底辟热流体上涌的数值模拟及其对早古生代青藏高原柴北缘祁连弧形成的启示

原一哲, 胡才博, 魏东平. 2021. 底辟热流体上涌的数值模拟及其对早古生代青藏高原柴北缘祁连弧形成的启示. 地球物理学报, 64(5): 1666-1682, doi: 10.6038/cjg2021O0314
引用本文: 原一哲, 胡才博, 魏东平. 2021. 底辟热流体上涌的数值模拟及其对早古生代青藏高原柴北缘祁连弧形成的启示. 地球物理学报, 64(5): 1666-1682, doi: 10.6038/cjg2021O0314
YUAN YiZhe, HU CaiBo, WEI DongPing. 2021. Numerical simulation of diapir flow—Enlightenment on formation of Qilian arc in northern Qaidam in the early Paleozoic. Chinese Journal of Geophysics (in Chinese), 64(5): 1666-1682, doi: 10.6038/cjg2021O0314
Citation: YUAN YiZhe, HU CaiBo, WEI DongPing. 2021. Numerical simulation of diapir flow—Enlightenment on formation of Qilian arc in northern Qaidam in the early Paleozoic. Chinese Journal of Geophysics (in Chinese), 64(5): 1666-1682, doi: 10.6038/cjg2021O0314

底辟热流体上涌的数值模拟及其对早古生代青藏高原柴北缘祁连弧形成的启示

  • 基金项目:

    国家自然基金项目(41874115),国家重点研发项目"华北克拉通成矿系统的深部过程与成矿机理"子课题(2016YFC0600101),国家重点研发项目"地球系统模式的改进、应用开发和高性能计算"子课题(2016YFB0200801)联合资助

详细信息
    作者简介:

    原一哲, 男, 博士研究生, 从事俯冲带数值模拟, 地球动力学研究.E-mail: yuanyizhe18@mails.ucas.ac.cn

    通讯作者: 胡才博, 男, 副教授, 从事地球动力学研究.E-mail: hucb@ucas.ac.cn
  • 中图分类号: P314;P313

Numerical simulation of diapir flow—Enlightenment on formation of Qilian arc in northern Qaidam in the early Paleozoic

More Information
  • 底辟流是研究地球内部物质循环与迁移的重要窗口,其动力学演化过程对于我们认识区域地质构造与演化具有重要意义.本文从热-结构力学的角度,建立三组不同的数值模型,研究底辟流上涌的动力学过程,分析底辟流半径、热-结构耦合、岩浆上涌通道对底辟流上涌过程的影响.该研究对认识早古生代祁连弧的形成过程具有重要启示.数值实验结果表明,底辟流半径越大底辟上涌速度越快;单个底辟很难直接上涌至上地壳底部,柴达木北缘超高压变质带和岩浆弧可能是由于多个底辟流持续上涌,最终发育稳定岩浆通道形成的,并且岩浆通道的形成对于超高压变质岩石的减压时间以及岩浆弧的形成时间均具有重要影响;具有稳定岩浆通道的单个底辟流从地幔深处90 km上涌至壳幔边界的过程中,在水平方向的侵蚀范围要比垂向侵蚀范围大一倍左右,研究结果表明安第斯型底辟流模型可以很好地描述早古生代柴达木北缘祁连弧的形成过程.

  • 加载中
  • 图 1 

    两种海洋俯冲上涌模型

    Figure 1. 

    Two types of ascent flow during oceanic subduction

    图 2 

    早古生代祁连地体和岩浆弧地质演化(Yin et al., 2012)

    Figure 2. 

    Tectonic evolution of the early Paleozoic Qilian orogen and the magma arc(Yin et al., 2012)

    图 3 

    半径为10 km底辟流初始密度示意图

    Figure 3. 

    Schematic diagram of initial density of diapir flow with a radius of 10 km

    图 4 

    半径为10 km的底辟流上涌速度图

    Figure 4. 

    Upwelling velocity of diapir with a radius of 10 km

    图 5 

    半径为r=10 km的底辟上涌模拟示意图(水平速度Vx,垂直速度Vz,密度及黏度)

    Figure 5. 

    Simulation diagram of diapir upwelling with radius r=10 km (Horizontal speed Vx, vertical speed Vz, density and viscosity)

    图 6 

    三个不同半径(r=5 km, 10 km, 15 km)的底辟流上升速度图

    Figure 6. 

    Ascent speed graph of diapir flow with three different radius (r=5 km, 10 km, 15 km)

    图 7 

    单个底辟流上涌示意图

    Figure 7. 

    Schematic diagram of a single diapir flow upwelling

    图 8 

    半径为10 km的单个底辟上涌模型图(1.0, 2.0, 3.0 Ma三个不同时刻温度、密度和黏度的分布)

    Figure 8. 

    Single dip upwelling model with a radius of 10 km (The distribution of temperature, density and viscosity at three different moments of 1.0, 2.0, 3.0 Ma)

    图 9 

    双底辟流上涌示意图

    Figure 9. 

    Schematic diagram of double diapir flow upwelling

    图 10 

    半径为10 km的双底辟上涌模型图(1.0, 2.0, 3.0 Ma三个不同时刻温度、密度和黏度的分布)

    Figure 10. 

    Double diapir upwelling model with a radius of 10 km (The distribution of temperature, density and viscosity at three different moments of 1.0, 2.0, 3.0 Ma)

    图 11 

    模型三示意图

    Figure 11. 

    Schematic diagram of model 3

    图 12 

    不同时刻半径为10 km的底辟流上涌模型图

    Figure 12. 

    The upwelling model of the diapir with a radius of 10 km at different time

    图 13 

    柴北缘都兰南部区域单个底辟流上涌初始模型

    Figure 13. 

    Initial model of upwelling of a single diapir in South-Dulan region of North Qaidam

    图 14 

    不同时刻柴北缘都兰南部区域单个底辟流上涌模型图

    Figure 14. 

    Diapir flow upwelling model diagram in South-Dulan region of North Qaidam at different times

    图 15 

    柴北缘都兰南部区域双底辟流上涌初始模型

    Figure 15. 

    Initial model of upwelling of double diapirs in South-Dulan region of North Qaidam

    图 16 

    不同时刻柴北缘都兰南部区域双底辟流上涌模型图

    Figure 16. 

    Diagram of the upwelling model of double diapir flow in South-Dulan region of North Qaidam at different times

  •  

    Babeyko A Y, Sobolev S V, Trumbull R B, et al. 2002. Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna plateau. Earth and Planetary Science Letters, 199(3-4): 373-388. doi: 10.1016/S0012-821X(02)00597-6

     

    Brace W F, Kohlstedt D L. 1980. Limits on lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research, 85(B11): 6248-6252. doi: 10.1029/JB085iB11p06248

     

    Burg J P, Gerya T, 2005. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23(2): 75-95. http://onlinelibrary.wiley.com/doi/10.1111/j.1525-1314.2005.00563.x/abstract

     

    Cowgill E S, Yin A, Harrison T M, et al. 2003. Reconstruction of the western Altyn Tagh fault based on: Constraints from U-Pb ion microprobe zircon geochronology: role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau. Journal of Geophysical Research, 108(B7): 2346, doi:10.1029/2002JB002080.

     

    Davies J H, Stevenson D J. 1992. Physical model of source region of subduction zone volcanics. Journal of Geophysical Research: Solid Earth, 97(B2): 2037-2070.

     

    Gehrels G E, Yin A, Wang X F. 2003a. Detrital-zircon geochronology of the northeastern Tibetan plateau. GSA Bulletin, 115(7): 881-896.

     

    Gehrels G E, Yin A, Wang X F. 2003b. Magmatic history of the northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 108(B9): 2423, doi:10.1029/2002JB001876.

     

    Gerya T V, Burg J P. 2007. Intrusion of ultramafic magmatic bodies into the continental crust: numerical simulation. Physics of the Earth and Planetary Interiors, 160(2): 124-142. http://www.sciencedirect.com/science/article/pii/S0031920106003049

     

    Gerya T V, Yuen D A. 2003a. Characteristics-based marker-in-cell method with conservative finite differences schemes for modeling geological flows with strongly variable transport properties. Physics of the Earth and Planetary Interiors, 140(4): 293-318.

     

    Gerya T V, Yuen D A. 2003b. Rayleigh-Taylor instabilities from hydration and melting propel 'cold plumes' at subduction zones. Earth and Planetary Science Letters, 212(1-2): 47-62. http://www.sciencedirect.com/science/article/pii/S0012821X03002656

     

    Dobretsov, N. L. 2000. Collision processes in paleozoic foldbelts of Asia and exhumation mechanisms. Petrology, 8(5): 403-427. http://www.researchgate.net/publication/279597338_Collision_processes_in_Paleozoic_foldbelts_of_Asia_and_exhumation_mechanisms

     

    Gross L, Bourgouin L, Hale A J. et al. 2007. Interface modeling in incompressible media using level sets in Escript. Physics of the Earth and Planetary Interiors, 163(1-4): 23-34. http://www.sciencedirect.com/science/article/pii/S0031920107000647

     

    Hall P S, Kincaid C. 2001. Diapiric flow at subduction zones: A recipe for rapid transport. Science, 292(5526): 2472-2475. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=4842411&site=ehost-live

     

    Hall C E, Gurnis M, Sdrolias M, et al, 2003. Catastrophic initiation of subduction following forced convergence across fracture zones. Earth and Planetary Science Letters, 212: 15-30. http://www.sciencedirect.com/science/article/pii/S0012821X03002425

     

    Hacker B R, Ratschbacher L, Webb M O. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research: Solid Earth, 105(B6): 13339-13364.

     

    Hebert L B, Antoshechkina P, Asimow P, et al, 2009. Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics. Earth and Planetary Science Letters, 278: 243-256. http://www.sciencedirect.com/science/article/pii/S0012821X08007589

     

    Hofmeister A M. 1999. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283(5408): 1699-1706. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=283/5408/1699

     

    Hsü K J, Guitang P, Sengör A M C, et al. 1995. Tectonic evolution of the tibetan plateau: A working hypothesis based on the archipelago model of orogenesis. International Geology Review, 37(6): 473-508.

     

    Jahn B M. 1999. Sm-Nd isotope tracer study of UHP metamorphic rocks: Implications for continental subduction and collisional tectonics. International Geology Review, 41(10): 859-885.

     

    Lardeaux J M, Ledru P, Daniel I, et al. 2001. The Variscan French Massif Central-a new addition to the ultrahigh pressure metamorphic "club": Exhumation processes and geodynamic consequences: Tectonophysics, 332(1-2): 143-167.

     

    Li Z H, Gerya T V. 2009. Polyphase formation and exhumation of high to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. Journal of Geophysical Research: Solid Earth, 114(B9): B09406, doi:10.1029/2008JB005935406.

     

    Li Z H, Gerya T V, Burg J P. 2010. Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: Thermomechanical modelling. Journal of Metamorphic Geology, 28(3): 227-247. http://onlinelibrary.wiley.com/doi/10.1111/j.1525-1314.2009.00864.x/pdf

     

    Li Z H, Liu M Q, Gerya T V. 2015. Material transportation and fluid-melt activity in the subduction channel: Numerical modeling. Science China Earth Sciences, 58(8): 1251-1268. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXG201508003.htm

     

    Liou J G, Tsujimori T, Zhang R Y, et al. 2004. Global UHP metamorphism and continental subduction/collision: The Himalayan model. International Geology Review, 46(1): 1-27.

     

    Mancktelow N S. 1995. Nonlithostatic pressure during sediment subduction and the development and exhumation of high-pressure metamorphic rocks. Journal of Geophysical Research: Solid Earth, 100(B1): 571-583.

     

    Mattinson C G, Wooden J L, Liou J G, et al. 2006, Geochronology and tectonic significance of Middle Proterozoic granitic orthogneiss, North Qaidam HP/UHP terrane. Mineralogy and Petrology, 88: 227-241. doi: 10.1007/s00710-006-0149-1

     

    Miller C F, Watson E B, Harrison T M. 1988, Perspectives on the source, segregation and transport of granitoid magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2): 135-156. http://gji.oxfordjournals.org/external-ref?access_num=10.1017/S0263593300014176&link_type=DOI

     

    Moresi L N, Solomatov V S. 1995. Numerical investigation of 2D convection with extremely large viscosity variations. Physics of Fluids, 7(9): 2154-2162.

     

    Moresi L N, Quenette S, Lemiale V. et al. 2007. Computational approaches to studying non-linear dynamics of the crust and mantle. Physics of the Earth and Planetary Interiors, 163(1-4): 69-82. http://www.sciencedirect.com/science/article/pii/S0031920107001446

     

    Morra G, Regenauer-Lieb K, Giardini D. 2006. Curvature of oceanic arcs. Geology, 34(10): 877-880. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=geology&resid=34/10/877

     

    O'Brien P J, Zotov N, Law R. et al. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 29(5): 435-438. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=4736027&site=ehost-live

     

    Paul S Hall, Chris Kincaid. 2001. Diapiric Flow at Subduction Zones: A Recipe for Rapid Transport. Science, 292: 2472-2475. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=4842411&site=ehost-live

     

    Ranalli G. 1995. Rheology of the Earth. Netherlands: Springer, 1-392.

     

    Schmeling H, Marquart G. 1991. The influence of second-scale convection on the thickness of continental lithosphere and crust. Tectonophysics, 189(1-4): 281-306. http://www.sciencedirect.com/science/article/pii/004019519190502J

     

    Sengoer A M C, Natalin B A. 1996. Paleotectonics of Asia: fragments of a synthesis. Tectonic evolution of Asia, 8: 486-640. http://ci.nii.ac.jp/naid/10030173065

     

    Song S G, Yang J S, Liou J G, et al. 2003. Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China. Lithos, 70(3-4): 195-211. http://www.sciencedirect.com/science/article/pii/S0024493703000999

     

    Song S G, Zhang L F, Niu Y L, et al. 2005. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters, 234(1-2): 99-118. http://www.sciencedirect.com/science/article/pii/S0012821X05001548

     

    Song S G, Zhang L F, Niu Y L. et al. 2006. Evolution from oceanic subduction to continental collision: a case study from the Northern Tibetan Plateau based on geochemical and geochronological data. Jourmal of Petrology, 47(3): 435-455.

     

    Sobel, E. R. 1999. Basin analysis of the Jurassic-Lower Cretaceous southwest Tarim basin, northwest China. GSA Bulletin, 111(5): 709-724.

     

    Sulsky D, Zhou S J, Schreyer H L. 1995. Application of a particle-in-cell method to solid mechanics. Computer Physics Communications, 87(1-2): 236-252. http://www.ingentaconnect.com/content/el/00104655/1995/00000087/00000001/art00014

     

    Turcotte D L, Schubert G. 2002. Geodynamics. 2nd ed. Cambridge: Cambridge University Press.

     

    Weinberg R F, Podladchikov Y. 1994. Diapiric ascent of magmas through power law crust and mantle: Journal of Geophysical Research: Solid Earth, 99(B5): 9543-9559.

     

    Wu F Y, Xu Y G, Zhu R X. et al, 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Science China Earth Sciences. Science in China Press. doi:10.1007/s11430-014-4995-0.

     

    Yin A, Nie S. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. Tectonic Evolution of Asia. New York, NY, Cambridge University Press: 442-485.

     

    Yin A, Manning C E, Lovera O. et al. 2012. Early paleozoic tectonic and thermomechanical evolution of Ultrahigh-Pressure(UHP) metamorphic rocks in the northern Tibetan Plateau, Northwest China. International Geology Review, 49(8): 681-716.

     

    Zhang Z M, Liou J G, Coleman R G. 1984. An outline of the plate tectonics of China. GSA Bulletin, 95(3): 295-312.

     

    Zhang J X, Yang J S, Mattinson C G. et al. 2005. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints: Lithos, 84(1-2): 51-76.

     

    Zindler A, Hart S. 1986, Chemical geodynamics: Annual Review of Earth and Planetary Sciences, 14: 493-571.

     

    李忠海, 刘明启, Gerya T. 2015. 俯冲隧道中物质运移和流体-熔体活动的动力学数值模拟. 中国科学: 地球科学. 45(7): 881-899. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201507001.htm

     

    吴福元, 徐义刚, 朱日祥等. 2014. 克拉通岩石圈减薄与破坏. 中国科学: 地球科学. 44(11): 2358-2372. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201411002.htm

     

    杨经绥, 许志琴, 宋述光等. 2000. 青海都兰榴辉岩的发现及对中国中央造山带内高压——超高压变质带研究的意义. 地质学报, 2000(02): 156-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200002006.htm

  • 加载中

(16)

计量
  • 文章访问数:  171
  • PDF下载数:  226
  • 施引文献:  0
出版历程
收稿日期:  2020-08-14
修回日期:  2020-12-31
上线日期:  2021-05-10

目录