基于Born散射理论的二维黏声介质高斯波束正演

孙辉, 岳玉波, 李猛. 2021. 基于Born散射理论的二维黏声介质高斯波束正演. 地球物理学报, 64(2): 637-644, doi: 10.6038/cjg2021O0284
引用本文: 孙辉, 岳玉波, 李猛. 2021. 基于Born散射理论的二维黏声介质高斯波束正演. 地球物理学报, 64(2): 637-644, doi: 10.6038/cjg2021O0284
SUN Hui, YUE YuBo, LI Meng. 2021. 2D Born forward modeling for visco-acoustic media using Gaussian beam. Chinese Journal of Geophysics (in Chinese), 64(2): 637-644, doi: 10.6038/cjg2021O0284
Citation: SUN Hui, YUE YuBo, LI Meng. 2021. 2D Born forward modeling for visco-acoustic media using Gaussian beam. Chinese Journal of Geophysics (in Chinese), 64(2): 637-644, doi: 10.6038/cjg2021O0284

基于Born散射理论的二维黏声介质高斯波束正演

  • 基金项目:

    国家自然科学基金(41804100,42074173),河北省自然科学基金(D2019403082),中国博士后科学基金(2018M640910,2020T130080)和中央高校基本科研业务费专项资金(2682018CX36)联合资助

详细信息
    作者简介:

    孙辉, 男, 1990年生, 西南交通大学地球科学与环境工程学院讲师, 主要从事地震波正演、偏移成像以及工程地球物理勘探等方向的研究. E-mail: sunhui@swjtu.edu.cn

    通讯作者: 岳玉波, 男, 1984年生, 博士, 主要从事地震数据处理方法研究和软件研发.E-mail: geoyyb@163.com
  • 中图分类号: P631

2D Born forward modeling for visco-acoustic media using Gaussian beam

More Information
  • Born散射理论可以通过省略高阶项实现针对一次散射波场的模拟.在这一理论的基础上,本文提出了一种针对二维黏声介质的一次散射波场高斯束Born正演方法.在该方法中,格林函数通过一系列不同初射方向的高斯波束累加获得,可以计算多至走时波场,保证了正演算法的计算精度.同时为了提高计算效率,正演方法使用了wavelet-bank方式合成局部平面波.区别于针对声波介质正演的wavelet-bank使用方法,文中将介质黏滞性信息融入了局部平面波的wavelet-bank合成方法中,以此实现针对黏声介质的快速一次散射波场模拟.两个模型的计算结果表明:本文提出的黏声介质高斯波束正演方法具有良好的计算精度以及较高的计算效率.

  • 加载中
  • 图 1 

    黏声介质高斯束Born正演实现流程

    Figure 1. 

    Flow chart of the Born forward modeling for visco-acoustic media using Gaussian beam

    图 2 

    水平层状黏声模型

    Figure 2. 

    Layered visco-acoustic model

    图 3 

    水平层状黏声模型不同方法正演结果

    Figure 3. 

    Modeling results with different modeling methods for layered visco-acoustic model

    图 4 

    零偏移距不同正演方法波形对比

    Figure 4. 

    Waveform comparison of zero-offset traces between different modeling methods

    图 5 

    复杂黏声模型

    Figure 5. 

    Complex visco-acoustic model

    图 6 

    复杂黏声模型不同方法正演结果

    Figure 6. 

    Forward modeling results with different methods for layered visco-acoustic model

  •  

    Abubakar A, Habashy T M. 2013. Three-dimensional visco-acoustic modeling using a renormalized integral equation iterative solver. Journal of Computational Physics, 249:1-12. doi: 10.1016/j.jcp.2013.04.008

     

    Aki K, Richards P G. 2002. Quantitative Seismology. 2nd ed. Sausalito: University Science Books.

     

    Arntsen B, Nebel A G, Amundsen L. 1998. Viscoacoustic finite-difference modeling in the frequency domain. Journal of Seismic Exploration, 7(1):45-64.

     

    Bleistein N, Cohen J K, Stockwell J W Jr, et al. 2001. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. New York:Springer.

     

    Cao W J, Wang H Z, Li Z C, et al. 2013. Application of complex topographic Gaussian beam amplitude-preserved pre-stack depth migration in piedmont zone. Progress in Geophysics (in Chinese), 28(6):3086-3091, doi:10.6038/pg20130633.

     

    Červený V, Coppoli A D M. 1992. Ray Born synthetic seismograms for complex structures containing scatterers. Journal of Seismic Exploration, 1:191-206.

     

    Červený V, Popov M M, Pšen? ík, I. 1982. Computation of wave fields in inhomogeneous media-Gaussian beam approach. Geophysical Journal International, 70(1):109-128. doi: 10.1111/j.1365-246X.1982.tb06394.x

     

    Chapman C. 2004. Fundamentals of Seismic Wave Propagation. Cambridge: Cambridge University Press, 2004.

     

    Coates R T, Chapman C H. 1991. Generalized Born scattering of elastic waves in 3-D media. Geophysical Journal International, 107(2):231-263.

     

    Coates R T, Charrette E E. 1993. A comparison of single scattering and finite difference synthetic seismograms in realizations of 2-D elastic random media. Geophysical Journal International, 113(2):463-482. doi: 10.1111/j.1365-246X.1993.tb00900.x

     

    Duquet B, Marfurt K J, Dellinger J A. 2000. Kirchhoff modeling, inversion for reflectivity, and subsurface illumination. Geophysics, 65(4):1195-1209. doi: 10.1190/1.1444812

     

    Fawcett J A. 2001. Modeling of high-frequency scattering from objects using a hybrid Kirchhoff/diffraction approach. The Journal of the Acoustical Society of America, 109(4):1312-1319. doi: 10.1121/1.1350400

     

    Fu L Y. 2010. Born-series dispersion equations and Born-Kirchhoff propagators. Chinese Journal of Geophysics (in Chinese), 53(2):370-384, doi:10.3969/j.issn.0001-5733.2010.02.015.

     

    Gibson R L Jr, Toks uz M N, Batini F. 1993. Ray-Born modelling of fracture-zone reflections in the Larderello geothermal field. Geophysical Journal International, 114(1):81-90. doi: 10.1111/j.1365-246X.1993.tb01468.x

     

    Gray S H, Bleistein N. 2009. True-amplitude Gaussian-beam migration. Geophysics, 74(2):S11-S23. doi: 10.1190/1.3052116

     

    Han J G, Wang Y, Chen C X, et al. 2017. Multiwave Gaussian beam prestack depth migration for 2D anisotropic media. Progress in Geophysics (in Chinese), 32(3):1130-1139, doi:10.6038/pg20170324.

     

    Hill N R. 1990. Gaussian beam migration. Geophysics, 55(11):1416-1428. doi: 10.1190/1.1442788

     

    Hill N R. 2001. Prestack Gaussian-beam depth migration. Geophysics, 66(4):1240-1250. doi: 10.1190/1.1487071

     

    Huang X G, Sun H, Sun J G. 2016. Born modeling for heterogeneous media using the Gaussian beam summation based Green's function. Journal of Applied Geophysics, 131:191-201. doi: 10.1016/j.jappgeo.2016.06.004

     

    Hudson J A. 1970. Scattered waves in the coda of P. Journal of Geophysics, 43(1):359-374.

     

    Hudson J A, Heritage J R. 1981. The use of the Born approximation in seismic scattering problems. Geophysical Journal International, 66(1):221-240. doi: 10.1111/j.1365-246X.1981.tb05954.x

     

    Jaramillo H H, Bleistein N. 1999. The link of Kirchhoff migration and demigration to Kirchhoff and Born modeling. Geophysics, 64(6):1793-1805. doi: 10.1190/1.1444685

     

    Li Q Q, Fu L Y, Zhou H, et al. 2019. Effective Q-compensated reverse time migration using new decoupled fractional Laplacian viscoacoustic wave equation. Geophysics, 84(2):S57-S69. doi: 10.1190/geo2017-0748.1

     

    Liu J, Palacharla G. 2011. Multiarrival Kirchhoff beam migration. Geophysics, 76(5):WB109-WB118. doi: 10.1190/geo2010-0403.1

     

    Long Y, Lin J, Li B, et al. 2019. Fast-AIC method for automatic first arrivals picking of microseismic event with multitrace energy stacking envelope summation. IEEE Geoscience and Remote Sensing Letters, 17(10):1832-1836, doi:10.1109/LGRS.2019.2952571.

     

    Moser T J. 2012. Review of ray-Born forward modeling for migration and diffraction analysis. Studia Geophysica et Geodaetica, 56(2):411-432. doi: 10.1007/s11200-011-9046-0

     

    Operto S, Virieux J, Amestoy P, et al. 2007. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver:A feasibility study. Geophysics, 72(5):SM195-SM211. doi: 10.1190/1.2759835

     

    Pollitz F. 2011. High-frequency Born synthetic seismograms based on coupled normal modes. Geophysical Journal International, 187(3):1420-1442. doi: 10.1111/j.1365-246X.2011.05188.x

     

    Šachl L. 2013. Validation of 3D synthetic seismograms based on the ray-Born approximation. Studia Geophysica et Geodaetica, 57(1):84-102. doi: 10.1007/s11200-012-0722-5

     

    Sarajaervi M, Keers H. 2018. Computation of ray-Born seismograms using isochrons. Geophysics, 83(5):T245-T256. doi: 10.1190/geo2017-0669.1

     

    Shekar B, Tsvankin I. 2014. Kirchhoff modeling for attenuative anisotropic media using Gaussian beams. Geophysics, 79(5):WB51-WB61. doi: 10.1190/geo2013-0432.1

     

    Sun H, Gao C, Zhang Z H, et al. 2020. High-resolution anisotropic prestack Kirchhoff dynamic focused beam migration. IEEE Sensors Journal, 20(20):11753-11760. doi: 10.1109/JSEN.2019.2933200

     

    Thierry P, Lambaré G, Podvin P, et al. 1999. 3-D preserved amplitude prestack depth migration on a workstation. Geophysics, 64(1):222-229. doi: 10.1190/1.1444518

     

    Walcott R I. 1970. Flexural rigidity, thickness, and viscosity of the lithosphere. Journal of Geophysical Research, 1970, 75(20):3941-3954. doi: 10.1029/JB075i020p03941

     

    Wang N, Zhu T Y, Zhou H, et al. 2020. Fractional Laplacians viscoacoustic wavefield modeling with k-space based time-stepping error compensating scheme. Geophysics, 85(1):T1-T13. doi: 10.1190/geo2019-0151.1

     

    Wang X, Zhan Z W. 2020. Moving from 1-D to 3-D velocity model:automated waveform-based earthquake moment tensor inversion in the Los Angeles region. Geophysical Journal International, 220(1):218-234. doi: 10.1093/gji/ggz435

     

    White J E. 1975. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40(2):224-232. doi: 10.1190/1.1440520

     

    Wu Y, Fu L Y, Chen G X. 2017. Forward modeling and reverse time migration of viscoacoustic media using decoupled fractional Laplacians. Chinese Journal of Geophysics (in Chinese), 60(4):1527-1537, doi:10.6038/cjg20170425.

     

    Yang J, Huang J P. 2018. Time domain Gaussian beam migration method based Hanning window filtering. Progress in Geophysics (in Chinese), 33(3):1161-1166, doi:10.6038/pg2018BB0183.

     

    Yang J D, Huang J P, Li Z C, et al. 2016. Gaussian beam migration based on matching pursuit sparse decomposition. Progress in Geophysics (in Chinese), 31(3):1237-1245, doi:10.6038/pg20160342.

     

    Yue Y B, Qian Z P, Zhang X D, et al. 2019. Gaussian beam based Born modeling method for single-scattering waves in acoustic medium. Chinese Journal of Geophysics (in Chinese), 62(2):648-656, doi:10.6038/cjg2019M0367.

     

    Zong J J, Stewart R R, Dyaur N. 2020. Attenuation of rock salt:Ultrasonic lab analysis of Gulf of Mexico coastal samples. Journal of Geophysical Research:Solid Earth, 125(7):e2019JB019025.

     

    曹文俊, 王华忠, 李振春等. 2013.复杂地表高斯束保幅叠前深度偏移在山前带地区的应用.地球物理学进展, 28(6):3086-3091, doi:10.6038/pg20130633.

     

    符力耘. 2010. Born序列频散方程和Born-Kirchhoff传播算子.地球物理学报, 53(2):370-384, doi:10.3969/j.issn.0001-5733.2010.02.015. http://www.geophy.cn//CN/abstract/abstract1276.shtml

     

    韩建光, 王赟, 陈传绪等. 2017.二维各向异性多波高斯束叠前深度偏移.地球物理学进展, 32(3):1130-1139, doi:10.6038/pg20170324.

     

    吴玉, 符力耘, 陈高祥. 2017.基于分数阶拉普拉斯算子解耦的黏声介质地震正演模拟与逆时偏移.地球物理学报, 60(4):1527-1537, doi:10.6038/cjg20170425. http://www.geophy.cn//CN/abstract/abstract13619.shtml

     

    杨继东, 黄建平, 李振春等. 2016.基于匹配追踪稀疏分解的高斯束成像方法.地球物理学进展, 31(3):1237-1245, doi:10.6038/pg20160342.

     

    杨晶, 黄建平. 2018.基于汉宁窗函数滤波时间域高斯束成像方法.地球物理学进展, 33(3):1161-1166, doi:10.6038/pg2018BB0183.

     

    岳玉波, 钱忠平, 张旭东等. 2019.声波介质一次散射波场高斯束Born正演.地球物理学报, 62(2):648-656, doi:10.6038/cjg2019M0367. http://www.geophy.cn//CN/abstract/abstract14870.shtml

  • 加载中

(6)

计量
  • 文章访问数:  417
  • PDF下载数:  392
  • 施引文献:  0
出版历程
收稿日期:  2020-08-03
修回日期:  2020-11-26
上线日期:  2021-02-10

目录