四川威远及邻区中小地震活动特征及地壳精细结构研究

杜广宝, 吴庆举, 张雪梅, 张瑞青. 2021. 四川威远及邻区中小地震活动特征及地壳精细结构研究. 地球物理学报, 64(11): 3983-3996, doi: 10.6038/cjg2021O0452
引用本文: 杜广宝, 吴庆举, 张雪梅, 张瑞青. 2021. 四川威远及邻区中小地震活动特征及地壳精细结构研究. 地球物理学报, 64(11): 3983-3996, doi: 10.6038/cjg2021O0452
DU GuangBao, WU QingJu, ZHANG XueMei, ZHANG RuiQing. 2021. Activity characteristics of moderate and small earthquakes and fine crustal feature beneath Weiyuan, Sichuan and adjacent areas. Chinese Journal of Geophysics (in Chinese), 64(11): 3983-3996, doi: 10.6038/cjg2021O0452
Citation: DU GuangBao, WU QingJu, ZHANG XueMei, ZHANG RuiQing. 2021. Activity characteristics of moderate and small earthquakes and fine crustal feature beneath Weiyuan, Sichuan and adjacent areas. Chinese Journal of Geophysics (in Chinese), 64(11): 3983-3996, doi: 10.6038/cjg2021O0452

四川威远及邻区中小地震活动特征及地壳精细结构研究

  • 基金项目:

    国家重点研发计划(2020YFA0710601),中国地震局地球物理研究所基本科研业务专项(DQJB19A0113,DQJB19A0111),国家重点研发计划(2017YFC1500304)共同资助

详细信息
    作者简介:

    杜广宝, 男, 1984年生, 高级工程师, 主要从事地震监测和地震层析成像研究工作.E-mail: dgb@seis.ac.cn

    通讯作者: 吴庆举, 男, 1966年生, 研究员, 主要从事地震学、地球内部结构以及地球动力学研究工作.E-mail: wuqj@cea-igp.ac.cn
  • 中图分类号: P315

Activity characteristics of moderate and small earthquakes and fine crustal feature beneath Weiyuan, Sichuan and adjacent areas

More Information
  • 利用2019年以来在四川荣县-威远布设的密集地震台站,以及部分固定台站记录到的近震资料,采用双差层析成像方法获得了高分辨率的浅层地壳三维速度结构和震源位置.重定位结果显示,研究区内中小地震多数呈南北向条带状分布,与已知地表断层的分布无明显关联.地震震源深度主要集中在2~5 km深度之间.研究区中小地震活动与速度结构变化具有相关性,在5 km以浅,地震多分布在S波高速异常区;在7~10 km深度范围,地震多发生在P波和S波的高、低速异常转换带.综合重定位和速度剖面结果,推测研究区内沉积层厚度约4~6 km,而一些中强地震多发生在结晶基底顶部.在研究区深部,黄桷坡断层以北地震区比荣县地震区具有更高的P波速度,在相似的应力状态下,力学性质更强的黄桷坡断层以北地区更难以破裂,可能是该地区更晚发生地震的缘由.

  • 加载中
  • 图 1 

    四川威远地区地形、地震台站和2018年以来M4.0以上地震分布图

    Figure 1. 

    The topography of theWeiyuan area, distribution of seismic stations and M≥4.0 earthquakes since 2018

    图 2 

    研究区2.0级以上地震M-t(a)和N-t(b)图

    Figure 2. 

    Diagrams of M-t (a) and N-t (b) (M≥2.0)

    图 3 

    射线路径及台站地震分布

    Figure 3. 

    Geographical distribution of the seismic stations (yellow triangles), earthquake hypocenters (red circles) and ray paths (blue lines) considered in this study. The black lines represent the boundary of the study area.

    图 4 

    P(a)、S(b)波时距曲线

    Figure 4. 

    Time-distance curves of P (a) and S (b) wave

    图 5 

    阻尼参数(a)和平滑因子(b)选择曲线

    Figure 5. 

    Damp (a) and smooth (b) coefficients chosen for tomography

    图 6 

    不同深度剖面P、S波检测板测试结果(0.1°×0.1°)

    Figure 6. 

    P and S wave checkboard resolution tests (0.1°×0.1°) at the depths of 2, 5, 7 km and 10 km

    图 7 

    重定位前(a)后(b)地震空间分布变化

    Figure 7. 

    Spatial variations of seismic events before (a) and after (b) relocation

    图 8 

    重定位前(a)后(b)震源深度变化

    Figure 8. 

    Numbers of earthquakes with different epicentral depths before (a) and after (b) relocation

    图 9 

    重定位前(红)后(蓝)残差直方图

    Figure 9. 

    Histograms of travel time residual before (red) and after (blue) relocation

    图 10 

    不同深度剖面VP(左)、VS(右)分布

    Figure 10. 

    VP (left) and VS (right) distributions at the depths of 2, 5, 7 km and 10 km

    图 11 

    不同深度剖面波速比分布

    Figure 11. 

    VP/VS distributions at the depths of 2, 5, 7 km and 10 km

    图 12 

    VPVSVP/VS纵向剖面与地震分布图

    Figure 12. 

    VP, VS and VP/VS images along different vertical profiles and earthquakes distribution

  •  

    Eberhart-Phillips D. 1986. Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times. Bull. Seismol. Soc. Am. , 76(4): 1025-1052.

     

    Guo Z W, Deng K L, Han Y H. 1996. The Formation and Development of Sichuan Basin (in Chinese). Beijing: Geological Publishing House.

     

    Hu Y P, Wang Z, Liu G N, et al. 2017. Crustal structure imaging of multi-geophysical parameters and generating mechanisms of large earthquakes in North-South Seismic Zone. Chinese J. Geophys. (in Chinese), 60(6): 2113-2129, doi:10.6038/cjg20170608.

     

    Lei X L, Ma S L, Chen W K, et al. 2013. A detailed view of the injection-induced seismicity in a natural gas reservoir in Zigong, southwestern Sichuan Basin, China. J. Geophys. Res. : Solid Earth, 118(8): 4296-4311, doi:10.1002/jgrb.50310.

     

    Lei X L, Huang D J, Su J R, et al. 2017. Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China. Scientific Reports, 7(1): 7971, doi:10.1038/s41598-017-08557-y.

     

    Li M J, Shen X Z, Zhang Y S, et al. 2018. Fine crustal structures of northeast margin of the Tibetan Plateau and structural features of Jiuzhaigou earthquake focal area constrained by the data from a high-density seismic array. Chinese J. Geophys. (in Chinese), 61(5): 2075-2087, doi:10.6038/cjg2018L0720.

     

    Li Y H, Wu Q J, An Z H, et al. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions. Chinese J. Geophys. (in Chinese), 49(5): 1359-1368.

     

    Liu W, Wu Q J, Zhang F X. 2019. Crustal structure of southeastern Tibetan Plateau inferred from double-difference tomography. Acta Seismologica Sinica (in Chinese), 41(2): 155-168, doi:10.11939/jass.20180083.

     

    Lv B F. 2005. The tectonization and petroleum accumulation in Southeast Sichuan Basin (in Chinese). Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.

     

    Mei Q H, He D F, Wen Z, et al. 2014. Geologic structure and tectonic evolution of Leshan-Longnvsi paleo-uplift in Sichuan Basin, China. Acta Petrolei Sinica (in Chinese), 35(1): 11-25. doi: 10.1038/aps.2013.142

     

    Meng L Y, McGarr A, Zhou L Q, et al. 2019. An investigation of seismicity induced by hydraulic fracturing in the Sichuan Basin of China Based on data from a temporary seismic network. Bull. Seismol. Soc. Am. , 109(1): 348-357, doi:10.1785/0120180310.

     

    Meng X B, Chen H C, Niu F L, et al. 2018. Microseismic monitoring of stimulating shale gas reservoir in SW China: 1. An improved matching and locating technique for downhole monitoring. J. Geophys. Res. : Solid Earth, 123(2): 1643-1658, doi:10.1002/2017JB014488.

     

    Miao S Y, Zhang H J, Chen Y K, et al. 2019. Surface microseismic monitoring of shale gas hydraulic fracturing based on microseismic location and tomography. Geophysical Prospecting for Petroleum (in Chinese), 58(2): 262-271, 284.

     

    Nelder J A, Mead R. 1965. A simplex method for function minimization. The Computer Journal, 7(4): 308-313. doi: 10.1093/comjnl/7.4.308

     

    Sheng M H, Chu R S, Ni S D, et al. 2020. Source parameters of three moderate size earthquakes in Weiyuan, China, and their relations to shale gas hydraulic fracturing. J. Geophys. Res. : Solid Earth, 125(10): e2020JB019932, doi:10.1029/2020JB019932.

     

    Sichuan Geology Bureau. 1980. Regional Geological Survey Report (Suining, Zigong, Neijiang, Yibin and Luzhou Geological Map Sheet, 1: 200000) (in Chinese). Chengdu: Sichuan Geology Bureau.

     

    Tenthorey E, Cox S F, Todd H F. 2003. Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones. Earth & Planetary Science Letters, 206(1-2): 161-172, doi:10.1016/S0012-821X(02)01082-8.

     

    Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location Algorithm: Method and application to the northern Hayward Fault, California. Bull. Seismol. Soc. Am. , 90(6): 1353-1368. doi: 10.1785/0120000006

     

    Wang C Y, Mooney W D, Wang X L, et al. 2002. Study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunnan region, China. Acta Seismologica Sinica (in Chinese), 24(1): 1-16.

     

    Wang M M, Hubbard J, Plesch A, et al. 2016. Three-dimensional seismic velocity structure in the Sichuan basin, China. J. Geophys. Res. : Solid Earth, 121(2): 1007-1022, doi:10.1002/2015jb012644.

     

    Wang M M, Yang H F, Fang L H, et al. 2020. Shallow faults reactivated by Hydraulic Fracturing: The 2019 Weiyuan earthquake sequences in Sichuan, China. Seismol. Res. Lett. , 91(6): 3171-3181, doi:10.1785/0220200174.

     

    Wang W P. 2016. The application of double-difference tomography method in the intersection zone of Xianshuihe fault, Anninghe fault and Longmenshan fault[Master's thesis](in Chinese). Beijing: Institute of Geophysics, China Earthquake Administration.

     

    Wang X L, Lei X L, Ma S L, et al. 2020. Phase velocity structure and azimuthal anisotropy beneath Sichuan Basin and surrounding areas from Rayleigh wave. Chinese J. Geophys. (in Chinese), 63(2): 445-459, doi:10.6038/cjg2020M0700.

     

    Wei W, Sun R M, Shi S Y. 2010. P-wave tomographic images beneath southeastern Tibet: Investigating the mechanism of the 2008 Wenchuan earthquake. Science China Earth Sciences, 53(9): 1252-1259. doi: 10.1007/s11430-010-4037-5

     

    Xiao Z, Gao Y. 2017. Crustal velocity structure beneath the northeastern Tibetan plateau and adjacent regions derived from double difference tomography. Chinese J. Geophys. (in Chinese), 60(6): 2213-2225, doi:10.6038/cjg20170615.

     

    Yang H F, Zhou P C, Fang N, et al. 2020. A Shallow Shock: The 25 February 2019 ML 4.9 Earthquake in the Weiyuan shale gas field in Sichuan, China. Seismol. Res. Lett. , 91(6): 3182-3194, doi:10.1785/0220200202.

     

    Yao Z R, He X H. 2007. Calculation of S-wave velocity from zero-offset VSP data: Taking the VSP data of well 101 in Qibei survey area as an example. Progress in Exploration Geophysics (in Chinese), 30(2): 100-103.

     

    Yi G X, Long F, Liang M J, et al. 2020. Geometry and tectonic deformation of seismogenic structures in the Rongxian-Weiyuan-Zizhong region, Sichuan Basin: insights from focal mechanism solutions. Chinese J. Geophys. (in Chinese), 63(9): 3275-3291, doi:10.6038/cjg2020O0095.

     

    Zeng Q, Chu R S, Sheng M H, et al. 2020. Seismic ambient noise tomography for shallow velocity structures beneathWeiyuan, Sichuan. Chinese J. Geophys. (in Chinese), 63(3): 944-955, doi:10.6038/cjg2020N0177.

     

    Zhang H J, Thurber C H. 2003. Double-difference tomography: the method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am. , 93(5): 1875-1889, doi:10.1785/0120020190.

     

    Zhang H J, Thurber C. 2006. Development and applications of double-difference seismic tomography. Pure and Applied Geophysics, 163(2): 373-403, doi:10.1007/s00024-005-0021-y.

     

    Zhao Z, Zhang R S. 1987. Primary study of crustal and upper mantle velocity structure of Sichuan province. Acta Seismologica Sinica (in Chinese), 9(2): 154-166.

     

    Zheng C, Zhang R Q, Wu Q J, et al. 2019. Variations in crustal and uppermost mantle structures across eastern Tibet and adjacent regions: Implications of crustal flow and asthenospheric upwelling combined for expansions of the Tibetan plateau. Tectonics, 38(8): 3167-3181, doi:10.1029/2018TC005276.

     

    Zhu Y, Sang Q, Wu C L, et al. 2010. Reservoir characteristics of the Sinian Dengying formation in the Weiyuan gasfield, Sichuan. Journal of Chongqing University of Science and Technology (Natural Sciences Edition) (in Chinese), 12(5): 11-13, 45, doi:10.3969/j.issn.1673-1980.2010.05.004.

     

    Zou C N, Yang Z, Sun S S, et al. 2020. "Exploring petroleum inside source kitchen": Shale oil and gas in Sichuan Basin. Science China Earth Sciences, 63(7): 934-953, doi:10.1007/s11430-019-9591-5.

     

    Zuo K Z, Zhao C P, Zhang H J. 2020. 3D crustal structure and seismicity characteristics of Changning-Xingwen Area in the Southwestern Sichuan Basin, China. Bull. Seismol. Soc. Am. , 110(5): 2154-2167, doi:10.1785/0120200085.

     

    郭正吾, 邓康龄, 韩永辉等. 1996. 四川盆地形成与演化. 北京: 地质出版社.

     

    胡亚平, 王志, 刘冠男等. 2017. 南北地震带地壳结构多参数成像及强震触发机制研究. 地球物理学报, 60(6): 2113-2129, doi:10.6038/cjg20170608. http://www.geophy.cn//CN/abstract/abstract13760.shtml

     

    李敏娟, 沈旭章, 张元生等. 2018. 基于密集台阵的青藏高原东北缘地壳精细结构及九寨沟地震震源区结构特征分析. 地球物理学报, 61(5): 2075-2087, doi:10.6038/cjg2018L0720. http://www.geophy.cn//CN/abstract/abstract14528.shtml

     

    李永华, 吴庆举, 安张辉等. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义. 地球物理学报, 2006, 49(5): 1359-1368.

     

    刘伟, 吴庆举, 张风雪. 2019. 利用双差层析成像方法反演青藏高原东南缘地壳速度结构. 地震学报, 41(2): 155-168, doi:10.11939/jass.20180083.

     

    吕宝凤. 2005. 川东南地区构造变形与下古生界油气成藏研究. 广州: 中国科学院(广州地球化学研究所).

     

    梅庆华, 何登发, 文竹等. 2014. 四川盆地乐山-龙女寺古隆起地质结构及构造演化. 石油学报, 35(1): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401002.htm

     

    缪思钰, 张海江, 陈余宽等. 2019. 基于微地震定位和速度成像的页岩气水力压裂地面微地震监测. 石油物探, 2019, 58(2): 262-271, 284.

     

    四川省地质局. 1980. 区域地质报告(遂宁幅、自贡幅、内江幅、宜宾幅、泸州幅). 成都: 四川省地质局.

     

    王椿镛, Mooney W D, 王溪莉等. 2002. 川滇地区地壳上地幔三维速度结构研究. 地震学报, 24(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200201000.htm

     

    王伟平. 2016. 鲜水河、安宁河和龙门山断裂带交汇区双差层析成像研究[硕士论文]. 北京: 中国地震局地球物理研究所.

     

    王小龙, 雷兴林, 马胜利等. 2020. 利用远震研究四川盆地及其周缘瑞利面波相速度和方位各向异性. 地球物理学报, 63(2): 445-459, doi:10.6038/cjg2020M0700. http://www.geophy.cn//CN/abstract/abstract15331.shtml

     

    韦伟, 孙若昧, 石耀霖. 2010. 青藏高原东南缘地震层析成像及汶川地震成因探讨. 中国科学: 地球科学, 40(7): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201007004.htm

     

    肖卓, 高原. 2017. 利用双差成像方法反演青藏高原东北缘及其邻区地壳速度结构. 地球物理学报, 60(6): 2213-2225, doi:10.6038/cjg20170615. http://www.geophy.cn//CN/abstract/abstract13767.shtml

     

    姚忠瑞, 何惺华. 2007. 利用零偏VSP资料求取横波速度——以七北101井VSP测井为例. 勘探地球物理进展, 30(2): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200702004.htm

     

    易桂喜, 龙锋, 梁明剑等. 2020. 四川盆地荣县-威远-资中地区发震构造几何结构与构造变形特征: 基于震源机制解的认识和启示. 地球物理学报, 63(9): 3275-3291, doi:10.6038/cjg202000095. http://www.geophy.cn//CN/abstract/abstract15571.shtml

     

    曾求, 储日升, 盛敏汉等. 2020. 基于地震背景噪声的四川威远地区浅层速度结构成像研究. 地球物理学报, 63(3): 944-955, doi:10.6038/cjg2020N0177. http://www.geophy.cn//CN/abstract/abstract15370.shtml

     

    赵珠, 张润生. 1987. 四川地区地壳上地幔速度结构的初步研究. 地震学报, 9(2): 154-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198702003.htm

     

    朱瑜, 桑琴, 吴昌龙等. 2010. 威远气田震旦系灯影组储层特征研究. 重庆科技学院学报(自然科学版), 12(5): 11-13, 45, doi:10.3969/j.issn.1673-1980.2010.05.004.

  • 加载中

(12)

计量
  • 文章访问数:  442
  • PDF下载数:  339
  • 施引文献:  0
出版历程
收稿日期:  2020-11-24
修回日期:  2021-05-13
上线日期:  2021-11-10

目录