Data processing and seismic phase identification of OBS converted shear wave in the Xisha Block
-
摘要:
主动源海底地震仪(OBS)转换横波震相的分析和模拟,能够从泊松比的角度更准确地约束地下结构和物质组成,有助于地壳精细结构和构造属性的研究.本文对南海北部陆缘西沙地块的OBS2013-3测线进行了转换横波数据处理和分析,通过能量扫描法求取极化角,并对OBS水平分量数据进行旋转,获取了径向分量数据.结合本测线的地质情况,求解佐布里兹(Zoeppritz)方程,得到了不同转换模式的能量分配关系,定量地指示了沉积基底和海底面为主导的P-S转换界面,Moho面为次一级转换界面.在OBS2013-3测线的各个台站径向分量地震剖面上识别出了一系列PPS和PSS型转换震相,最大偏移距达到130km,并进行了初步的正演模拟试算和验证.结合本测线实际情况,对OBS转换横波研究的基础问题进行了探讨.这些工作为后续的二维横波速度结构和泊松比结构模拟、物质组成和地壳属性分析打下了坚实的基础,为研究方法的进一步完善提供思路.
-
关键词:
- 西沙地块 /
- 海底地震仪(OBS) /
- 转换横波 /
- 震相识别 /
- 转换界面
Abstract:Analysis and simulation of converted seismic shear wave phases recorded by active-source Ocean Bottom Seismometer (OBS) provide accurate constrains on subsurface structures and lithological compositions from aspect of Poisson's ratios, which can facilitate research on detailed crustal structures and tectonic affinity. Processing and analysis of seismic shear wave phases are carried out on OBS2013-3 traversing the Xisha Block, the South China Sea margin. Radial component data is obtained through rotating horizontal components using polarization angles calculated by energy scanning method. Zoeppritz equations are solved based on the geological conditions, which yields the energy partition of different conversion modes, indicating the dominant P-S conversion interfaces of sedimentary basement and seafloor as well as the secondary one of the Moho. A series of PPS and PSS type converted shear wave phases are identified in radial components of most stations of OBS2013-3, whose maximum offset reaches 130 km. Preliminary forward ray-tracing is conducted to verify the identified phases. Based on actual conditions of this profile, we also discuss some fundamental issues in OBS converted shear wave studies. Above work could lay a solid foundation for subsequent 2-D shear wave velocity or Poisson's ratio modelling and crustal composition analysis, as well as inspire further improvement of research methods.
-
-
-
Berg E, Amundsen L, Morton A, et al. 2001. Three-component OBS-data processing for lithology and fluid prediction in the mid-Norway margin, NE Atlantic. Earth, Planets and Space, 53(2): 75-89. doi: 10.1186/BF03352365
Bratt S R, Solomon S C. 1984. Compressional and shear wave structure of the East Pacific Rise at 11 20'N-Constraints from three-component ocean bottom seismometer data. Journal of Geophysical Research: Solid Earth, 89(B7): 6095-6110. doi: 10.1029/JB089iB07p06095
Chevrot S, Van Der Hilst R D. 2000. The Poisson ratio of the Australian crust: geological and geophysical implications. Earth and Planetary Science Letters, 183(1-2): 121-132. doi: 10.1016/S0012-821X(00)00264-8
Christensen N I, Fountain D M. 1975. Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite. GSA Bulletin, 86(2): 227-236. doi: 10.1130/0016-7606(1975)86<227:COTLCC>2.0.CO;2
Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental-crust-a global view. Journal of Geophysical Research: Solid Earth, 100(B6): 9761-9788. doi: 10.1029/95JB00259
Christensen N I. 1996. Poisson's ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2): 3139-3156. doi: 10.1029/95JB03446
Digranes P, Mjelde R, Kodaira S, et al. 1996. Modelling shear waves in OBS data from the Vøring basin (northern Norway) by 2-D ray-tracing. Pure and Applied Geophysics, 147(4): 611-629. doi: 10.1007/BF01089694
Digranes P, Mjelde R, Kodaira S, et al. 1998. A regional shear-wave velocity model in the central Vøring basin, N. Norway, using three-component ocean bottom seismographs. Tectonophysics, 293(3-4): 157-174. doi: 10.1016/S0040-1951(98)00093-6
Digranes P, Mjelde R, Kodaira S, et al. 2003. Regional and semi-regional modelling of wide-angle shear waves in OBS data from the Vøring Basin, N. Norway-a comparison. Earth, Planets and Space, 55(2): 65-81. doi: 10.1186/BF03351734
Du F, Zhang J Z, Yang F D, et al. 2018. Combination of least square and monte carlo methods for OBS relocation in 3D seismic survey near bashi channel. Marine Geodesy, 41(5): 494-515. doi: 10.1080/01490419.2018.1479993
Dubinin E P, Grokholsky A L, Makushkina A I. 2018. Physical modeling of the formation conditions of microcontinents and continental marginal plateaus. Izvestiya, Physics of the Solid Earth, 54(1): 66-78. doi: 10.1134/S1069351318010056
Eccles J D, White R S, Christie P A F. 2009. Identification and inversion of converted shear waves: case studies from the European North Atlantic continental margins. Geophysical Journal International, 179(1): 381-400. doi: 10.1111/j.1365-246X.2009.04290.x
Fowler C M R. 1976. Crustal structure of the Mid-Atlantic Ridge crest at 37 N. Geophysical Journal of the Royal Astronomical Society, 47(3): 459-491. doi: 10.1111/j.1365-246X.1976.tb07097.x
Fujie G, Mochizuki K, Kasahara J. 2003. New traveltime and raypath computation methods for reflection and PS-converted waves using a regular-grid. BUTSURI-TANSA (Geophysical Exploration), 56(5): 357-368. http://www.researchgate.net/profile/Junzo_Kasahara/publication/282441932_New_traveltime_and_raypath_computation_methods_for_reflection_and_PS-converted_waves_using_a_regular-grid/links/560ff89008ae6b29b49a89f5.pdf
Grevemeyer I, Hayman N W, Peirce C, et al. 2018. Episodic magmatism and serpentinized mantle exhumation at an ultraslow-spreading centre. Nature Geoscience, 11(6): 444-448. doi: 10.1038/s41561-018-0124-6
Guo X R, Zhao M H, Huang H B, et al. 2016. Crustal structure of Xisha Block and its tectonic attributes. Chinese Journal of Geophysics (in Chinese), 59(4): 1414-1425, doi:10.6038/cjg20160422.
Hamilton E L. 1978. Sound velocity-density relations in sea-floor sediments and rocks. The Journal of the Acoustical Society of America, 63(2): 366-377. doi: 10.1121/1.381747
Hao T Y, You Q Y. 2011. Progress of homemade OBS and its application on ocean bottom structure survey. Chinese Journal of Geophysics (in Chinese), 54(12): 3352-3361, doi:10.3969/j.issn.0001-5733.2011.12.033.
Hobro J W D, Singh S, Minshull T A. 2003. Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data. Geophysical Journal International, 152(1): 79-93. doi: 10.1046/j.1365-246X.2003.01822.x
Hou W A, Li C-F, Wan X L, et al. 2019. Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation. Earth Planet. Phys. , 3(4), 314-329. http://dx.doi.org/10.26464/epp2019033. doi: 10.26464/epp2019033 http://dx.doi.org/10.26464/epp2019033
Huang H B, Qiu X L, Xu Y, et al. 2011. Crustal structure beneath the Xisha Islands of the South China Sea simulated by the teleseismic receiver function method. Chinese Journal of Geophysics (in Chinese), 54(11): 2788-2798, doi:10.3969/j.issn.0001-5733.2011.11.009.
Huang H B, Qiu X L, Pichot T, et al. 2019. Seismic structure of the northwestern margin of the South China Sea: implication for asymmetric continental extension. Geophysical Journal International, 218(2): 1246-1261. doi: 10.1093/gji/ggz219
Kandilarov A, Mjelde R, Flueh E, et al. 2015. Vp/Vs-ratios and anisotropy on the northern Jan Mayen Ridge, North Atlantic, determined from ocean bottom seismic data. Polar Science, 9(3): 293-310. doi: 10.1016/j.polar.2015.06.001
Kashubin S N, Petrov O V, Rybalka A V, et al. 2017. Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data. Tectonophysics, 710-711: 37-55. doi: 10.1016/j.tecto.2016.11.021
Kern H. 1982. Elastic-wave velocity in crustal and mantle rocks at high pressure and temperature: the role of the high-low quartz transition and of dehydration reactions. Physics of the Earth and Planetary Interiors, 29(1): 12-23. doi: 10.1016/0031-9201(82)90133-9
Korenaga J, Holbrook W S, Kent G M, et al. 2000. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. Journal of Geophysical Research: Solid Earth, 105(B9): 21591-21614. doi: 10.1029/2000JB900188
Kvarven T, Mjelde R, Hjelstuen B O, et al. 2016. Crustal composition of the Møre Margin and compilation of a conjugate Atlantic margin transect. Tectonophysics, 666: 144-157. doi: 10.1016/j.tecto.2015.11.002
Liu F P, Meng X J, Xiao J Q, et al. 2012. Applying accurate gradients of seismic wave reflection coefficients (SWRC) to the inversion of seismic wave velocities. Science China Earth Sciences, 55(12): 1953-1960. doi: 10.1007/s11430-012-4488-y
Mjelde R, Sellevoll M A, Shimamura H, et al. 1992. A crustal study off Lofoten, N. Norway, by use of 3-component ocean bottom seismographs. Tectonophysics, 212(3-4): 269-288. doi: 10.1016/0040-1951(92)90295-H
Mjelde R, Sellevoll M A, Shimamura H, et al. 1995. S-wave anisotropy off Lofoten, Norway, indicative of fluids in the lower continental crust?. Geophysical Journal International, 120(1): 87-96. doi: 10.1111/j.1365-246X.1995.tb05912.x
Mjelde R, Timenes T, Shimamura H, et al. 2002. Acquisition, processing and analysis of densely sampled P- and S-wave OBS-data on the mid-Norwegian margin, NE Atlantic. Earth, Planets and Space, 54(12): e1219-e1236. doi: 10.1186/BF03352451
Mjelde R, Raum T, Digranes P, et al. 2003. Vp/VS ratio along the Vøring Margin, NE Atlantic, derived from OBS data: implications on lithology and stress field. Tectonophysics, 369(3-4): 175-197. doi: 10.1016/S0040-1951(03)00198-7
Mjelde R, Eckhoff I, Solbakken S, et al. 2007. Gravity and S-wave modelling across the Jan Mayen Ridge, North Atlantic; implications for crustal lithology. Marine Geophysical Researches, 28(1): 27-41. doi: 10.1007/s11001-006-9012-3
Nissen S S, Hayes D E, Yao B C, et al. 1995. Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 100(B11): 22447-22483. doi: 10.1029/95JB01868
Nur A, Simmons G. 1969. Effect of saturation on velocity in low porosity rocks. Earth and Planetary Science Letters, 7(2): 183-193. doi: 10.1016/0012-821X(69)90035-1
Péron-Pinvidic G, Manatschal G. 2010. From microcontinents to extensional allochthons: Witnesses of how continents rift and break apart. Petroleum Geoscience, 16(3): 189-197. doi: 10.1144/1354-079309-903
Schoenberg M, Protazio J D S. 1992. "Zoeppritz" rationalized and generalized to anisotropy. Journal of Seismic Exploration, 1(2): 125-144. http://scitation.aip.org/deliver/fulltext/asa/journal/jasa/88/S1/1.2029011.pdf;jsessionid=1xvh4k6aq9js3.x-aip-live-03?itemId=/content/asa/journal/jasa/88/S1/10.1121/1.2029011&mimeType=pdf&containerItemId=content/asa/journal/jasa
Spencer J W, Nur A M. 1976. The effects of pressure, temperature, and pore water on velocities in westerly granite. Journal of Geophysical Research, 81(5): 899-904. doi: 10.1029/JB081i005p00899
Van Avendonk H J, Shillington D J, Holbrook W S, et al. 2004. Inferring crustal structure in the Aleutian island Arc from a sparse wide-angle seismic data set. Geochemistry, Geophysics, Geosystems, 5(8): 8008, doi:10.1029/2003GC000664.
Watanabe T. 1993. Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors. Geophysical Research Letters, 20(24): 2933-2936. doi: 10.1029/93GL03170
Wei X D, Zhao M H, Ruan A G, et al. 2010. Identification and application of shear waves along the profile OBS2006-3 in the mid-northern South China Sea. Journal of Tropical Oceanography (in Chinese), 29(5): 72-80. http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY201005012.htm
Wei X D, Zhao M H, Ruan A G, et al. 2011. Crustal structure of shear waves and its tectonic significance in the mid-northern continental margin of the South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 3150-3160, doi:10.3969/j.issn.0001-5733.2011.12.015.
Wei X D, Ruan A G, Zhao M H, et al. 2015. Shear wave velocity structure of Reed Bank, southern continental margin of the South China Sea. Tectonophysics, 644-645: 151-160. doi: 10.1016/j.tecto.2015.01.006
Wei X D, Ruan A G, Li J B, et al. 2017. S-wave velocity structure and tectonic implications of the northwestern sub-basin and Macclesfield of the South China Sea. Marine Geophysical Research, 38(1-2): 125-136. doi: 10.1007/s11001-016-9288-x
Wessel P, Smith W H F. 1995. New version of the generic mapping tools. Eos, Transactions American Geophysical Union, 76(33): 329. http://www.researchgate.net/publication/313201862_The_generic_mapping_tools_GMT_version_30
White R S, Stephen R A. 1980. Compressional to shear wave conversion in oceanic crust. Geophysical Journal of the Royal Astronomical Society, 63(2): 547-565. doi: 10.1111/j.1365-246X.1980.tb02637.x
Zelt C A, Smith R B. 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophysical Journal International, 108(1): 16-34. doi: 10.1111/j.1365-246X.1992.tb00836.x
Zelt C A, Barton P J. 1998. Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin. Journal of Geophysical Research: Solid Earth, 103(B4): 7187-7210. doi: 10.1029/97JB03536
Zhang J, Li J B, Ruan A G, et al. 2018. Application of converted S-waves from the active-source Ocean Bottom Seismometer experiment. Earth Science, 43(10): 3778-3791. http://www.researchgate.net/publication/329984126_Application_of_Converted_S-Waves_from_the_Active-Source_Ocean_Bottom_Seismometer_Experiment
Zhang L, Zhao M H, Qiu X L, et al. 2016. Recent progress of converted shear-wave phase identification in Nansha Block using Ocean Bottom Seismometers data. Journal of Tropical Oceanography (in Chinese), 35(1): 61-71. http://www.cqvip.com/QK/96022X/201601/667740222.html
Zhao M H, Qiu X L, Xia S H, et al. 2010. Seismic structure in the northeastern South China Sea: S-wave velocity and VP/VS ratios derived from three-component OBS data. Tectonophysics, 480(1-4): 183-197. doi: 10.1016/j.tecto.2009.10.004
Zhao W N, Zhang X H, Meng X J, et al. 2017. S-wave velocity structures and Vp/Vs ratios beneath the South Yellow Sea from ocean bottom seismograph data. Journal of Applied Geophysics, 139: 211-222. doi: 10.1016/j.jappgeo.2017.02.015
Zhao M H, Qiu X L, Xia S H, et al. 2010. Identification and analysis of shear waves recorded by three-component OBSs in the northeastern South China Sea. Progress in Natrual Science, 17(11): 1516-1523. http://www.sciencedirect.com/science/article/pii/S1002007107000263/pdfft?md5=a2a276f02f7eab6a7ccce671ba964252&pid=1-s2.0-S1002007107000263-main.pdf
郭晓然, 赵明辉, 黄海波等. 2016. 西沙地块地壳结构及其构造属性. 地球物理学报, 59(4): 1414-1425, doi:10.6038/cjg20160422. http://www.geophy.cn//CN/abstract/abstract12730.shtml
郝天珧, 游庆瑜. 2011. 国产海底地震仪研制现状及其在海底结构探测中的应用. 地球物理学报, 54(12): 3352-3361, doi:10.3969/j.issn.0001-5733.2011.12.033. http://www.geophy.cn//CN/abstract/abstract8321.shtml
黄海波, 丘学林, 胥颐等. 2011. 利用远震接收函数方法研究南海西沙群岛下方地壳结构. 地球物理学报, 54(11): 2788-2798, doi:10.3969/j.issn.0001-5733.2011.11.009. http://www.geophy.cn//CN/abstract/abstract8221.shtml
刘福平, 孟宪军, 肖加奇等. 2012. 基于Zoeppritz偏导方程实现地震波速度的多角度反演. 中国科学: 地球科学, 42(10): 1609-1616. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201210015.htm
卫小冬, 赵明辉, 阮爱国等. 2010. 南海中北部OBS2006-3地震剖面中横波的识别与应用. 热带海洋学报, 29(5): 72-80. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201005012.htm
卫小冬, 赵明辉, 阮爱国等. 2011. 南海中北部陆缘横波速度结构及其构造意义. 地球物理学报, 54(12): 3150-3160, doi:10.3969/j.issn.0001-5733.2011.12.015. http://www.geophy.cn//CN/abstract/abstract8303.shtml
张洁, 李家彪, 阮爱国等. 2018. 海底地震仪(OBS)主动源转换横波的应用. 地球科学, 43(10): 3778-3791. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810037.htm
张莉, 赵明辉, 丘学林等. 2016. 南沙地块海底地震仪转换横波震相识别最新进展. 热带海洋学报, 35(1): 61-71. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201601014.htm
赵明辉, 丘学林, 夏少红等. 2007. 南海东北部三分量海底地震仪记录中横波的识别和分析. 自然科学进展, 17(11): 1516-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200711007.htm
-