Three-dimensional element-by-element parallel spectral-element method for seismic wave modeling
-
摘要:
高效地震波场正演模拟对于复杂模型中地震波传播与成像研究至关重要.本文在谱元法原理框架内,对已有逐元谱元法改进,提出一种新的逐元并行谱元法求解三维地震波运动方程,并得到地震波场.逐元并行谱元法的核心思想在于在单元上进行质量矩阵与解向量的乘积运算,并将此运算平均分配至每一个CPU计算核心,此处理有利提升谱元法的并行计算效率.同时,根据Gauss-Lobatto-Legendre (GLL)数值积分点与插值点重合的特点,将稠密单元刚度矩阵的存储转化成单元雅克比矩阵行列式的值及其逆的存储,大幅减少谱元法计算内存开销.此外,在模型边界上利用逐元并行谱元法求解二阶位移形式完美匹配层(PML)吸收边界条件,消除边界截断而引入的虚假反射.通过逐元并行谱元法得到的数值解与解析解对比,以及实际地震波场模拟,数值结果证实了逐元并行谱元法用于地震波场模拟的高效性.
Abstract:High-efficient seismic wave forward modeling is important for the investigation of seismic wave phenomenon in complex media and the imaging of subsurface structures of the Earth. In the framework of spectral-element method (SEM),we improve the computation efficiency of the previous element-by-element method and propose a new element-by-element parallel spectral-element method (EBE-SEM) for solving 3D seismic wave equation to obtain seismic wavefield. The essential idea of EBE-SEM is that the products of stiffness matrix and solution vector are operated on element level,and the products are equally distributed to each CPU processor. This strategy can greatly increase the parallelization of SEM. Because Gauss-Legendre-Lobatto integration points coincide with the interpolation points in SEM,the storage of dense element stiffness matrix can be transformed to the storage of the determinant and inversion of element Jacobian matrix,and therefore the efficiency of EBE-SEM can be further increased. To eliminate the reflected wave from truncated boundary,we solve the second-order perfectly matched layer (PML) absorbing boundary condition that is constructed at the boundary of the computational domain. The validity and efficiency of the EBE-SEM are demonstrated by two numerical examples.
-
-
Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods. New York: W. H. Freeman & Co.
Bielak J, Ghattas O, Kim E J. 2005. Parallel octree-based finite element method for large-scale earthquake ground motion simulation. Computer Modeling in Engineering and Sciences, 10(2): 99-112. http://adsabs.harvard.edu/abs/2003PhDT........43K
Cohen G C. 2002. Higher-Order Numerical Methods for Transient Wave Equation. Berlin Heidelberg: Springer-Verlag.
Dai W, Fowler P, Schuster G T. 2012. Multi-source least-squares reverse time migration. Geophysical Prospecting, 60(4): 681-695. doi: 10.1111/j.1365-2478.2012.01092.x
De Hoop A T. 1959. The surface line source problem. Applied Scientific Research, 8(4): 349-356. http://www.researchgate.net/publication/280995643_The_surface_line_source_problem
Dong X P, Yang D H, Niu F L. 2019. Passive adjoint tomography of the crustal and upper mantle beneath Eastern Tibet with a W2-norm misfit function. Geophysical Research Letters, 46(12): 12986-12995. http://www.ingentaconnect.com/content/bpl/grl/2019/00000046/00000022/art00037
Fichtner A. 2011. Full Seismic Waveform Modelling and Inversion. Berlin Heidelberg: Springer-Verlag.
Furumura T, Kennett B L N, Takenaka H. 1998. Parallel 3-D pseudospectral simulation of seismic wave propagation. Geophysics, 63(1): 279-288. doi: 10.1190/1.1444322
Graves R. 1996. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America, 86(4): 1091-1106. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=86/4/1091
Gropp W, Lusk E, Doss N, et al. 1996. A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing, 22(6): 789-828. doi: 10.1016/0167-8191(96)00024-5
Komatitsch D, Vilotte J P. 1998. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2): 368-392.
Komatitsch D, Tromp J. 1999. Introduction to the spectral element method for three-dimensional Seismic wave propagation. Geophysical Journal International, 139(3): 806-822. doi: 10.1046/j.1365-246x.1999.00967.x
Komatitsch D, Tromp J. 2002. Spectral-element simulations of global seismic wave propagation-Ⅰ. Validation. Geophysical Journal International, 149(2): 390-412. doi: 10.1046/j.1365-246X.2002.01653.x
Komatitsch D, Ritsema J, Tromp J. 2002. The spectral-element method, Beowulf computing, and Global seismology. Science, 298(5599): 1737-1742. doi: 10.1126/science.1076024
Komatitsch D, Tromp J. 2003. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophysical Journal International, 154(1): 146-153. doi: 10.1046/j.1365-246X.2003.01950.x
Kosloff D D, Baysal E. 1982. Forward modeling by a Fourier method. Geophysics, 47(10): 1402-1412. doi: 10.1190/1.1441288
Laske G, Masters G, Ma Z T, et al. 2013. Update on CRUST1.0-A 1-degree global model of earth's crust.//EGU General Assembly Conference Abstracts. Vienna, Austria: AGU.
Lei W, Ruan Y Y, Bozdağ E, et al. 2020. Global adjoint tomography-model GLAD-M25. Geophysical Journal International, 233(1): 1-21. http://www.researchgate.net/publication/345341847_Global_adjoint_tomography-model_GLAD-M25
Li X, Li Y, Zhang M, et al. 2011. Scalar seismic-wave equation modeling by a multisymplectic discrete singular convolution differentiator method. Bulletin of the Seismological Society of America, 101(4): 1710-1718. doi: 10.1785/0120100266
Liu S L, Li X F, Wang W S, et al. 2013. Optimal symplectic scheme and generalized discrete convolutional differentiator for seismic wave modeling. Chinese Journal of Geophysics (in Chinese), 56(7): 2452-2462, doi:10.6038/cjg20130731.
Liu S L, Li X F, Wang W S, et al. 2014. A mixed-grid finite element method with PML absorbing boundary conditions for seismic wave modelling. Journal of Geophysics and Engineering, 11(5): 055009. doi: 10.1088/1742-2132/11/5/055009
Liu S L, Yang D H, Dong X P, et al. 2017a. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling. Solid Earth, 8(5): 969-986. doi: 10.5194/se-8-969-2017
Liu S L, Yang D H, Lang C, et al. 2017b. Modified symplectic schemes with nearly-analytic discrete operators for acoustic wave simulations. Computer Physics Communications, 213: 52-63. doi: 10.1016/j.cpc.2016.12.002
Liu S L, Lang C, Yang H, et al. 2018. A developed nearly analytic discrete method for forward modeling in the frequency domain. Journal of Applied Geophysics, 149: 25-34. doi: 10.1016/j.jappgeo.2017.12.007
Liu Y. 2014. Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling. Geophysical Journal International, 197(2): 1033-1047. doi: 10.1093/gji/ggu032
Liu Y S, Teng J W, Lan H Q, et al. 2014. A comparative study of finite element and spectral element methods in seismic wavefield modeling. Geophysics, 79(2): T91-T104. doi: 10.1190/geo2013-0018.1
Long G H, Li X F, Zhang M G. 2009. The application of staggered-grid Fourier pseudospectral differentiation operator in wavefield modeling. Chinese Journal of Geophysics (in Chinese), 52(1): 193-199.
Luo Y Q, Liu C. 2020. On the stability and absorption effect of the multiaxial complex frequency shifted nearly perfectly matched layers method for seismic wave propagation. Chinese Journal of Geophysics (in Chinese), 63(8): 3078-3090, doi:10.6038/cjg2020N0028.
Madariaga R. 1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3): 639-666. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=66/3/639
Marfurt K J. 1984. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 49(5): 533-549. doi: 10.1190/1.1441689
Meng W J, Fu L Y. 2017. Seismic wavefield simulation by a modified finite element method with a perfectly matched layer absorbing boundary. Journal of Geophysics and Engineering, 14(4): 852-864. doi: 10.1088/1742-2140/aa6b31
Padovani E, Priolo E, Seriani G. 1994. Low and high order finite element method: Experience in seismic modeling. Journal of Computational Acoustics, 2(4): 371-422. doi: 10.1142/S0218396X94000233
Patera A T. 1984. A spectral element method for fluid dynamics: Laminar flow in a channel expansion. Journal of Computational Physics, 54(3): 468-488. doi: 10.1016/0021-9991(84)90128-1
Rao Y, Wang Y H. 2013. Seismic waveform simulation with pseudo-orthogonal grids for irregular topographic models. Geophysical Journal International, 194(3): 1778-1788. doi: 10.1093/gji/ggt190
Ruud B, Hestholm S. 2001. 2D surface topography boundary conditions in seismic wave modelling. Geophysical Prospecting, 49(4): 445-460. doi: 10.1046/j.1365-2478.2001.00268.x
Seriani G, Priolo E. 1994. Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elements in Analysis and Design, 16(3-4): 337-348. doi: 10.1016/0168-874X(94)90076-0
Seriani G. 1997. A parallel spectral element method for acoustic wave modeling. Journal of Computational Acoustics, 5(1): 53-69. doi: 10.1142/S0218396X97000058
Seriani G. 1998. 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor. Computer Methods in Applied Mechanics and Engineering, 164(1-2): 235-247. doi: 10.1016/S0045-7825(98)00057-7
Seriani G, Oliveira S P. 2007. Optimal blended spectral-element operators for acoustic wave modeling. Geophysics, 72(5): SM95-SM106. doi: 10.1190/1.2750715
Shragge J. 2014. Reverse time migration from topography. Geophysics, 79(4): 1-12. doi: 10.1190/2014-0519-TIOGEO.1
Song G J, Yang D H, Tong P, et al. 2012. Parallel WNAD algorithm for solving 3D elastic equation and its wavefield simulations in TI media. Chinese Journal of Geophysics (in Chinese), 55(2): 547-559, doi:10.6038/j.issn.0001-5733.2012.02.017.
Su B, Li H L, Liu S L, et al. 2019. Modified symplectic scheme with finite element method for seismic wavefield modeling. Chinese Journal of Geophysics (in Chinese), 62(4): 1440-1452, doi:10.6038/cjg2019M0538.
Tan S R, Huang L J. 2014. Reducing the computer memory requirement for 3D reverse-time migration with a boundary-wavefield extrapolation method. Geophysics, 79(5): S185-S194. doi: 10.1190/geo2014-0075.1
Tape C, Liu Q Y, Maggi Q, et al. 2009. Adjoint tomography of the Southern California crust. Science, 325(5943): 988-992. doi: 10.1126/science.1175298
Tong P, Komatitsch D, Tseng T L, et al. 2014. A 3-D spectral-element and frequency-wave number hybrid method for high-resolution seismic array imaging. Geophysical Research Letters, 41(20): 7025-7034. doi: 10.1002/2014GL061644
Tozer B, Sandwell D T, Smith W H F, et al. 2019. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth and Space Science, 6(10): 1847-1864. doi: 10.1029/2019EA000658
Tromp J, Tape C, Liu Q Y. 2005. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 160(1): 195-216.
Wang X M, Seriani G, Lin W J. 2007. Some theoretical aspects of elastic wave modeling with a recently developed spectral element method. Science in China Series G: Physics, Mechanics and Astronomy, 50(2): 185-207. doi: 10.1007/s11433-007-0022-1
Wang Y B, Takenaka H, Furumura T. 2001. Modelling seismic wave propagation in a two dimensional cylindrical whole earth model using the pseudospectral method. Geophysical Journal International, 145(3): 689-708. doi: 10.1046/j.1365-246x.2001.01413.x
Wang Y B, Takenaka H. 2011. SH-wavefield simulation for a laterally heterogeneous whole-Earth model using the pseudospectral method. Science China Earth Sciences, 54(12): 1940-1947. doi: 10.1007/s11430-011-4244-8
Wessel P, Smith W H F, Scharroo R, et al. 2013. Generic mapping tools: Improved version released. Eos, 94(45): 409-410.
Yang D H, Teng J W, Zhang Z J, et al. 2003. A nearly-analytic discrete method for acoustic and elastic wave equations in anisotropic media. Bulletin of the Seismological Society of America, 93(2): 882-890. doi: 10.1785/0120020125
Yang D H, Wang M X, Ma X. 2013. Symplectic stereomodelling method for solving elastic wave equations in porous media. Geophysical Journal International, 196(1): 560-579. http://gji.oxfordjournals.org/content/196/1/560.abstract
Zhang J H, Yao Z X. 2013. Optimized finite-difference operator for broadband seismic wave modeling. Geophysics, 78(1): A13-A18. doi: 10.1190/geo2012-0277.1
Zhang X, Hao J, Gao X, et al. 2020. Evaluation of investigating magnitude, source mechanism and rupture process based on restored seismic data-Taking the 2013 Lushan MW6.6 earthquake in Sichuan as an example. Chinese Journal of Geophysics (in Chinese), 63(6): 2262-2273, doi:10.6038/cjg2020N0402.
Zhang Z G, Zhang W, Chen X F. 2014. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics. Geophysical Journal International, 199(2): 860-879. doi: 10.1093/gji/ggu308
刘少林, 李小凡, 汪文帅等. 2013. 最优化辛格式广义离散奇异核褶积微分算子地震波场模拟. 地球物理学报, 56(7): 2452-2462, doi:10.6038/cjg20130731. http://www.geophy.cn//CN/abstract/abstract9627.shtml
龙桂华, 李小凡, 张美根. 2009. 错格傅里叶伪谱微分算子在波场模拟中的应用. 地球物理学报, 52(1): 193-199. http://www.geophy.cn//CN/abstract/abstract885.shtml
罗玉钦, 刘财. 2020. 地震波模拟中多轴复频移近似完全匹配层的吸收效果及稳定性. 地球物理学报, 63(8): 3078-3090, doi:10.6038/cjg2020N0028. http://www.geophy.cn//CN/abstract/abstract15554.shtml
宋国杰, 杨顶辉, 童平等. 2012. 求解3D弹性波方程的并行WNAD方法及其TI介质中的波场模拟. 地球物理学报, 55(2): 547-559, doi:10.6038/j.issn.0001-5733.2012.02.017. http://www.geophy.cn//CN/abstract/abstract8428.shtml
苏波, 李怀良, 刘少林等. 2019. 修正辛格式有限元法的地震波场模拟. 地球物理学报, 62(4): 1440-1452, doi:10.6038/cjg2019M0538. http://www.geophy.cn//CN/abstract/abstract14950.shtml
张小艳, 郝金来, 高星等. 2020. 基于恢复地震数据获取震级、震源机制及破裂过程的评价-以2013年四川芦山MW6.6地震为例. 地球物理学报, 63(6): 2262-2273, doi:10.6038/cjg2020N0402. http://www.geophy.cn//CN/abstract/abstract15485.shtml