基于微观孔隙结构特征的速度频散和衰减模拟

欧阳芳, 赵建国, 李智, 肖增佳, 贺艳晓, 邓继新, 赵皓, 任静. 2021. 基于微观孔隙结构特征的速度频散和衰减模拟. 地球物理学报, 64(3): 1034-1047, doi: 10.6038/cjg2021O0355
引用本文: 欧阳芳, 赵建国, 李智, 肖增佳, 贺艳晓, 邓继新, 赵皓, 任静. 2021. 基于微观孔隙结构特征的速度频散和衰减模拟. 地球物理学报, 64(3): 1034-1047, doi: 10.6038/cjg2021O0355
OUYANG Fang, ZHAO JianGuo, LI Zhi, XIAO ZengJia, HE YanXiao, DENG JiXin, ZHAO Hao, REN Jing. 2021. Modeling velocity dispersion and attenuation using pore structure characteristics of rock. Chinese Journal of Geophysics (in Chinese), 64(3): 1034-1047, doi: 10.6038/cjg2021O0355
Citation: OUYANG Fang, ZHAO JianGuo, LI Zhi, XIAO ZengJia, HE YanXiao, DENG JiXin, ZHAO Hao, REN Jing. 2021. Modeling velocity dispersion and attenuation using pore structure characteristics of rock. Chinese Journal of Geophysics (in Chinese), 64(3): 1034-1047, doi: 10.6038/cjg2021O0355

基于微观孔隙结构特征的速度频散和衰减模拟

  • 基金项目:

    国家自然科学基金联合基金重点基金(U20B2015), 国家自然科学基金项目(41574103, 41974120, 41804104和U19B6003-04), 国家重大专项课题(2016ZX05004-003)和中国石油科技创新基金(2018D-5007-0303)资助

详细信息
    作者简介:

    欧阳芳, 女, 1992年4月生, 博士研究生, 主要从事地震岩石物理学研究.E-mail: FangOuyang92@163.com

    通讯作者: 赵建国, 男, 1976年12月生, 现为中国石油大学(北京)地球物理学院教授, 主要从事地震波传播、数字岩心、跨频段地震岩石物理实验技术与理论研究. E-mail: zhaojg@cup.edu.cn, jgzhao761215@aliyun.com
  • 中图分类号: P631

Modeling velocity dispersion and attenuation using pore structure characteristics of rock

More Information
  • 孔隙尺度的喷射流流动是引起地震波速度频散和衰减的重要机制之一. 目前,大多数喷射流模型仅考虑硬孔隙与微裂隙之间的局部流动,而忽略了具有不同孔隙纵横比微裂隙间的喷射流作用. 为了研究各种类型孔隙间的流体流动效应,本文对经典喷射流模型进行了扩展,通过结合等效介质理论和孔隙结构模型,根据从干燥岩石超声速度-压力曲线中提取的微裂隙孔隙纵横比分布,求取出岩石中各种微裂隙的体积压缩系数,并在此基础上,利用孔隙空间的压力松弛效应对微裂隙间的喷射流效应进行了模拟,并运用Biot理论描述了硬孔隙间的宏观流动效应. 扩展后的理论模型不仅考虑了微裂隙与硬孔隙间的局部流动、硬孔隙与硬孔隙间的Biot宏观流,还加入了微裂隙与微裂隙间的喷射流作用,且模型的高、低频极限始终与Mavko-Jizba理论和Gassmann方程保持一致. 模型应用分析发现,对于砂岩和大部分致密灰岩样品,扩展模型均能给出与超声实验测量数据吻合良好的估计结果. 此外,扩展模型预测的速度频散及衰减表明,喷射流机制在地震和测井频段发挥着重要作用,其速度频散曲线由低频至高频呈逐渐增大趋势,不具有明显的快速变化特征,与经典频散曲线形态存在显著差异;在低有效压力下,频散和衰减程度较大,喷射流机制发挥主要作用,而随着有效压力的增加,Biot宏观流机制开始占主导,频散和衰减程度逐渐减小.

  • 加载中
  • 图 1 

    扩展Gurevich喷射流模型的速度频散和衰减计算流程

    Figure 1. 

    Workflow for calculating velocity dispersion and attenuation using extended Gurevich squirt model

    图 2 

    岩石样品的超声实验数据与孔隙结构参数反演结果

    Figure 2. 

    Measured ultrasonic data and inverted pore structrue parameters for rock samples

    图 3 

    超声频率条件下实验测量数据与模型预测结果比较

    Figure 3. 

    Comparision of measured velocities and predictions obtained from different models at ultrasonic frequency

    图 4 

    饱水条件下所有岩芯样品的模型计算结果与超声实验速度比较

    Figure 4. 

    Ultrasonic velocity measurements and model predictions at water-saturated condition

    图 5 

    代表性砂岩和灰岩样品的柱体薄片

    Figure 5. 

    Thin sections for representative sandstone and limestone samples

    图 6 

    经典Gurevich喷射流速度频散与衰减曲线随微裂隙孔隙纵横比与孔隙度的变化规律

    Figure 6. 

    Squirt velocity dispersion and attenuation predicted by classical Gurevich model as a function of crack aspect ratio and porosity

    图 7 

    0 MPa有效压力下饱水灰岩样品C1的纵波速度频散(a)和衰减(b)

    Figure 7. 

    P-velocity dispersion and attenuation for water-saturated limestone sample C1 at 0 MPa

    图 8 

    不同有效压力灰岩样品C1中微裂隙的孔隙纵横比分布(a)和孔隙度度分布(b)

    Figure 8. 

    Aspect distribution (a) and porosity distribution (b) of limestone sample C1 at different pressure

    图 9 

    砂岩S1的纵横波速度频散(a—b)及衰减(c—d)曲线

    Figure 9. 

    P- and S-velocity dispersion (a—b) and attenuation (c—d) as a function of frequency and pressure for sandstone sample S1

    图 10 

    灰岩C1的纵横波速度频散(a—b)及衰减(c—d)随压力和频率的变化

    Figure 10. 

    P- and S-velocity dispersion and attenuation as a function of frequency and pressure for limestone sample C1

    图 11 

    砂岩(a)和灰岩(b)纵横波衰减峰值频率的统计直方图

    Figure 11. 

    Histogram of frequencies corresponding to attenuation peak of P- and S-waves for sandstones (a) and limestones (b)

  •  

    David E C, Zimmerman R W. 2012. Pore structure model for elastic wave velocities in fluid-saturated sandstones. Journal of Geophysical Research: Solid Earth, 117(B7): B07210, doi:10.1029/2012JB009195.

     

    De Paula O B, Pervukhina M, Makarynska D, et al. 2012. Modeling squirt dispersion and attenuation in fluid-saturated rocks using pressure dependency of dry ultrasonic velocities. Geophysics, 77(3): 157-168. doi: 10.1190/geo2011-0253.1

     

    Deng J X, Zhou H, Wang H, et al. 2015. The influence of pore structure in reservoir sandstone on dispersion properties of elastic waves. Chinese Journal of Geophysics (in Chinese), 58(9): 3389-3400, doi:10.6038/cjg20150931.

     

    Duan C S, Deng J X, Li Y, et al. 2018. Effect of pore structure on the dispersion and attenuation of fluid-saturated tight sandstone. Journal of Geophysics and Engineering, 15(2): 449-460. doi: 10.1088/1742-2140/aa8b82

     

    Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4): 524-533. doi: 10.1190/1.1443435

     

    Dvorkin J, Mavko G, Nur A. 1995. Squirt flow in fully saturated rocks. Geophysics, 60(1): 97-107. doi: 10.1190/1.1443767

     

    Gurevich B, Makarynska D, De Paula O B, et al. 2010. A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics, 75(6): N109-N120. doi: 10.1190/1.3509782

     

    Gurevich B, Makarynska D, Pervukhina M. 2009. Ultrasonic moduli for fluid-saturated rocks: Mavko-Jizba relations rederived and generalized. Geophysics, 74(4): N25-N30. doi: 10.1190/1.3123802

     

    Johnston D H, Toksoz M N, Timur A. 1979. Attenuation of seismic waves in dry and saturated rocks; Ⅱ, Mechanisms. Geophysics, 44(4): 691-711. doi: 10.1190/1.1440970

     

    Jones T D. 1986. Pore fluids and frequency dependent wave propagation in rocks. Geophysics, 51(10): 1939-1953. doi: 10.1190/1.1442050

     

    Mavko G, Nur A. 1975. Melt squirt in the asthenosphere. Journal of Geophysical Research, 80(11): 1444-1448. doi: 10.1029/JB080i011p01444

     

    Mavko G, Jizba D. 1991. Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics, 56(12): 1940-1949. doi: 10.1190/1.1443005

     

    Mavko G, Jizba D. 1994. The relation between seismic P- and S-wave velocity dispersion in saturated rocks. Geophysics, 59(1): 87-92. doi: 10.1190/1.1443537

     

    Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. 2nd ed. New York: Cambridge University Press.

     

    Murphy W F, Winkler K W, Kleinberg R L. 1986. Acoustic relaxation in sedimentary rocks: Dependence on grain contacts and fluid saturation. Geophysics, 51(3): 757-766. doi: 10.1190/1.1442128

     

    Nie J X. 2004. Inversion of reservoir parameters based on the BISQ model in partially saturated porous media. Chinese Journal of Geophysics (in Chinese), 47(6): 1101-1105.

     

    O'Connell R J. 1984. A viscoelastic model of anelasticity of fluid saturated porous rocks. AIP Conference Proceedings, 107(1): 166-175.

     

    Ouyang F, Zhao J G, Li Z, et al. 2021. Inversion of pore aspect ratio distribution based on effective medium theories. Chinese J. Geophys. (in Chinese), 64(3): 1016-1033, doi:10.6038/cjg2021O0348.

     

    Palmer I D, Traviolia M L. 1980. Attenuation by squirt flow in undersaturated gas sands. Geophysics, 45(12): 1780-1792. doi: 10.1190/1.1441065

     

    Pride S R, Berryman J G, Harris J M. 2004. Seismic attenuation due to wave-induced flow. Journal of Geophysical Research: Solid Earth, 109(B1): B01201, doi:10.1029/2003JB002639.

     

    Sams M S, Neep J P, Worthington M H, et al. 1997. The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks. Geophysics, 62(5): 1456-1464. doi: 10.1190/1.1444249

     

    Sayers C M, Kachanov M. 1995. Microcrack-induced elastic wave anisotropy of brittle rocks. Journal of Geophysical Research: Solid Earth, 100(B3): 4149-4156. doi: 10.1029/94JB03134

     

    Shapiro S A. 2003. Elastic piezosensitivity of porous and fractured rocks. Geophysics, 68(2): 482-486. doi: 10.1190/1.1567215

     

    Shen Y Q, Yang D H. 2004. The Green function of two-phase media BISQ model. Chinese Journal of Geophysics (in Chinese), 47(1): 101-105.

     

    Stoll R D. 1977. Acoustic waves in ocean sediments. Geophysics, 1977, 42(4): 715-725. doi: 10.1190/1.1440741

     

    Walsh J B. 1965. The effect of cracks on the compressibility of rock. Journal of Geophysical Research, 70(2): 381-389. doi: 10.1029/JZ070i002p00381

     

    Wulff A M, Burkhardt H. 1997. Mechanisms affecting ultrasonic wave propagation in fluid-containing sandstones under high hydrostatic pressure. Journal of Geophysical Research: Solid Earth, 102(B2): 3043-3050. doi: 10.1029/96JB03184

     

    Yang K D, Yang D H, Wang S Q. 2002. Wave-field simulation based on the Biot-Squirt equation. Chinese Journal of Geophysics (in Chinese), 45(6): 853-861.

     

    Yang K D, Song G J, Li J S. 2011. FCT compact difference simulation of wave propagation based on the Biot and the squirt-flow coupling interaction. Chinese Journal of Geophysics (in Chinese), 54(5): 1348-1357, doi:10.3969/j.issn.0001-5733.2011.05.024.

     

    Zimmerman R W. 1991. Compressibility of Sandstones. New York: Elsevier.

     

    邓继新, 周浩, 王欢等. 2015. 基于储层砂岩微观孔隙结构特征的弹性波频散响应分析. 地球物理学报, 58(9): 3389-3400, doi:10.6038/cjg20150931.

     

    聂建新. 2004. 基于非饱和多孔隙介质BISQ模型的储层参数反演. 地球物理学报, 47(6): 1101-1105. doi: 10.3321/j.issn:0001-5733.2004.06.024

     

    欧阳芳, 赵建国, 李智等. 2021. 基于等效介质理论的孔隙纵横比分布反演. 地球物理学报, 64(3): 1016-1033, doi:10.6038/cjg2021O0348.

     

    申义庆, 杨顶辉. 2004. 基于BISQ模型的双相介质位移场Green函数. 地球物理学报, 47(1): 101-105. doi: 10.3321/j.issn:0001-5733.2004.01.015

     

    杨宽德, 杨顶辉, 王书强. 2002. 基于Biot-Squirt方程的波场模拟. 地球物理学报, 45(6): 853-861. doi: 10.3321/j.issn:0001-5733.2002.06.013

     

    杨宽德, 宋国杰, 李静爽. 2011. Biot流动和喷射流动耦合作用下波传播的FCT紧致差分模拟. 地球物理学报, 54(5): 1348-1357, doi:10.3969/j.issn.0001-5733.2011.05.024.

  • 加载中

(11)

计量
  • 文章访问数:  536
  • PDF下载数:  251
  • 施引文献:  0
出版历程
收稿日期:  2020-09-11
修回日期:  2020-12-08
上线日期:  2021-03-10

目录