Modeling velocity dispersion and attenuation using pore structure characteristics of rock
-
摘要:
孔隙尺度的喷射流流动是引起地震波速度频散和衰减的重要机制之一. 目前,大多数喷射流模型仅考虑硬孔隙与微裂隙之间的局部流动,而忽略了具有不同孔隙纵横比微裂隙间的喷射流作用. 为了研究各种类型孔隙间的流体流动效应,本文对经典喷射流模型进行了扩展,通过结合等效介质理论和孔隙结构模型,根据从干燥岩石超声速度-压力曲线中提取的微裂隙孔隙纵横比分布,求取出岩石中各种微裂隙的体积压缩系数,并在此基础上,利用孔隙空间的压力松弛效应对微裂隙间的喷射流效应进行了模拟,并运用Biot理论描述了硬孔隙间的宏观流动效应. 扩展后的理论模型不仅考虑了微裂隙与硬孔隙间的局部流动、硬孔隙与硬孔隙间的Biot宏观流,还加入了微裂隙与微裂隙间的喷射流作用,且模型的高、低频极限始终与Mavko-Jizba理论和Gassmann方程保持一致. 模型应用分析发现,对于砂岩和大部分致密灰岩样品,扩展模型均能给出与超声实验测量数据吻合良好的估计结果. 此外,扩展模型预测的速度频散及衰减表明,喷射流机制在地震和测井频段发挥着重要作用,其速度频散曲线由低频至高频呈逐渐增大趋势,不具有明显的快速变化特征,与经典频散曲线形态存在显著差异;在低有效压力下,频散和衰减程度较大,喷射流机制发挥主要作用,而随着有效压力的增加,Biot宏观流机制开始占主导,频散和衰减程度逐渐减小.
Abstract:Pore-scale squirt flow is one major mechanism that results in seismic wave dispersion and attenuation. Most existing squirt models only consider the local fluid flow between stiff pores and micro-cracks, but the squirt effects of micro-cracks with different pore aspect ratios are often being overlooked. Therefore, the classical squirt model is extended to investigate the fluid flow between pores with different aspect ratios. We first calculate the bulk compressibility of micro-cracks by using the aspect ratio distribution extracted from pressure-dependent dry ultrasonic velocities. Then, squirt flow effects between micro-cracks is modeled according to the pressure relaxation in the pore space. The global fluid flow in the stiff pores is described by Biot theory. The extended theoretical model considers the interaction between stiff pores and cracks, the Biot global flow in stiff pores, and also the squirt fluid flow effects among micro-cracks. The high- and low-frequency limits of the extended model are consistent with Mavko-Jizba and Gassmann equation, respectively. Modeling results of the extended model is consistent with the laboratory ultrasonic measurements for sandstones and most of the tight carbonate samples. In addition, velocity dispersion and attenuation predicted by using the extended model indicate that the squirt flow may play an important role at seismic and logging frequencies. The modeled velocities grow from low frequency to high frequency slowly and no obvious fast change is observed, which is significantly different from those predicted by classical models. At low differential pressure, the squirt flow mechanism dominates the dispersion and attenuation. However, Biot global flow mechanism gradually stands out with increasing pressure and, as a result, the dispersion and attenuation decline.
-
Key words:
- Squirt effect /
- Velocity dispersion and attenuation /
- Pore structure /
- Pore aspect ratio
-
-
-
David E C, Zimmerman R W. 2012. Pore structure model for elastic wave velocities in fluid-saturated sandstones. Journal of Geophysical Research: Solid Earth, 117(B7): B07210, doi:10.1029/2012JB009195.
De Paula O B, Pervukhina M, Makarynska D, et al. 2012. Modeling squirt dispersion and attenuation in fluid-saturated rocks using pressure dependency of dry ultrasonic velocities. Geophysics, 77(3): 157-168. doi: 10.1190/geo2011-0253.1
Deng J X, Zhou H, Wang H, et al. 2015. The influence of pore structure in reservoir sandstone on dispersion properties of elastic waves. Chinese Journal of Geophysics (in Chinese), 58(9): 3389-3400, doi:10.6038/cjg20150931.
Duan C S, Deng J X, Li Y, et al. 2018. Effect of pore structure on the dispersion and attenuation of fluid-saturated tight sandstone. Journal of Geophysics and Engineering, 15(2): 449-460. doi: 10.1088/1742-2140/aa8b82
Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4): 524-533. doi: 10.1190/1.1443435
Dvorkin J, Mavko G, Nur A. 1995. Squirt flow in fully saturated rocks. Geophysics, 60(1): 97-107. doi: 10.1190/1.1443767
Gurevich B, Makarynska D, De Paula O B, et al. 2010. A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics, 75(6): N109-N120. doi: 10.1190/1.3509782
Gurevich B, Makarynska D, Pervukhina M. 2009. Ultrasonic moduli for fluid-saturated rocks: Mavko-Jizba relations rederived and generalized. Geophysics, 74(4): N25-N30. doi: 10.1190/1.3123802
Johnston D H, Toksoz M N, Timur A. 1979. Attenuation of seismic waves in dry and saturated rocks; Ⅱ, Mechanisms. Geophysics, 44(4): 691-711. doi: 10.1190/1.1440970
Jones T D. 1986. Pore fluids and frequency dependent wave propagation in rocks. Geophysics, 51(10): 1939-1953. doi: 10.1190/1.1442050
Mavko G, Nur A. 1975. Melt squirt in the asthenosphere. Journal of Geophysical Research, 80(11): 1444-1448. doi: 10.1029/JB080i011p01444
Mavko G, Jizba D. 1991. Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics, 56(12): 1940-1949. doi: 10.1190/1.1443005
Mavko G, Jizba D. 1994. The relation between seismic P- and S-wave velocity dispersion in saturated rocks. Geophysics, 59(1): 87-92. doi: 10.1190/1.1443537
Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. 2nd ed. New York: Cambridge University Press.
Murphy W F, Winkler K W, Kleinberg R L. 1986. Acoustic relaxation in sedimentary rocks: Dependence on grain contacts and fluid saturation. Geophysics, 51(3): 757-766. doi: 10.1190/1.1442128
Nie J X. 2004. Inversion of reservoir parameters based on the BISQ model in partially saturated porous media. Chinese Journal of Geophysics (in Chinese), 47(6): 1101-1105.
O'Connell R J. 1984. A viscoelastic model of anelasticity of fluid saturated porous rocks. AIP Conference Proceedings, 107(1): 166-175.
Ouyang F, Zhao J G, Li Z, et al. 2021. Inversion of pore aspect ratio distribution based on effective medium theories. Chinese J. Geophys. (in Chinese), 64(3): 1016-1033, doi:10.6038/cjg2021O0348.
Palmer I D, Traviolia M L. 1980. Attenuation by squirt flow in undersaturated gas sands. Geophysics, 45(12): 1780-1792. doi: 10.1190/1.1441065
Pride S R, Berryman J G, Harris J M. 2004. Seismic attenuation due to wave-induced flow. Journal of Geophysical Research: Solid Earth, 109(B1): B01201, doi:10.1029/2003JB002639.
Sams M S, Neep J P, Worthington M H, et al. 1997. The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks. Geophysics, 62(5): 1456-1464. doi: 10.1190/1.1444249
Sayers C M, Kachanov M. 1995. Microcrack-induced elastic wave anisotropy of brittle rocks. Journal of Geophysical Research: Solid Earth, 100(B3): 4149-4156. doi: 10.1029/94JB03134
Shapiro S A. 2003. Elastic piezosensitivity of porous and fractured rocks. Geophysics, 68(2): 482-486. doi: 10.1190/1.1567215
Shen Y Q, Yang D H. 2004. The Green function of two-phase media BISQ model. Chinese Journal of Geophysics (in Chinese), 47(1): 101-105.
Stoll R D. 1977. Acoustic waves in ocean sediments. Geophysics, 1977, 42(4): 715-725. doi: 10.1190/1.1440741
Walsh J B. 1965. The effect of cracks on the compressibility of rock. Journal of Geophysical Research, 70(2): 381-389. doi: 10.1029/JZ070i002p00381
Wulff A M, Burkhardt H. 1997. Mechanisms affecting ultrasonic wave propagation in fluid-containing sandstones under high hydrostatic pressure. Journal of Geophysical Research: Solid Earth, 102(B2): 3043-3050. doi: 10.1029/96JB03184
Yang K D, Yang D H, Wang S Q. 2002. Wave-field simulation based on the Biot-Squirt equation. Chinese Journal of Geophysics (in Chinese), 45(6): 853-861.
Yang K D, Song G J, Li J S. 2011. FCT compact difference simulation of wave propagation based on the Biot and the squirt-flow coupling interaction. Chinese Journal of Geophysics (in Chinese), 54(5): 1348-1357, doi:10.3969/j.issn.0001-5733.2011.05.024.
Zimmerman R W. 1991. Compressibility of Sandstones. New York: Elsevier.
邓继新, 周浩, 王欢等. 2015. 基于储层砂岩微观孔隙结构特征的弹性波频散响应分析. 地球物理学报, 58(9): 3389-3400, doi:10.6038/cjg20150931.
聂建新. 2004. 基于非饱和多孔隙介质BISQ模型的储层参数反演. 地球物理学报, 47(6): 1101-1105. doi: 10.3321/j.issn:0001-5733.2004.06.024
欧阳芳, 赵建国, 李智等. 2021. 基于等效介质理论的孔隙纵横比分布反演. 地球物理学报, 64(3): 1016-1033, doi:10.6038/cjg2021O0348.
申义庆, 杨顶辉. 2004. 基于BISQ模型的双相介质位移场Green函数. 地球物理学报, 47(1): 101-105. doi: 10.3321/j.issn:0001-5733.2004.01.015
杨宽德, 杨顶辉, 王书强. 2002. 基于Biot-Squirt方程的波场模拟. 地球物理学报, 45(6): 853-861. doi: 10.3321/j.issn:0001-5733.2002.06.013
杨宽德, 宋国杰, 李静爽. 2011. Biot流动和喷射流动耦合作用下波传播的FCT紧致差分模拟. 地球物理学报, 54(5): 1348-1357, doi:10.3969/j.issn.0001-5733.2011.05.024.
-