基于密集台阵资料的背景噪声研究青藏高原东南缘地震各向异性

朱子杰, 王绪本, 刘志强, 梁春涛. 2021. 基于密集台阵资料的背景噪声研究青藏高原东南缘地震各向异性. 地球物理学报, 64(3): 823-837, doi: 10.6038/cjg2021O0440
引用本文: 朱子杰, 王绪本, 刘志强, 梁春涛. 2021. 基于密集台阵资料的背景噪声研究青藏高原东南缘地震各向异性. 地球物理学报, 64(3): 823-837, doi: 10.6038/cjg2021O0440
ZHU ZiJie, WANG XuBen, LIU ZhiQiang, LIANG ChunTao. 2021. Seismic anisotropy in the southeastern margin of the Tibetan Plateau revealed by ambient noise tomography based on high-density array. Chinese Journal of Geophysics (in Chinese), 64(3): 823-837, doi: 10.6038/cjg2021O0440
Citation: ZHU ZiJie, WANG XuBen, LIU ZhiQiang, LIANG ChunTao. 2021. Seismic anisotropy in the southeastern margin of the Tibetan Plateau revealed by ambient noise tomography based on high-density array. Chinese Journal of Geophysics (in Chinese), 64(3): 823-837, doi: 10.6038/cjg2021O0440

基于密集台阵资料的背景噪声研究青藏高原东南缘地震各向异性

  • 基金项目:

    国家自然科学基金(91755215,41674059,41340009)资助

详细信息
    作者简介:

    朱子杰, 男, 硕士研究生, 主要研究方向为地震学.E-mail: zhuzijie07@163.com

    通讯作者: 梁春涛, 男, 研究员, 博士生导师.E-mail: liangchuntao12@cdut.cn
  • 中图分类号: P315

Seismic anisotropy in the southeastern margin of the Tibetan Plateau revealed by ambient noise tomography based on high-density array

More Information
  • 新生代以来,青藏高原快速隆升、地壳缩短和东向挤出.受到稳定的扬子地块阻挡,青藏高原东南缘地壳发生强烈变形.地震各向异性研究有助于认识地壳内部精细结构及内部运动学过程.通过收集密集地震台阵的观测资料,利用环境噪声提取Rayleigh波频散曲线,采用多角度频散曲线反演方法,获得地壳和上地幔顶部高分辨率的地震S波速度和各向异性图像.青藏高原东南缘地区上地壳的地震快波方向与其相邻的走滑断裂带走向、GPS水平速度场方向基本一致,围绕喜马拉雅东部构造结顺时针旋转.然而,中、下地壳的各向异性与上地壳存在明显差异,例如,在木里盐源盆地和滇中地块等各向异性方向发生大幅度转向,从上地壳的NE方向转为中、下地壳的NW方向.中、下地壳的各向异性方向与其低速层的延伸方向吻合.在下地壳底部和上地幔顶部的范围内,地震快波方向再次发生改变,与上地壳的各向异性分布一致,可能说明在较早的历史时期上地壳与下地壳是耦合在一起的,在中新世时期低速黏滞性流体挤入青藏高原东南缘中下地壳,使原有的上地壳与中下地壳发生解耦.因此,新生代以来高原物质挤出可能导致青藏高原东南缘地壳发生强烈变形.

  • 加载中
  • 图 1 

    青藏高原东南缘及相邻区域的地形及构造简图

    Figure 1. 

    Brief topographic and the tectonic map of the southeastern margin of the Tibetan Plateau

    图 2 

    青藏高原东南缘台站分布图

    Figure 2. 

    Distribution map of stations on the eastern margin of the Tibetan Plateau

    图 3 

    左图表示部分台站对之间的互相关波形,横、纵坐标分别表示时间和台站之间的距离; 右图表示不同周期瑞利波频散曲线数

    Figure 3. 

    The figure on the left shows the cross-correlation waveform with individual station-pair. The horizontal and vertical axis represent the time and distance between stations, respectively. The figure on the right shows the number of Rayleigh wave dispersion curves in different periods

    图 4 

    周期为10 s,20 s,30 s,40 s的群速度层析成像检测板结果

    Figure 4. 

    Checkboard test results of group velocity tomography with a period of 10 s, 20 s, 30 s, 40 s

    图 5 

    左、中、右图依次为周期为20 s,40 s各向异性方向(da)、各向异性强度(dm)、群速度(dv)的误差分布

    Figure 5. 

    The left, middle and right images show the error of anisotropy direction (da), anisotropy magnitude (dm) and group velocity (dv) with a period of 20 s and 40 s

    图 6 

    周期为10 s, 20 s, 30 s,40 s瑞利面波群速度与各向异性分布

    Figure 6. 

    Images of the group velocities and anisotropies of the Rayleigh waves at various periods of 10, 20, 30 and 40 s, respectively

    图 7 

    青藏高原东南缘及相邻地区Moho界面深度图(根据Wang et al., 2017; 朱介寿等, 2017等修改)

    Figure 7. 

    Depth map of the Moho interface on the eastern margin of the Tibet Plateau and adjacent areas (modified by Wang et al., 2017; Zhu et al., 2017)

    图 8 

    (a)、(b)、(c)、(d)表示青藏高原东南缘及相邻区域上地壳顶部(2~5 km), 上地壳(10~20 km), 中下地壳(30~40 km),下地壳底部以及上地幔顶部(50~60 km)的S波速度和各向异性分布图

    Figure 8. 

    (a)、(b)、(c)、(d) show the S-wave velocity and anisotropy maps of the top upper crust (2~5 km); upper crust (10~20 km), mid-lower crust (30~40 km), bottom of lower crust to top of upper mantle (50~60 km) in the southeastern margin of the Tibetan Plateau and adjacent areas

    图 9 

    A、B、C、D、E为五条地壳速度剖面

    Figure 9. 

    A、B、C、D、E represent five crustal velocity profiles

  •  

    Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5): 358-362. doi: 10.1038/ngeo830

     

    Bao X W, Sun X X, Xu M J, et al. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth and Planetary Science Letters, 415: 16-24, doi:10.1016/j.epsl.2015.01.020.

     

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal of the Royal Astronomical Society, 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x

     

    Brownlee S J, Schulte-Pelkum V, Raju A, et al. 2017. Characteristics of deep crustal seismic anisotropy from a compilation of rock elasticity tensors and their expression in receiver functions. Tectonics, 36(9): 1835-1857, doi:10.1002/2017TC004625.

     

    Burchfiel B C, Royden L H, Van Der Hilst R D, et al. 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China. GSA Today, 18(7): 4-11, doi:10.1130/GSATG18A.1.

     

    Cai Y, Wu J P, Fang L H, et al. 2016. Crustal anisotropy and deformation of the southeastern margin of the Tibetan Plateau revealed by Pms splitting. Journal of Asian Earth Sciences, 121: 120-126, doi:10.1016/j.jseaes.2016.02.005.

     

    Chang L J, DING Z F, Wang C Y. 2015. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China. Chinese Journal of Geophysics (in Chinese), 58(11): 4052-4067, doi:10.6038/cjg20151114.

     

    Chen Y, Zhang Z J, Sun C Q, et al. 2013. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions. Gondwana Research, 24(3-4): 946-957, doi:10.1016/j.gr.2012.04.003.

     

    ChinArray. 2006. China Seismic Array waveform data (in Chinese). China Earthquake Adminstration, doi:10.12001/ChinArray.Data.

     

    Clark M K, Royden L H. 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2

     

    Clark M K, Royden L, Burchfiel B C, et al. 2003. Late Cenozoic uplift of southeastern Tibet: implications for lower crustal flow. Geophysical Research Abstracts, 5: 12969.

     

    Clark M K, House M A, Royden L H, et al. 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33(6): 525-528, doi:10.1130/G21265.1.

     

    Crampin S, Chastin S. 2003. A review of shear wave splitting in the crack-critical crust. Geophysical Journal International, 155(1): 221-240. doi: 10.1046/j.1365-246X.2003.02037.x

     

    Crampin S, Peacock S. 2008. A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation. Wave Motion, 45(6): 675-722, doi:10.1016/j.wavemoti.2008.01.003.

     

    Dreiling J, Tilmann F, Yuan X H, et al. 2018. Crustal radial anisotropy and linkage to geodynamic processes: A study based on seismic ambient noise in southern Madagascar. Journal of Geophysical Research: Solid Geophysical Research: Solid Earth, 123(6): 5130-5146. doi: 10.1029/2017JB015273

     

    England P, Houseman G. 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone. Journal of Geophysical Research: Solid Earth, 91(B3): 3664-3676, doi:10.1029/JB091iB03p03664.

     

    England P, Houseman G. 1989. Extension during continental convergence, with application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579, doi:10.1029/JB094iB12p17561.

     

    Fan L P, Wu J P, Fang L H, et al. 2015. The characteristic of Rayleigh wave group velocities in the southeastern margin of the Tibetan Plateau and its tectonic implications. Chinese Journal of Geophysics (in Chinese), 58(5): 1555-1567, doi:10.6038/cjg20150509.

     

    Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research: Solid Earth, 112(B8): B08416, doi:10.1029/2005JB004120.

     

    Gao Y Shi Y T, Wang Q. 2020. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its deep tectonic significances. Chinese Journal of Geophysics (in Chinese), 63(3): 802-816, doi:10.6038/cjg2020O0003.

     

    Hacker B R, Ritzwoller M H, Xie J. 2014. Partially melted, mica-bearing crust in Central Tibet. Tectonics, 33(7): 1408-1424, doi:10.1002/2014TC003545.

     

    Herrmann R B. 2013. Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84(6): 1081-1088. doi: 10.1785/0220110096

     

    Huang Z C, Wang L S, Xu M J, et al. 2015. Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation. Earth and Planetary Science Letters, 432: 354-362, doi:10.1016/j.epsl.2015.10.027.

     

    Huang Z C, Wang L S, Xu M J, et al. 2018. P wave anisotropic tomography of the SE Tibetan Plateau: Evidence for the crustal and upper-mantle deformations. Journal of Geophysical Research: Solid Earth, 123(10): 8957-8978, doi:10.1029/2018JB016048.

     

    Karato S I, Jung H, Katayama I, et al. 2008. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36: 59-95. doi: 10.1146/annurev.earth.36.031207.124120

     

    Klemperer S L. 2006. Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. Geological Society, London, Special Publications, 268(1): 39-70.

     

    Kong F S, Wu J, Liu K H, et al. 2016. Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas. Earth and Planetary Science Letters, 442: 72-79, doi:10.1016/j.epsl.2016.03.003.

     

    Levshin A L, Pisarenko V F, Pogrebinsky G A. 1972. On a frequency-time analysis of oscillations. Annales Geophysicae, 28(2): 211-218.

     

    Li Y, Hou Z J, Si G Y, et al. 2001. Sedimentary characteristics and tectonic controls in Neogene Yanyuan tectonic escape basin in Southeastern Qinghai-Tibet Plateau. Journal of Mineralogy and Petrology (in Chinese), 21(3): 34-43, doi:10.3969/j.issn.1001-6872.2001.03.006.

     

    Li Y, Yao H J, Liu Q Y, et al. 2010. Phase velocity array tomography of Rayleigh waves in western Sichuan from ambient seismic noise. Chinese Journal of Geophysics (in Chinese), 53(4): 842-852, doi:10.3969/j.issn.0001-5733.2010.04.009.

     

    Liang C T, Langston C A. 2008. Ambient seismic noise tomography and structure of eastern North America. Journal of Geophysical Research: Solid Earth, 113(B3): B03309, doi:10.1029/2007JB005350.

     

    Liang C T, Langston C A. 2009. Three-dimensional crustal structure of eastern North America extracted from ambient noise. Journal of Geophysical Research: Solid Earth, 114(B3): B03310, doi:10.1029/2008JB005919.

     

    Liang C T, Liu Z Q, Hua Q, et al. 2020. The 3D seismic azimuthal anisotropies and velocities in the eastern Tibetan Plateau extracted by an azimuth-dependent dispersion curve inversion method. Tectonics, 39(4): e2019TC005747, doi:10.1029/2019TC005747.

     

    Liu Q, Van Der Hilst R D, Li Y, et al. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience, 7(5): 361-365, doi:10.1038/ngeo2130.

     

    Liu Q Y, Chen J H, Li S C, et al. 2008. The MS8.0 Wenchuan earthquake: preliminary results from the Western Sichuan mobile seismic array observations. Seismology and Geology (in Chinese), 30(3): 584-596, doi:10.3969/j.issn.0253-4967.2008.03.002.

     

    Liu Q Y, Li Y, Chen J H, et al. 2009. Wenchuan MS8.0 earthquake: preliminary study of the S-wave velocity structure of the crust and upper mantle. Chinese Journal of Geophysics (in Chinese), 52(2): 309-319.

     

    MAINPRICE, D. (2007). Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective. Treatise on Geophysics, 437-491. doi:10.1016/b978-044452748-6/00045-6.

     

    Pan Y J, Shen W B. 2017. Contemporary crustal movement of southeastern Tibet: Constraints from dense GPS measurements. Scientific Reports, 7: 45348, doi:10.1038/srep45348.

     

    Royden L H. 1996. Coupling and decoupling of crust and mantle in convergent orogens: implications for strain partitioning in the crust. Journal of Geophysical Research: Solid Earth, 101(B8): 17679-17705. doi: 10.1029/96JB00951

     

    Royden L H, Burchfiel B C, King W R, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788-790, doi:10.1126/Science.276.5313.788.

     

    Royden L H, Burchfiel B C, Van Der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058, doi:10.1126/science.1155371.

     

    Schoenbohm I M, Burchfiel B C, Chen L Z. 2006. Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan plateau. Geology, 34(10): 813-816. doi: 10.1130/G22679.1

     

    Shen Z K, Lu J N, Wang M, et al. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 110(B11): B11409, doi:10.1029/2004JB003421.

     

    Shen Z K, Lü J N, Wang M, et al. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 110(B11): B11409, doi:10.1029/2004JB003421.

     

    Tai L X, Gao Y, Liu G, et al. 2015. Crustal seismic anisotropy in the southeastern margin of Tibetan plateau by China Array data: shear-wave splitting from temporary observation of the first phase. Chinese Journal of Geophysics (in Chinese), 58(11): 4079-4091, doi:10.6038/cjg20151116.

     

    Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

     

    Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978

     

    Wang C Y, Lou H, Lv Z Y, et al. 2008. S-wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau-Deep environment of lower crustal flow. Science in China Series D: Earth Sciences, 51(2): 263-274 doi: 10.1007/s11430-008-0008-5

     

    Wang E, Kirby E, Furlong K P, et al. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9): 640-645. doi: 10.1038/ngeo1538

     

    Wang H F, Wu J P, Zhou S Y, et al. 2020. Rayleigh wave azimuthal anisotropy in the southeastern Tibetan plateau from Eikonal tomography. Chinese Journal of Geophysics (in Chinese), 63(3): 1070-1084, doi:10.6038/cjg2020N0104.

     

    Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774, doi:10.1029/2019JB018774.

     

    Wang Q, Gao Y, Shi Y T. 2015. Rayleigh wave azimuthal anisotropy on the southeastern front of the Tibetan plateau from seismic ambient noise. Chinese Journal of Geophysics (in Chinese), 58(11): 4068-4078, doi:10.6038/cjg20151115.

     

    Wang W L, Wu J P, Fang L H, et al. 2017. Crustal thickness and Poisson's ratio in Southwest China based on data from dense seismic arrays. Journal of Geophysical Research: Solid Earth, 122(9): 7219-7235, doi:10.1002/2017JB013978.

     

    Wang X B, Yu N, Gao S, et al. 2017. Research progress in research on electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 60(6): 2350-2370, doi:10.6038/cjg20170626.

     

    Wang Y Z, Wang E N, Shen Z K, et al. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Science in China Series D: Earth Sciences, 51(9): 1267-1283. doi: 10.1007/s11430-008-0106-4

     

    Wei W, Zhao D P, Xu J D. 2013. P-wave anisotropic tomography in Southeast Tibet: New insight into the lower crustal flow and seismotectonics. Physics of the Earth and Planetary Interiors, 222: 47-57, doi:10.1016/j.pepi.2013.07.002.

     

    Xie J Y, Ritzwoller M H, Shen W S, et al. 2013. Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. Journal of Geophysical Research: Solid Earth, 118(8): 4226-4252, doi:10.1002/jgrb.50296.

     

    Xie J Y, Ritzwoller M H, Shen W S, et al. 2017. Crustal anisotropy across eastern Tibet and surroundings modeled as a depth-dependent tilted hexagonally symmetric medium. Geophysical Journal International, 209(1): 466-491, doi:10.1093/gji/ggx004.

     

    Yang Y J, Ritzwoller M H, Zheng Y, et al. 2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. Journal of Geophysical Research: Solid Earth, 117(B4): B04303, doi:10.1029/2011JB008810.

     

    Yang Y Q, Liu M. 2009. Crustal thickening and lateral extrusion during the Indo-Asian collision: A 3D viscous flow model. Tectonophysics, 465(1-4): 128-135. doi: 10.1016/j.tecto.2008.11.002

     

    Yao H J, Beghein C, Van Der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-Ⅱ. Crustal and upper-mantle structure. Geophysical Journal International, 173(1): 205-219, doi:10.1111/j.1365-246X.2007.03696.x.

     

    Yao H J, Robert D, Van Der Hilst E D. 2009. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophysical Journal International, 179(2): 1113-1132, doi:10.1111/j.1365-246X.2009.04329.x.

     

    Yao H J, Van Der Hilst R D, Montagner J P. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. Journal of Geophysical Research: Solid Earth, 115(B12): B12307, doi:10.1029/2009JB007142.

     

    Yi S, Freymueller J T, Sun W K. 2016. How fast is the middle-lower crust flowing in eastern Tibet? A constraint from geodetic observations. Journal of Geophysical Research: Solid Earth, 121(9): 6903-6915, doi:10.1002/2016JB013151.

     

    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280, doi:10.1146/annurev.earth.28.1.211.

     

    Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 488(1-4): 293-325, doi:10.1016/j.tecto.2009.06.002.

     

    Zhang P Z. 2008. A study on the present tectonic deformation, strain partitioning and deep dynamic process of west Sichuan region on eastern margin of Qinghai-Tibet Plateau. Science in China (Series D), 38(9): 1041-1056.

     

    Zhao G Z, Chen X B, Wang L F, et al. 2008. Evidence of crustal 'channel flow' in the eastern margin of Tibetan Plateau from MT measurements. Chinese Science Bulletin (in Chinese), 53(12): 1887-1893.

     

    Zheng C, Ding Z F, Song X D. 2016. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure in Southeast Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 59(9): 3223-3236, doi:10.6038/cjg20160908.

     

    Zheng C, Ding Z F, Song X D. 2018. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure beneath the northern north-south seismic zone. Chinese Journal of Geophysics (in Chinese), 61(4): 1211-1224, doi:10.6038/cjg2018L0443.

     

    Zheng T, Ding Z F, Ning J Y, et al. 2018. Crustal azimuthal anisotropy beneath the southeastern Tibetan Plateau and its geodynamic implications. Journal of Geophysical Research: Solid Earth, 123(11): 9733-9749, doi:10.1029/2018JB015995.

     

    Zhu J S, Wang X B, Yang Y H, et al. 2017. The crustal flow beneath the eastern margin of the Tibetan Plateau and its process of dynamics. Chinese Journal of Geophysics (in Chinese), 60(6): 2038-2057, doi:10.6038/cjg20170602.

     

    常利军, 丁志峰, 王椿镛. 2015. 南北构造带南段上地幔各向异性特征. 地球物理学报, 58(11): 4052-4067, doi:10.6038/cjg20151114. http://www.geophy.cn//CN/abstract/abstract11979.shtml

     

    范莉苹, 吴建平, 房立华等. 2015. 青藏高原东南缘瑞利波群速度分布特征及其构造意义探讨. 地球物理学报, 58(5): 1555-1567, doi:10.6038/cjg20150509. http://www.geophy.cn//CN/abstract/abstract11489.shtml

     

    高原, 石玉涛, 王琼. 2020. 青藏高原东南缘地震各向异性及其深部构造意义. 地球物理学报, 63(3): 802-816, doi:10,6038/cjg2020O0033. http://www.geophy.cn//CN/abstract/abstract15359.shtml

     

    李勇, 侯中健, 司光影等. 2001. 青藏高原东南缘晚第三纪盐源构造逸出盆地的沉积特征与构造控制. 矿物岩石, 21(3): 34-43, doi:10.3969/j.issn.1001-6872.2001.03.006.

     

    李昱, 姚华建, 刘启元等. 2010. 川西地区台阵环境噪声瑞利波相速度层析成像. 地球物理学报, 53(4): 842-852, doi:10.3969/j.issn.0001-5733.2010.04.009. http://www.geophy.cn//CN/abstract/abstract3003.shtml

     

    刘启元, 陈九辉, 李顺成等. 2008. 汶川MS8.0地震: 川西流动地震台阵观测数据的初步分析. 地震地质, 30(3): 584-596, doi:10.3969/j.issn.0253-4967.2008.03.002.

     

    太龄雪, 高原, 刘庚等. 2015. 利用中国地震科学台阵研究青藏高原东南缘地壳各向异性: 第一期观测资料的剪切波分裂特征. 地球物理学报, 58(11): 4079-4091, doi:10.6038/cjg20151116. http://www.geophy.cn//CN/abstract/abstract11981.shtml

     

    王椿镛, 楼海, 吕智勇等. 2008. 青藏高原东部地壳上地幔S波速度结构-下地壳流的深部环境. 中国科学D辑: 地球科学, 38(1): 22-32. doi: 10.3321/j.issn:1006-9267.2008.01.003

     

    王怀富, 吴建平, 周仕勇等. 2020. 青藏高原东南缘基于程函方程的面波方位各向异性研究. 地球物理学报, 63(3): 1070-1084, doi:10.6038/cjg2020N0104. http://www.geophy.cn//CN/abstract/abstract15379.shtml

     

    王琼, 高原, 石玉涛. 2015. 青藏高原东南缘基于背景噪声的Rayleigh面波方位各向异性研究. 地球物理学报, 58(11): 4068-4078, doi:10.6038/cjg20151115.

     

    王阎昭, 王恩宁, 沈正康等. 2008. 基于GPS资料约束反演川滇地区主要断裂现今活动速率, 中国科学D辑: 地球科学, 38(5): 582-597. doi: 10.3321/j.issn:1006-9267.2008.05.006

     

    张培震. 2008. 青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程. 中国科学D辑: 地球科学, 38(9): 1041-1056. doi: 10.3321/j.issn:1006-9267.2008.09.001

     

    郑晨, 丁志峰, 宋晓东. 2016. 利用面波频散与接收函数联合反演青藏高原东南缘地壳上地幔速度结构. 地球物理学报, 59(9): 3223-3236, doi:10.6038/cjg20160908. http://www.geophy.cn//CN/abstract/abstract13050.shtml

     

    中国地震科学台阵. 2006. 中国地震科学探测台阵波形数据. 中国地震局, doi:10.12001/ChinArray.Data.

     

    朱介寿, 王绪本, 杨宜海等. 2017. 青藏高原东缘的地壳流及动力过程. 地球物理学报, 60(6): 2038-2057, doi:10.6038/cjg20170602. http://www.geophy.cn//CN/abstract/abstract13754.shtml

  • 加载中

(9)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-11-11
修回日期:  2020-12-21
上线日期:  2021-03-10

目录