭发, 侯贺晟, 刘立家, 马国庆, 管彦武. 2021. 松辽盆地北部地热场深部控制因素研究: 基于大地电磁探测的结果. 地球物理学报, 64(11): 4060-4074, doi: 10.6038/cjg2021O0453
NIU Pu, HAN JiangTao, ZENG ZhaoFa, HOU HeSheng, LIU LiJia, MA GuoQing, GUAN YanWu. 2021. Deep controlling factors of the geothermal field in the northern Songliao basin derived from magnetotelluric survey. Chinese Journal of Geophysics (in Chinese), 64(11): 4060-4074, doi: 10.6038/cjg2021O0453
Citation: NIU Pu, HAN JiangTao, ZENG ZhaoFa, HOU HeSheng, LIU LiJia, MA GuoQing, GUAN YanWu. 2021. Deep controlling factors of the geothermal field in the northern Songliao basin derived from magnetotelluric survey. Chinese Journal of Geophysics (in Chinese), 64(11): 4060-4074, doi: 10.6038/cjg2021O0453

松辽盆地北部地热场深部控制因素研究: 基于大地电磁探测的结果

  • 基金项目:

    国家重点研发专项(2017YFC0601305),国家自然科学基金项目(41504076),中国地质调查项目(DD20160207,DD20190010),吉林省科技发展计划项目(20180101093JC)和中央高校基本科研业务费专项资金联合资助

详细信息
    作者简介:

    牛璞, 女, 1996年生, 硕士研究生, 主要从事地球物理研究.E-mail: 1769732229@qq.com

    通讯作者: 韩江涛, 男, 教授, 主要从事深部地球物理勘查研究.E-mail: hanjt@jlu.edu.cn
  • 中图分类号: P315;P631

Deep controlling factors of the geothermal field in the northern Songliao basin derived from magnetotelluric survey

More Information
  • 松辽盆地北部存在中低温地热场,地热场呈现中间高、四周环状降低的特征.松辽盆地内部形成高地热场的主要因素,一是深部热源供给;二是浅部热能储集.通过深部结构特征研究可揭示热源及热储的分布及相互联系,对松辽盆地北部地热场成因研究具有重要意义.为了揭示松辽盆地北部地热场的深部控制因素,本文基于古龙镇至依安县的246 km长大地电磁剖面,对71个宽频测点数据通过傅里叶变换、Robust估计以及相位张量分解等处理手段,在精细分析维性特征及电性主轴的基础上,利用非线性共轭梯度反演获得了剖面40 km深二维电性结构模型.研究发现:电阻率模型具有"纵向分层,横向分块"的特征,以水热性温泉富集的林甸地区为界,剖面南北两侧电性结构存在明显的差异,南侧呈现"低阻-高阻-低阻"的三元电性结构,北侧呈现"低阻"的一元电性结构,这两种结构与地温场分布具有良好的对应关系,林甸以南的三元电性结构区对应高地热异常,以北的一元电性结构区热异常下降明显;林甸地区位于这两种端元的分界区,地表温泉丰富,且发育有基底断裂,为水热型地热发育的"热点"地区;林甸南北两侧深部存在两个高导体C1、C2,这与普遍认识的松辽盆地存在软流圈隆起有关,说明盆地下方具有统一的热源,部分熔融热物质作为深部热源向上传递热量,不同之处在于林甸以南地区,中地壳存在巨厚高阻特征的前寒武纪结晶基底R1,为地热的保存提供了有利条件,而林甸以北地区深部缺少聚集热量的结晶基底,导致地热异常迅速降低.

  • 加载中
  • 图 1 

    研究区地热背景及大地电磁测点分布(改编自符伟等,2019孙成城,2019李野,2017)

    Figure 1. 

    Geothermal background and MT sits in the study area (modified from Fu et al., 2019; Sun, 2019; Li, 2017)

    图 2 

    大地电磁剖面部分测点视电阻率相位曲线

    Figure 2. 

    Apparent resistivity and phase curves of some MT sites along the profile

    图 3 

    相位张量椭圆

    Figure 3. 

    Phase tensor map

    图 4 

    各频段构造走向分析结果玫瑰图(相位张量分解)

    Figure 4. 

    Rose diagrams showing strike analysis results for different frequency bands (phase tensor decomposition)

    图 5 

    各频段构造走向分析结果玫瑰图(GB分解)

    Figure 5. 

    Rose diagrams showing strike analysis results for different frequency bands (GB decomposition)

    图 6 

    不同背景电阻率二维反演结果

    Figure 6. 

    Two-dimensional inversion results of resistivity in different backgrounds

    图 7 

    不同正则化因子对应模型粗糙程度-拟合差

    Figure 7. 

    Model roughness and RMS values for different regularization factors

    图 8 

    RMS随迭代次数变化曲线

    Figure 8. 

    RMS variation with iteration number

    图 9 

    TETM视电阻率与相位的(a,c,e,g)原始数据(b,d,f,h)响应数据拟断面图

    Figure 9. 

    Pseudosection sections of observed (a, c, e, g) and modeled (b, d, f, h) TETM apparent resistivity and phase

    图 10 

    灵敏度测试结果

    Figure 10. 

    Sensitivity test results

    图 11 

    理论模型验证结果

    Figure 11. 

    Theoretical model verification results

    图 12 

    研究区剖面二维反演得到电性结果

    Figure 12. 

    Profile electrical results obtained by 2D inversion in the study area

    图 13 

    松辽盆地北部地热系统模型示意图

    Figure 13. 

    Geothermal model of the northern Songliao Basin

  •  

    Becken M, Burkhardt H. 2004. An ellipticity criterion in magnetotelluric tensor analysis. Geophysical Journal International, 159(1): 69-82. doi: 10.1111/j.1365-246X.2004.02376.x

     

    Booker J R. 2014. The magnetotelluric phase tensor: A critical review. Surveys in Geophysics, 35(1): 7-40. doi: 10.1007/s10712-013-9234-2

     

    Cai J T, Chen X B. 2010. Refined techniques for data processing and two-dimensional inversion in magnetotelluric Ⅱ: Which data polarization mode should be used in 2D inversion. Chinese Journal of Geophysics (in Chinese), 53(11): 2703-2714, doi:10.3969/j.issn.0001-5733.2010.11.018.

     

    Cai J T, Chen X B, Zhao G Z. 2010. Refined techniques for data processing and two-dimensional inversion in magnetotelluric Ⅰ: Tensor decomposition and dimensionality analysis. Chinese Journal of Geophysics (in Chinese), 53(10): 2516-2526, doi:10.3969/j.issn.0001-5733.2010.10.025.

     

    Caldwell T G, Bibby H M, Brown C. 2004. The magnetotelluric phase tensor. Geophysical Journal International, 158(2): 457-469. doi: 10.1111/j.1365-246X.2004.02281.x

     

    Chen C X, Yan J Y, Zhou W Y, et al. 2020. Status and prospects of geophysical method used in geothermal exploration. Progress in Geophysics (in Chinese), 35(4): 1223-1231, doi:10.6038/pg2020DD0229.

     

    Darnet M, Wawrzyniak P, Tarits P, et al. 2020. Mapping the geometry of volcanic systems with magnetotelluric soundings: Results from a land and marine magnetotelluric survey performed during the 2018-2019 Mayotte seismovolcanic crisis. Journal of Volcanology and Geothermal Research, 406: 107046. doi: 10.1016/j.jvolgeores.2020.107046

     

    Delhaye R, Rath V, Jones A G, et al. 2019. Quantitative geothermal interpretation of electrical resistivity models of the Rathlin Basin, Northern Ireland. Geothermics, 77: 175-187. doi: 10.1016/j.geothermics.2018.09.012

     

    Didana Y L, Thiel S, Heinson G. 2015. Three dimensional conductivity model of the tendaho high enthalpy geothermal field, NE Ethiopia. Journal of Volcanology and Geothermal Research, 290: 53-62. doi: 10.1016/j.jvolgeores.2014.11.013

     

    Egbert G D. 1997. Robust multiple-station magnetotelluric data processing. Geophysical Journal International, 130(2): 475-496. doi: 10.1111/j.1365-246X.1997.tb05663.x

     

    Erdoğan E, Candansayar M E. 2017. The conductivity structure of the Gediz Graben geothermal area extracted from 2D and 3D magnetotelluric inversion: synthetic and field data applications. Geothermics, 65: 170-179. doi: 10.1016/j.geothermics.2016.09.007

     

    Esquivel T A, Flores C, Ortega V R, et al. 2020. Magnetotelluric exploration of the Wagner Basin, Gulf of California, Mexico: Evidence for an axial magma chamber and hydrothermal circulation. Journal of South American Earth Sciences, 99: 102501. doi: 10.1016/j.jsames.2020.102501

     

    Fu W, Hou H S, Gao R, et al. 2019. Fine structure of the lithosphere beneath the Well SK-2 and its adjacent: Revealed by deep seismic reflection profile. Chinese Journal of Geophysics (in Chinese), 62(4): 1349-1361, doi:10.6038/cjg2019M0370.

     

    Fu X F, Sha W, Wang L, et al. 2010. Distribution law of mantle-origin CO2 gas reservoirs and its controlling factors in Songliao Basin. Journal of Jilin University (Earth Science Edition) (in Chinese), 40(2): 253-263.

     

    Gao J, Zhang H J, Zhang S Q, et al. 2018. Three-dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, Northeast Tibetan Plateau. Geothermics, 76: 15-25. doi: 10.1016/j.geothermics.2018.06.009

     

    Gao J, Zhang H J, Zhang H P, et al. 2020. Three-dimensional magnetotelluric imaging of the SE Gonghe Basin: Implication for the orogenic uplift in the northeastern margin of the Tibetan plateau. Tectonophysics, 789: 228525. doi: 10.1016/j.tecto.2020.228525

     

    Ge R F, Wang Q L, Wang S L, et al. 2010. Tectonic evolution of Songliao Basin and the prominent tectonic regime transition in eastern China. Geological Review (in Chinese), 56(2): 180-195.

     

    Guo Z, Cao Y L, Wang X G, et al. 2014. Crust and upper mantle structures beneath Northeast China from receiver function studies. Earthquake Science, 27(3): 265-275. doi: 10.1007/s11589-014-0076-x

     

    Guo Z, Wang K, Yang Y J, et al. 2018. The origin and mantle dynamics of quaternary intraplate volcanism in Northeast China from joint inversion of surface wave and body wave. Journal of Geophysical Research: Solid Earth, 123(3): 2410-2425. doi: 10.1002/2017JB014948

     

    Hacıoğlu Ö, Başokur A T, Diner Ç, et al. 2020. The effect of active extensional tectonics on the structural controls and heat transport mechanism in the Menderes Massif geothermal province: Inferred from three-dimensional electrical resistivity structure of the Kurşunlu geothermal field (Gediz Graben, western Anatolia). Geothermics, 85: 101708. doi: 10.1016/j.geothermics.2019.07.006

     

    Han J T, Guo Z Y, Liu W Y, et al. 2018. Deep dynamic process of lithosphere thinning in Songliao Basin. Chinese Journal of Geophysics (in Chinese), 61(6): 2265-2279, doi:10.6038/cjg2018L0155.

     

    Hersir G P, Árnason K, Vilhjálmsson A M, et al. 2020. Krysuvík high temperature geothermal area in SW Iceland: Geological setting and 3D inversion of magnetotelluric (MT) resistivity data. Journal of Volcanology and Geothermal Research, 391: 106500. doi: 10.1016/j.jvolgeores.2018.11.021

     

    Hu S B, He L J, Wang J Y. 2001. Compilation of heat flow data in the china continental area (3rd edition). Chinese Journal of Geophysics (in Chinese), 44(5): 611-626.

     

    Hu W S, Lü B Q, Zhang W J, et al. 2005. An approach to tectonic evolution and dynamics of the Songliao Basin. Chinese Journal of Geology (in Chinese), 40(1): 16-31.

     

    Hu X, Lü J C. 2016. Distribution characteristics of favorable thermal storage areas in the northern Songliao Basin. West-China Exploration Engineering (in Chinese), 28(3): 33-37.

     

    Jiang G Z, Gao P, Rao S, et al. 2016. Compilation of heat flow data in the continental area of China (4th edition). Chinese Journal of Geophysics (in Chinese), 59(8): 2892-2910, doi:10.6038/cjg20160815.

     

    Kana J D, Djongyang N, Raïdandi D, et al. 2015. A review of geophysical methods for geothermal exploration. Renewable and Sustainable Energy Reviews, 44: 87-95. doi: 10.1016/j.rser.2014.12.026

     

    Kang D, Shen W S, Ning J Y, et al. 2016. Seismic evidence for lithospheric modification associated with intracontinental volcanism in Northeastern China. Geophysical Journal International, 204(1): 215-235. doi: 10.1093/gji/ggv441

     

    Karlsdóttir R, Vilhjálmsson A M, Guənason E Á. 2020. Three dimensional inversion of magnetotelluric (MT) resistivity data from Reykjanes high temperature field in SW Iceland. Journal of Volcanology and Geothermal Research, 391: 106498. doi: 10.1016/j.jvolgeores.2018.11.019

     

    Li C, Liu S F. 2015. Cretaceous anomalous subsidence and its response to dynamic topography in the Songliao Basin, Northeast China. Journal of Asian Earth Sciences, 109: 86-99. doi: 10.1016/j.jseaes.2015.04.045

     

    Li S H, Unsworth M J, Booker J R, et al. 2003. Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophysical Journal International, 153(2): 289-304. doi: 10.1046/j.1365-246X.2003.01850.x

     

    Li X, Ma X B, Chen Y, et al. 2020. A plume-modified lithospheric barrier to the southeastward flow of partially molten Tibetan crust inferred from magnetotelluric data. Earth and Planetary Science Letters, 548: 116493. doi: 10.1016/j.epsl.2020.116493

     

    Li Y. 2017. Preliminary study on EGS geothermal resources evaluation and exploration in Song-Liao Basin[Master's thesis](in Chinese). Changchun: Jilin University.

     

    Liang H D, Jin S, Wei W B, et al. 2017. Deep electrical structure of the eastern margin of the Erguna massif and the western margin of the Xing'an massif. Chinese Journal of Geophysics (in Chinese), 60(2): 564-574, doi:10.6038/cjg20170211.

     

    Lichoro C M, Árnason K, Cumming W. 2019. Joint interpretation of gravity and resistivity data from the Northern Kenya volcanic rift zone: Structural and geothermal significance. Geothermics, 77: 139-150. doi: 10.1016/j.geothermics.2018.09.006

     

    Liu C P, Zhong X, Zhu H L. 2016. Research on the formation mechanism for the medium-low geothermal field in the north of Songliao basin. Geological Survey and Research (in Chinese), 39(4): 316-320.

     

    Liu Y, Hu D G, Xu Y X, et al. 2019. 3D magnetotelluric imaging of the middle-upper crustal conduit system beneath the Lei-Hu-Ling volcanic area of northern Hainan Island, China. Journal of Volcanology and Geothermal Research, 371: 220-228. doi: 10.1016/j.jvolgeores.2019.01.013

     

    Meng Q R. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract?. Tectonophysics, 369(3-4): 155-174. doi: 10.1016/S0040-1951(03)00195-1

     

    Olasolo P, Juárez M C, Morales M P, et al. 2016. Enhanced geothermal systems (EGS): a review. Renewable and Sustainable Energy Reviews, 56: 133-144. doi: 10.1016/j.rser.2015.11.031

     

    Ozen T, Bulbul A, Tarcan G. 2010. Reservoir and hydrogeochemical characterizations of the Salihli geothermal fields in Turkey. //World Geothermal Congress. Bali, Endonesia, 1-10.

     

    Pei M B. 2008. Study on sequence stratigraphy of deep order of Paleo-central uplift belt[Master's thesis](in Chinese). Daqing: Daqing Petroleum Institute.

     

    Rodi W, Mackie R L. 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66(1): 174-187. doi: 10.1190/1.1444893

     

    Song Y, Ren J Y, Liu K Y, et al. 2018. Post-rift anomalous thermal flux in the Songliao Basin, NE China, as revealed from fission track thermochronology and tectonic analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 508: 148-165. doi: 10.1016/j.palaeo.2018.07.030

     

    Sun C C. 2019. The research of the basement tectonic characteristics of Songliao basin based on geophysical methods[Master's thesis](in Chinese). Changchun: Jilin University.

     

    Tian Y, Ma J C, Liu C, et al. 2019. Effects of subduction of the western Pacific plate on tectonic evolution of Northeast China and geodynamic implications. Chinese Journal of Geophysics (in Chinese), 62(3): 1071-1082, doi:10.6038/cjg2019M0061.

     

    Tzanis A, Efstathiou A, Chailas S, et al. 2020. The Methana Volcano-Geothermal Resource, Greece, and its relationship to regional tectonics. Journal of Volcanology and Geothermal Research, 404: 107035. doi: 10.1016/j.jvolgeores.2020.107035

     

    Volpi G, Manzella A, Fiordelisi A. 2003. Investigation of geothermal structures by magnetotellurics (MT): an example from the Mt. Amiata area, Italy. Geothermics, 32(2): 131-145. doi: 10.1016/S0375-6505(03)00016-6

     

    Wang C W, Sun Y W, Li N, et al. 2009. Tectonic implications of Late Paleozoic stratigraphic distribution in Northeast China and adjacent region. Science in China Series D: Earth Sciences, 52(5): 619-626. doi: 10.1007/s11430-009-0062-7

     

    Wang F, Xu W L, Gao F H, et al. 2014. Precambrian terrane within the Songnen-Zhangguangcai Range Massif, NE China: evidence from U-Pb ages of detrital zircons from the Dongfengshan and Tadong groups. Gondwana Research, 26(1): 402-413. doi: 10.1016/j.gr.2013.06.017

     

    Wang F, Xu W L, Xing K C, et al. 2019. Final closure of the Paleo-Asian Ocean and onset of subduction of Paleo-Pacific Ocean: constraints from early Mesozoic magmatism in central southern Jilin Province, NE China. Journal of Geophysical Research: Solid Earth, 124(3): 2601-2622. doi: 10.1029/2018JB016709

     

    Wang J, Li C F. 2018. Curie point depths in Northeast China and their geothermal implications for the Songliao Basin. Journal of Asian Earth Sciences, 163: 177-193. doi: 10.1016/j.jseaes.2018.05.026

     

    Wang J Y, Huang S P. 1990. Compilation of heat flow data in the China continental area (2nd Edition). Seismology and Geology (in Chinese), 12(4): 351-366.

     

    Wang P J, Mattern F, Didenko N A, et al. 2016. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth-Science Reviews, 159: 82-102. doi: 10.1016/j.earscirev.2016.05.004

     

    Wang X P, Yan J J. 1996. Discussion of some problems in analysis of structural styles of petroliferous basins. Geological Science and Technology Information (in Chinese), (4): 54-59.

     

    Wannamaker P E, Caldwell T G, Jiracek G R, et al. 2009. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature, 460(7256): 733-736. doi: 10.1038/nature08204

     

    Wu F Y, Sun D Y, Li H M, et al. 2001. The nature of basement beneath the Songliao basin in NE China: geochemical and isotopic constraints. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 793-803. doi: 10.1016/S1464-1895(01)00128-4

     

    Wu X X. 2014. Research on geothermal resources of hot dry rock in north of Songliao basin[Ph. D. thesis](in Chinese). Daqing: Northeast Petroleum University.

     

    Xing D Q. 2015. Research on upper Paleozoic tectonic framework of Songliao basin[Master's thesis](in Chinese). Changchun: Jilin University.

     

    Yan X L, Kang H M, Wang G J, et al. 2019. Application of AMT in deep geothermal structure exploration in Aoshanwei granite area of Qingdao. Progress in Geophysics (in Chinese), 34(5): 1945-1953, doi:10.6038/pg2019CC0083.

     

    Yang L, Jiang G Q. 2020. Comprehensive geophysical methods in exploration of mid-shallow tectonic fissured geothermal resource: take the example of southern Jiangsu. Progress in Geophysics (in Chinese), 35(6): 2265-2275, doi:10.6038/pg2020EE0211.

     

    Yang Y. 2019. Deep electrical structure and seismogenic mechanism in seismic active area of Songyuan[Ph. D. thesis](in Chinese). Changchun: Jilin University.

     

    Yu H Z. 2001. Sedimentary facies and palaeogeography of the Songliao Basin and its peripheral areas during Carboniferous Permian time. Sedimentary Geology and Tethyan Geology (in Chinese), 21(4): 70-83.

     

    Yu Z Y, Zhang P Z, Min W, et al. 2015. Late Cenozoic deformation of the Da'an-Dedu Fault Zone and its implications for the earthquake activities in the Songliao basin, NE China. Journal of Asian Earth Sciences, 107: 83-95. doi: 10.1016/j.jseaes.2015.03.047

     

    Zaher M A, Saibi H, Nishijima J, et al. 2012. Exploration and assessment of the geothermal resources in the Hammam Faraun hot spring, Sinai Peninsula, Egypt. Journal of Asian Earth Sciences, 45: 256-267. doi: 10.1016/j.jseaes.2011.11.007

     

    Zhang B, Lei J S, Yuan X H, et al. 2020. Detailed Moho variations under Northeast China inferred from receiver function analyses and their tectonic implications. Physics of the Earth and Planetary Interiors, 300: 106448. doi: 10.1016/j.pepi.2020.106448

     

    Zhang C. 2017. The basement lithology magnetic seismic joint interpret of ancient central uplift belt of Songliao basin[Master's thesis](in Chinese). Changchun: Jilin University.

     

    Zhang C, Wu X W, Guo W, et al. 2017. Discovery of the 1.8 Ga granite on the western margin of the Songnen Masiff, China. Acta Geologica Sinica, 91(4): 1497-1498. doi: 10.1111/1755-6724.13379

     

    Zhang F Q, Chen H L, Dong C W, et al. 2008. Evidence for the existence of Precambrian basement under the northern Songliao basin. Geology in China (in Chinese), 35(3): 421-428.

     

    Zhang X Z, Ma Y X, Chi X G, et al. 2012. Discussion on Phanerozoic tectonic evolution in Northeastern China. Journal of Jilin University (Earth Science Edition) (in Chinese), 42(5): 1269-1285.

     

    Zhou J B, Wilde S A. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365-1377. doi: 10.1016/j.gr.2012.05.012

     

    Zhou L D. 2005. Study on the generating mechanism and evaluation of low-medium temperature geothermal system[Ph. D. thesis](in Chinese). Fuxin: Liaoning Technical University.

     

    Zhu H L. 2011. Research on the sedimentary geothermal resources in North Songliao basin[Ph. D. thesis](in Chinese). Daqing: Northeast Petroleum University.

     

    蔡军涛, 陈小斌. 2010. 大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择. 地球物理学报, 53(11): 2703-2714, doi:10.3969/j.issn.0001-5733.2010.11.018. http://www.geophy.cn//CN/abstract/abstract3423.shtml

     

    蔡军涛, 陈小斌, 赵国泽. 2010. 大地电磁资料精细处理和二维反演解释技术研究(一)——阻抗张量分解与构造维性分析. 地球物理学报, 53(10): 2516-2526, doi:10.3969/j.issn.0001-5733.2010.10.025. http://www.geophy.cn//CN/abstract/abstract3351.shtml

     

    陈昌昕, 严加永, 周文月等. 2020. 地热地球物理勘探现状与展望. 地球物理学进展, 35(4): 1223-1231, doi:10.6038/pg2020DD0229.

     

    符伟, 侯贺晟, 高锐等. 2019. "松科二井"邻域岩石圈精细结构特征及动力学环境——深地震反射剖面的揭示. 地球物理学报, 62(4): 1349-1361, doi:10.6038/cjg2019M0370. http://www.geophy.cn/CN/abstract/abstract14943.shtml

     

    付晓飞, 沙威, 王磊等. 2010. 松辽盆地幔源成因CO2气藏分布规律及控制因素. 吉林大学学报(地球科学版), 40(2): 253-263. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201002003.htm

     

    葛荣峰, 张庆龙, 王良书等. 2010. 松辽盆地构造演化与中国东部构造体制转换. 地质论评, 56(2): 180-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201002005.htm

     

    韩江涛, 郭振宇, 刘文玉等. 2018. 松辽盆地岩石圈减薄的深部动力学过程. 地球物理学报, 61(6): 2265-2279, doi:10.6038/cjg2018L0155. http://www.geophy.cn/CN/abstract/abstract14542.shtml

     

    胡圣标, 何丽娟, 汪集旸. 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 611-626. doi: 10.3321/j.issn:0001-5733.2001.05.005 http://www.geophy.cn/CN/abstract/abstract3600.shtml

     

    胡望水, 吕炳全, 张文军等. 2005. 松辽盆地构造演化及成盆动力学探讨. 地质科学, 40(1): 16-31. doi: 10.3321/j.issn:0563-5020.2005.01.002

     

    胡霞, 吕建才. 2016. 松辽盆地北部热储有利区分布特征. 西部探矿工程, 28(3): 33-37. doi: 10.3969/j.issn.1004-5716.2016.03.011

     

    姜光政, 高堋, 饶松等. 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910, doi:10.6038/cjg20160815. http://www.geophy.cn//CN/abstract/abstract13010.shtml

     

    李野. 2017. 松辽盆地EGS地热资源评价及勘察开发选区初步研究[硕士论文]. 长春: 吉林大学.

     

    梁宏达, 金胜, 魏文博等. 2017. 额尔古纳地块东缘和兴安地块西缘电性结构研究. 地球物理学报, 60(2): 564-574, doi:10.6038/cjg20170211. http://www.geophy.cn//CN/abstract/abstract13452.shtml

     

    刘晨璞, 钟鑫, 朱焕来. 2016. 松辽盆地北部中低地温场形成机制探讨. 地质调查与研究, 39(4): 316-320. doi: 10.3969/j.issn.1672-4135.2016.04.012

     

    裴明波. 2008. 古中央隆起带深层层序地层学研究[硕士论文]. 大庆: 大庆石油学院.

     

    孙成城. 2019. 基于地球物理学方法的松辽盆地基底构造特征研究[硕士论文]. 长春: 吉林大学.

     

    田有, 马锦程, 刘财等. 2019. 西太平洋俯冲板块对中国东北构造演化的影响及其动力学意义. 地球物理学报, 62(3): 1071-1082, doi:10.6038/cjg2019M0061. http://www.geophy.cn//CN/abstract/abstract14911.shtml

     

    王成文, 孙跃武, 李宁等. 2009. 中国东北及邻区晚古生代地层分布规律的大地构造意义. 中国科学(D辑: 地球科学), 39(10): 1429-1437. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200910010.htm

     

    汪集旸, 黄少鹏. 1990. 中国大陆地区大地热流数据汇编(第二版). 地震地质, 12(4): 351-366. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199004010.htm

     

    王燮培, 严俊君. 1996. 含油气盆地构造样式研究中几个问题的讨论. 地质科技情报, (4): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ604.011.htm

     

    伍小雄. 2014. 松辽盆地北部干热岩地热资源研究[博士论文]. 大庆: 东北石油大学.

     

    邢大全. 2015. 松辽盆地上古生界构造特征探究[硕士论文]. 长春: 吉林大学.

     

    严小丽, 康慧敏, 王光杰等. 2019. AMT方法在鳌山卫花岗岩地区深部地热构造勘探中的应用. 地球物理学进展, 34(5): 1945-1953, doi:10.6038/pg2019CC0083.

     

    杨林, 姜国庆. 2020. 中浅层构造裂隙型地热资源勘查中的综合地球物理方法——以苏南地区为例. 地球物理学进展, 35(6): 2265-2275, doi:10.6038/pg2020EE0211.

     

    杨悦. 2019. 松原地震活跃区深部电性结构及其孕震机制[博士论文]. 长春: 吉林大学.

     

    余和中. 2001. 松辽盆地及周边地区石炭纪-二叠纪岩相古地理. 沉积与特提斯地质, 21(4): 70-83. doi: 10.3969/j.issn.1009-3850.2001.04.011

     

    张丛. 2017. 松辽盆地古中央隆起带基底岩性重磁震联合解释[硕士论文]. 长春: 吉林大学.

     

    章凤奇, 陈汉林, 董传万等. 2008. 松辽盆地北部存在前寒武纪基底的证据. 中国地质, 35(3): 421-428. doi: 10.3969/j.issn.1000-3657.2008.03.006

     

    张兴洲, 马玉霞, 迟效国等. 2012. 东北及内蒙古东部地区显生宙构造演化的有关问题. 吉林大学学报(地球科学版), 42(5): 1269-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205003.htm

     

    周立岱. 2005. 中低温地热系统形成机制及评价研究[博士论文]. 阜新: 辽宁工程技术大学.

     

    朱焕来. 2011. 松辽盆地北部沉积盆地型地热资源研究[博士论文]. 大庆: 东北石油大学.

  • 加载中

(13)

计量
  • 文章访问数:  410
  • PDF下载数:  269
  • 施引文献:  0
出版历程
收稿日期:  2020-11-24
修回日期:  2021-06-29
上线日期:  2021-11-10

目录