巴基斯坦Bahawalpur黄土岩石磁学特征及磁化率变化机制研究

何玲珊, 刘秀铭, 马明明, 毛学刚, A.R. Tabrez, 吕镔, 綦昕瑶, 师永辉. 2021. 巴基斯坦Bahawalpur黄土岩石磁学特征及磁化率变化机制研究. 地球物理学报, 64(3): 925-936, doi: 10.6038/cjg2021O0280
引用本文: 何玲珊, 刘秀铭, 马明明, 毛学刚, A.R. Tabrez, 吕镔, 綦昕瑶, 师永辉. 2021. 巴基斯坦Bahawalpur黄土岩石磁学特征及磁化率变化机制研究. 地球物理学报, 64(3): 925-936, doi: 10.6038/cjg2021O0280
HE LingShan, LIU XiuMing, MA MingMing, MAO XueGang, A.R. Tabrez, LÜ Bin, QI XinYao, SHI YongHui. 2021. Rock magnetic properties and magnetic susceptibility change mechanism of loess in Bahawalpur, Pakistan. Chinese Journal of Geophysics (in Chinese), 64(3): 925-936, doi: 10.6038/cjg2021O0280
Citation: HE LingShan, LIU XiuMing, MA MingMing, MAO XueGang, A.R. Tabrez, LÜ Bin, QI XinYao, SHI YongHui. 2021. Rock magnetic properties and magnetic susceptibility change mechanism of loess in Bahawalpur, Pakistan. Chinese Journal of Geophysics (in Chinese), 64(3): 925-936, doi: 10.6038/cjg2021O0280

巴基斯坦Bahawalpur黄土岩石磁学特征及磁化率变化机制研究

  • 基金项目:

    国家自然科学基金项目(41772180和U1405231)资助

详细信息
    作者简介:

    何玲珊, 女, 1995年生, 硕士研究生, 主要从事环境磁学与气候变化方面研究.E-mail: helingshan2018@163.com

    通讯作者: 刘秀铭, 男, 1956年生, 教授, 主要从事风积地层与环境磁学方面研究.E-mail: xliu@fjnu.edu.cn
  • 中图分类号: P318

Rock magnetic properties and magnetic susceptibility change mechanism of loess in Bahawalpur, Pakistan

More Information
  • 风成黄土是陆地上分布最广泛的沉积物之一,记载了各种古气候演化信息.目前巴基斯坦的黄土研究甚少,磁化率与气候对应的变化机制研究尚未开展.本文对位于巴基斯坦印度河平原Bahawalpur地区新发现的黄土-古土壤剖面进行系统的岩石磁学研究,结合粒度和漫反射光谱(DRS)数据,讨论巴基斯坦黄土的磁化率变化机制.实验结果显示:Bahawalpur (BH)剖面黄土层主要的载磁矿物为磁铁矿,同时含有少量磁赤铁矿和针铁矿,磁性颗粒以原生的MD和PSD颗粒为主.相对于黄土层,古土壤层则是以针铁矿为主,含有顺磁性矿物和少量磁铁矿.BH剖面磁化率与成土作用关系和中国黄土高原典型剖面相反,磁化率的变化可能存在一个阈值12.8×10-8m3·kg-1,在阈值之上,强磁性矿物(磁铁矿、磁赤铁矿)占主导;阈值之下,以弱磁性矿物(主要是针铁矿)为主,这种磁性矿物的转变可能导致磁化率降低.本文可为今后利用磁化率解读该地区地层蕴含的古气候信息提供新线索.

  • 加载中
  • 图 1 

    研究区地理位置(a)及剖面图(b)

    Figure 1. 

    Location of study area (a) and the photo of the profile (b)

    图 2 

    BH黄土剖面常温磁学参数随深度变化曲线

    Figure 2. 

    Room temperature magnetic parameter curves plotted against depth of BH section

    图 3 

    BH剖面典型样品与沙漠样品磁滞回线(实线为原始曲线,虚线为顺磁校正后曲线)

    Figure 3. 

    Magnetic hysteresis loops of BH section representative samples and desert samples (solid lines represent original curves, dashed lines represent curves after paramagnetic correction)

    图 4 

    BH剖面典型样品与沙漠样品M-T曲线(黑线表示加热曲线,灰线表示冷却曲线)

    Figure 4. 

    M-T curves of BH section representative samples and desert samples (black lines represent heating curves, grey lines represent cooling curves)

    图 5 

    BH剖面代表性样品的漫反射光谱一阶导数曲线(ori代表加热前样品,300 ℃代表300 ℃加热后样品)

    Figure 5. 

    First derivative curves of diffuse reflectance spectra of typical samples from BH section (ori represents pre-heating sample, 300 ℃ represents sample heated by 300 ℃)

    图 6 

    BH剖面针铁矿一阶导数主峰峰高(h(Hm))与磁化率(χ)比值随深度变化曲线

    Figure 6. 

    Goethite based on peak height of first derivative (h(Hm)) to magnetic susceptibility (χ) ratio in BH section

    图 7 

    BH剖面粒度参数随深度变化曲线

    Figure 7. 

    Particle size parameter curves plotted against depth of BH section

    图 8 

    BH剖面(a,b)和西峰剖面(c,d)黄土-古土壤粒度频率分布曲线

    Figure 8. 

    Particle-size frequency distribution curves of loess-paleosol from BH section (a, b) and Xifeng section (c, d)

    图 9 

    BH剖面黄土样品和沙漠样品Dearing图

    Figure 9. 

    Dearing plots of BH section loess samples and desert samples

    图 10 

    BH剖面磁化率与其它磁学参数相关关系(黑色圆点代表χ>12.8×10-8m3·kg-1样品,灰色圆点代表χ<12.8×10-8m3·kg-1样品)

    Figure 10. 

    Relationship between magnetic susceptibility and other magnetic parameters of BH section (black notes represent samples with χ> 12.8×10-8m3·kg-1, grey notes represent samples with χ< 12.8×10-8m3·kg-1)

    表 1 

    BH剖面OSL年龄

    Table 1. 

    OSL age of BH section

    样品编号 深度(cm) U(ppm) Th(ppm) K (%) 等效剂量(Cy) 年龄(ka)
    OSL-BH-01 180 2.03±0.01 11.12±0.02 1.51±0.08 1.8±0.1 0.5±0.03
    OSL-BH-02 390 2.4±0.05 12.63±0.25 1.48±0.07 66.6±0.7 19.4±0.9
    OSL-BH-03 550 3.08±0.02 11.58±0.05 2.08±0.1 170.4±1.4 42.5±1.8
    下载: 导出CSV
  •  

    Akram H, Yoshida M, Ahmad M N. 1998. Rock magnetic properties of the late Pleistocene Loess-Paleosol deposits in Haro River area, Attock basin, Pakistan: Is magnetic susceptibility a proxy measure of paleoclimate?. Earth, Planets and Space, 50(2): 129-139, doi: 10.1186/BF03352094.

     

    Ao H, Deng C L. 2007. Review in the identification of magnetic minerals. Progress in Geophysics (in Chinese), 22(2): 432-442, doi: 10.3969/j.issn.1004-2903.2007.02.015.

     

    Begét J E, Hawkins D B. 1989. Influence of orbital parameters on Pleistocene loess deposition in central Alaska. Nature, 337(6203): 151-153, doi: 10.1038/337151a0.

     

    Begét J E, Stone D B, Hawkins D B. 1990. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary. Geology, 18(1): 40-43, doi: 10.1130/0091-7613(1990)0182.3.co;2.

     

    Bibi M, Wagreich M, Iqbal S, et al. 2020. Sedimentation and glaciations during the Pleistocene: Palaeoclimate reconstruction in the Peshawar Basin, Pakistan. Geological Journal, 55(1): 671-693, doi: 10.1002/gj.3445.

     

    Dar R A, Zeeden C. 2020. Loess-Palaeosol Sequences in the Kashmir Valley, NW Himalayas: A review. Frontiers in Earth Science, 8: 113, doi: 10.3389/feart.2020.00113.

     

    Din N, Yoshida M. 1997. Particle-Size Distribution of Late Pleistocene Loess-Paleosol Deposits in Attock Basin, Pakistan: its paleoclimatic implications. Quaternary Research, 36(1): 43-53, doi: 10.4116/jaqua.36.43.

     

    Ding F, Tang J N, Su Z Z, et al. 2017. Deposited process and provenance analysis of BL sand loess section in southeastern margin of the Kumtagh Desert. Quaternary Sciences (in Chinese), 37(1): 36-44, doi: 10.11928/j.issn.1001-7410.2017.01.04.

     

    Ding Z L, Sun J M, Yang S L, et al. 1998. Magnetostratigraphy and grain size record of a thick red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Quaternary Sciences (in Chinese), 18(1): 86-94. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199801011.htm

     

    Guo X L, Liu X M, Guo H, et al. 2012. The magnetic mechanism of S5 paleosol in Baoji Section. Quaternary Sciences (in Chinese), 32(4): 785-794, doi: 10.3969/j.issn.1001-7410.2012.04.24.

     

    Heller F, Liu T S. 1982. Magnetostratigraphical dating of loess deposits in China. Nature, 300(5891): 431-433, doi: 10.1038/300431a0.

     

    Ji J F, Chen J, Balsam W, et al. 2007. Quantitative analysis of hematite and goethite in the Chinese loess-paleosol sequences and its implication for dry and humid variability. Quaternary Sciences (in Chinese), 27(2): 221-229, doi: 10.3321/j.issn:1001-7410.2007.02.007.

     

    Li P Y, Liu X M, Liu Z, et al. 2012. The magnetic properties of topsoil from the edge of Tengger Desert, and its environmental significance. Quaternary Sciences (in Chinese), 32(4): 771-776, doi: 10.3969/j.issn.1001-7410.2012.04.22.

     

    Li Y, Song Y G, Kathryn E F, et al. 2018. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: insights from a loess-paleosol sequence in the Ili Basin, Climate of the Past, 14(3): 271-286, doi: 10.5194/cp-14-271-2018.

     

    Liu L, Cheng T, Wu C, et al. 2020. Hematite and goethite content in the dust deposition from the eastern islands of the Yangtze River Delta and its paleoclimatic significance. Acta Sedimentologica Sinica (in Chinese), 38(3): 518-527, doi: 10.14027/j.issn.1000-0550.2019.059.

     

    Liu Q S, Deng C L, Yu Y, et al. 2005. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 161(1): 102-112, doi: 10.1111/j.1365-246X.2005.02564.x.

     

    Liu Q S, Deng C L, Torrent J, et al. 2007. Review of recent developments in mineral magnetism of the Chinese loess. Quaternary Science Reviews, 26(3-4): 368-385, doi: 10.1016/j.quascirev.2006.08.004.

     

    Liu Q S, Deng C L. 2009. Magnetic susceptibility and its environmental significances. Chinese Journal of Geophysics (in Chinese), 52(4): 1041-1048, doi: 10.3969/j.issn.0001-5733.2009.04.021.

     

    Liu X B, Xia D S, Jia J, et al. 2012. Magnetic properties of Jiuzhoutai loess in Lanzhou and its significance of palaeoclimate. Quaternary Sciences (in Chinese), 32(4): 761-770, doi: 10.3969/j.issn.1001-7410.2012.04.21.

     

    Liu X M, Hesse P, Rolph T. 1999. Origin of maghaemite in Chinese loess deposits: aeolian or pedogenic?. Physics of the Earth and Planetary Interiors, 112(3-4): 191-201, doi: 10.1016/S0031-9201(99)00002-3.

     

    Liu X M, Liu T S, Paul H, et al. 2008. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess. Science in China Series D: Earth Sciences, 51(2): 284-293, doi: 10.1007/s11430-007-0145-2.

     

    Liu X M, Ma M M, Hesse P, et al. 2011. Magnetic properties of loess deposits in Australia and its environmental significances. Quaternary Sciences (in Chinese), 31(5): 837-848, doi: 10.3969/j.issn.1001-7410.2011.05.08.

     

    Liu X M, Lü B, Mao X G, et al. 2014. Iron minerals of aeolian deposits vary with environment and its significances. Quaternary Sciences (in Chinese), 34(3): 443-457, doi: 10.3969/j.issn.1001-7410.2014.03.01.

     

    Liu X M, Ma M M, Wu H B, et al. 2017. Identification of aeolian loess deposits on the Indo-Gangetic Plain (India) and their significance. Science China Earth Sciences, 60(3): 428-437, doi: 10.1007/s11430-016-5167-1.

     

    Lu H Y, An Z S. 1998. Paleoclimatic significance of grain size of loess-paleosol deposit in Chinese Loess Plateau. Science in China Series D: Earth Sciences, 41(6): 626-631, doi: 10.1007/BF02878745.

     

    Lü B, Liu X M, Guo H, et al. 2019. Magnetic properties of the cretaceous Shaxian formation stratum in Fujian Province and their environmental significance. Acta Sedimentologica Sinica (in Chinese), 37(3): 519-531, doi: 10.14027/j.issn.1000-0550.2018.155.

     

    Ma X Y, Lü B, Zhao G Y, et al. 2019. Magnetic properties and their influence factors of Lixian loess in western Sichuan Plateau. Quaternary Sciences (in Chinese), 39(5): 1307-1319, doi: 10.11928/j.issn.1001-7410.2019.05.22.

     

    Maher B A. 2016. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau. Quaternary Science Reviews, 154: 23-84, doi: 10.1016/j.quascirev.2016.08.004.

     

    Pye K. 1987. Aeolian Dust and Dust Deposits. London: Academic Press, 1-334.

     

    Ren Y C, Li X S, Han Z Y, et al. 2020. Chronological sequence of the Xiashu Loess based on the relative paleointensity of geomagnetic field and its implications. Chinese Journal of Geophysics (in Chinese), 63(5): 2024-2035, doi: 10.6038/cjg2020N0400.

     

    Rendell H M, Townsend P D. 1988. Thermoluminescence dating of a 10 m loess profile in Pakistan. Quaternary Science Reviews, 7(3-4): 251-255, doi: 10.1016/0277-3791(88)90012-1.

     

    Rutter N W, Rokosh D, Evans M E, et al. 2003. Correlation and interpretation of paleosols and loess across European Russia and Asia over the last interglacial-glacial cycle. Quaternary Research, 60(1): 101-109, doi: 10.1016/S0033-5894(03)00069-3.

     

    Sun J M. 2020. Loess deposits and its relationship with earth sphere interactions. Quaternary Sciences (in Chinese), 40(1): 1-7, doi: 10.11928/j.issn.1001-7410.2020.01.01.

     

    Thompson R, Oldfield F. 1986. Environmental Magnetism. London: Allen and Unwin, 1-227.

     

    Vandenberghe J. 2013. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth Science Reviews, 121: 18-30, doi: 10.1016/j.earscirev.2013.03.001.

     

    Warwick P D, Wardlaw B R. 2007. Regional studies of the Potwar Plateau Area, Northern Pakistan. Pakistan: Geological Survey (U. S. ).

     

    Yang S L, Ding Z L. 2017. Spatial changes in grain size of loess deposits in the Chinese Loess Plateau and implications for palaeoenvironment. Quaternary Sciences (in Chinese), 37(5): 934-944, doi: 10.11928/j.issn.1001-7410.2017.05.02.

     

    Zeng M X, Song Y G, Li Y, et al. 2019. The relationship between environmental factors and magnetic susceptibility in the Ili loess, Tianshan Mountains, Central Asia. Geological Journal, 54(4): 1889-1901, doi: 10.1002/gj.3182.

     

    Zhou L P, Oldfield F, Wintle A G, et al. 1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 346(6286): 737-739, doi: 10.1038/346737a0.

     

    Zhou W, Ji J F, William B, et al. 2007. Determination of goethite and hematite in red clay by diffuse reflectance spectroscopy. Geological Journal of China Universities (in Chinese), 13(4): 730-736, doi: 10.3969/j.issn.1006-7493.2007.04.017.

     

    Zhu R X, Alexey K, Galina M, et al. 2000. Rock-magnetic investigation of Siberia loess and its implication. Chinese Science Bulletin, 45(23): 2192-2198, doi: 10.1007/BF02886328.

     

    敖红, 邓成龙. 2007. 磁性矿物的磁学鉴别方法回顾. 地球物理学进展, 22(2): 432-442, doi: 10.3969/j.issn.1004-2903.2007.02.015.

     

    丁峰, 唐进年, 苏志珠等. 2017. 库姆塔格沙漠东南缘BL砂黄土剖面的沉积过程与物源分析. 第四纪研究, 37(1): 36-44, doi: 10.11928/j.issn.1001-7410.2017.01.04.

     

    丁仲礼, 孙继敏, 杨石岭等. 1998. 灵台黄土-红粘土序列的磁性地层及粒度记录. 第四纪研究, 18(1): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199801011.htm

     

    郭雪莲, 刘秀铭, 郭晖等. 2012. 宝鸡剖面S5古土壤磁化率变化机制. 第四纪研究, 32(4): 785-794, doi: 10.3969/j.issn.1001-7410.2012.04.24.

     

    季峻峰, 陈骏, Balsam W等. 2007. 黄土剖面中赤铁矿和针铁矿的定量分析与气候干湿变化研究. 第四纪研究, 27(2): 221-229, doi: 10.3321/j.issn:1001-7410.2007.02.007.

     

    李平原, 刘秀铭, 刘植等. 2012. 腾格里沙漠边缘表土磁学性质及其意义. 第四纪研究, 32(4): 771-776, doi: 10.3969/j.issn.1001-7410.2012.04.22.

     

    刘力, 程婷, 吴超等. 2020. 长江三角洲东部岛屿风尘堆积赤铁矿和针铁矿含量及古气候意义. 沉积学报, 38(3): 518-527, doi: 10.14027/j.issn.1000-0550.2019.059.

     

    刘青松, 邓成龙. 2009. 磁化率及其环境意义. 地球物理学报, 52(4): 1041-1048, doi: 10.3969/j.issn.0001-5733.2009.04.021. http://www.geophy.cn//CN/abstract/abstract1008.shtml

     

    刘现彬, 夏敦胜, 贾佳等. 2012. 兰州九州台黄土磁性特征及其古气候意义研究. 第四纪研究, 32(4): 761-770, doi: 10.3969/j.issn.1001-7410.2012.04.21.

     

    刘秀铭, 马明明, Hesse P等. 2011. 澳大利亚黄土磁学性质及环境意义. 第四纪研究, 31(5): 837-848, doi: 10.3969/j.issn.1001-7410.2011.05.08.

     

    刘秀铭, 吕镔, 毛学刚等. 2014. 风积地层中铁矿物随环境变化及其启示. 第四纪研究, 34(3): 443-457, doi: 10.3969/j.issn.1001-7410.2014.03.01.

     

    鹿化煜, 安芷生. 1998. 黄土高原黄土粒度组成的古气候意义. 中国科学(D辑: 地球科学), 28(3): 278-283. doi: 10.3321/j.issn:1006-9267.1998.03.002

     

    吕镔, 刘秀铭, 郭晖等. 2019. 福建白垩系沙县组地层磁学特征及其环境意义. 沉积学报, 37(3): 519-531, doi: 10.14027/j.issn.1000-0550.2018.155.

     

    马兴悦, 吕镔, 赵国永等. 2019. 川西高原理县黄土磁学特征及其影响因素. 第四纪研究, 39(5): 1307-1319, doi: 10.11928/j.issn.1001-7410.2019.05.22.

     

    任翌成, 李徐生, 韩志勇等. 2020. 基于地磁场相对古强度变化的下蜀黄土年代序列及其古气候意义. 地球物理学报, 63(5): 2024-2035, doi: 10.6038/cjg2020N0400. http://www.geophy.cn//CN/abstract/abstract15463.shtml

     

    孙继敏. 2020. 黄土沉积与地球圈层相互作用. 第四纪研究, 40(1): 1-7, doi: 10.11928/j.issn.1001-7410.2020.01.01.

     

    杨石岭, 丁仲礼. 2017. 黄土高原黄土粒度的空间变化及其古环境意义. 第四纪研究, 37(5): 934-944, doi: 10.11928/j.issn.1001-7410.2017.05.02.

     

    周玮, 季峻峰, William B等. 2007. 利用漫反射光谱鉴定红粘土中针铁矿和赤铁矿. 高校地质学报, 13(4): 730-736, doi: 10.3969/j.issn.1006-7493.2007.04.017.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  799
  • PDF下载数:  192
  • 施引文献:  0
出版历程
收稿日期:  2020-07-30
修回日期:  2020-11-04
上线日期:  2021-03-10

目录