流体-地质力学耦合建模表征水力压裂诱发地震: 以加拿大Fox Creek地区为例

惠钢, 陈胜男, 顾斐. 2021. 流体-地质力学耦合建模表征水力压裂诱发地震: 以加拿大Fox Creek地区为例. 地球物理学报, 64(3): 864-875, doi: 10.6038/cjg2021O0267
引用本文: 惠钢, 陈胜男, 顾斐. 2021. 流体-地质力学耦合建模表征水力压裂诱发地震: 以加拿大Fox Creek地区为例. 地球物理学报, 64(3): 864-875, doi: 10.6038/cjg2021O0267
HUI Gang, CHEN ShengNan, GU Fei. 2021. Coupled fluid-geomechanics modeling to characterize hydraulic fracturing-induced earthquakes: Case study in Fox Creek, Canada. Chinese Journal of Geophysics (in Chinese), 64(3): 864-875, doi: 10.6038/cjg2021O0267
Citation: HUI Gang, CHEN ShengNan, GU Fei. 2021. Coupled fluid-geomechanics modeling to characterize hydraulic fracturing-induced earthquakes: Case study in Fox Creek, Canada. Chinese Journal of Geophysics (in Chinese), 64(3): 864-875, doi: 10.6038/cjg2021O0267

流体-地质力学耦合建模表征水力压裂诱发地震: 以加拿大Fox Creek地区为例

  • 基金项目:

    加拿大卓越研究基金项目(The Canada First Research Excellence Fund)资助

详细信息
    作者简介:

    惠钢, 男, 1986年生, 在读博士生, 主要从事水力压裂诱发地震和油藏工程研究.E-mail: hui.gang@ucalgary.ca

    通讯作者: 陈胜男, 女, 1982年生, 副教授, 主要从事油藏工程研究.E-mail: snchen@ucalgary.ca
  • 中图分类号: P315

Coupled fluid-geomechanics modeling to characterize hydraulic fracturing-induced earthquakes: Case study in Fox Creek, Canada

More Information
  • 随着水力压裂技术在页岩气开发中的广泛应用,加拿大西部盆地的诱发地震活动显著增加.目前对于诱发地震的综合表征方法还不成熟.本文采用一种综合地质、岩石力学及流体力学的研究方法,对Fox Creek地区2015年2月8日发生的M3.0诱发地震事件进行了综合表征.首先,利用高分辨率三维反射地震资料,采用蚂蚁体追踪技术识别潜在断层.其次,利用测井曲线和压裂施工数据等资料定量求取岩石力学及地应力参数,建立三维地质力学模型,明确水力压裂缝的空间扩展规律.最后,建立流体-地质力学耦合模型,计算水力压裂过程中断层附近的孔隙压力及局部应力变化,利用摩尔-库仑破裂准则判定断层激活的时间与空间位置,揭示本次诱发地震事件的触发机制并提出风险控制对策.结果表明,三条由Precambrian基底向上延伸至Duvernay地层的近垂直断层在水平井压裂过程中被激活.由于水平井的部分压裂缝与断层沟通,注入流体沿断层的高渗透破裂带向下迅速扩散,在基底位置激活断层并诱发M3.0地震事件.其中孔隙压力增加是本例中断层活化的主要因素.现场措施表明,增大压裂水平井与已知断层之间的距离被可以有效地降低地震风险.因此在进行水平井钻井及压裂作业之前,明确地下断层的分布位置至关重要.

  • 加载中
  • 图 1 

    加拿大西部盆地震级大于2.5的地震事件分布(截止至2019-04-30)

    Figure 1. 

    Map of historical seismicity of ML≥2.5 up to 2019-04-30 in Western Canada

    图 2 

    流体注入或采出诱发地震示意图(Ellsworth, 2013)

    Figure 2. 

    Schematic diagram of fluid injection or extraction-induced seismicity(Ellworth, 2013)

    图 3 

    (a-b)压裂过程中孔隙压力变化和应力变化引起的库仑应力失稳

    Figure 3. 

    (a-b)The Coulomb Failure tiggered by changes of pore pressure and in-situ stress

    图 4 

    Fox Creek地区发育的地层及岩性统计

    Figure 4. 

    Statistics of stratigraphy and its lithology developed in the Fox Creek region

    图 5 

    (a) 研究区位置及大断层分布, 底图为Duvernay顶部构造等值图;(b) 地震事件及水平井空间分布特征;(c) 压裂施工与诱发地震事件时间顺序

    Figure 5. 

    (a) Location of the study area and distribution of large faults.The base map dnotes the elevation of top Duvernay Formation; (b) Spatial distribution of the induced earthquakes and horizontal well; (c) Time sequence of fracturing operation and induced events

    图 6 

    (a-c) 三个地层的蚂蚁体属性切片及地震事件(黑点)叠合图; (d) A-A′地震剖面断层解释结果及断层两侧的地震事件.A-A′剖面位置见图 5b

    Figure 6. 

    (a-c) Horizontal cross-section view of ant tracking property and seismic event (black spot) in three formations; (d) Interpretation of faults bounded by related seismic events in the A-A′ seismic profile.A-A′ section position is shown in Fig. 5b

    图 7 

    三条断层的初始应力状态

    Figure 7. 

    Original stress state of three faults

    图 8 

    (a) 三维耦合模型初始化示意图; (b) 模型网格划分.在压裂缝及断层附近加密网格

    Figure 8. 

    (a) 3D view of poroelastic model initialization; (b) 3D mesh using triangular elements. The mesh surrounding the fractures and faults are refined

    图 9 

    (a-b) 压裂80 h后压裂层位及基底层位ΔPp分布图; (c) 地震事件叠合于(b)图上; (d) 原边界及大边界模型震源处(图 9b十字)的ΔPp及ΔCFS随时间变化情况.压裂段及地震事件也在图中绘出

    Figure 9. 

    (a-b) ΔPp at the Duvernay Formation and basement, respectively, at t=80 hours after the onset of fracturing operations; (c) Induced events overlapped Fig. 9b; (d) Temporal ΔPp and ΔCFS at the nucleation position of MW3.0 earthquake. Fracturing stages and induced events are also depicted

    图 10 

    (a) Duvernay地层顶部的蚂蚁体属性分布.下部圆球显示南部水平井压裂过程中的最大震级M1.25事件的震源机制.黑色虚线为D-D′剖面位置; (b) D-D′剖面的地震事件空间分布特征.圆球大小和颜色分别代表地震事件的震级大小和发生时间

    Figure 10. 

    (a) The horizontal cross-section of ant tracking attributes showed the simulated pore pressure changes at the Basement of Fault 1 at t=80 hours after the onset of HF operations; (b) Vertical F-F′ section view of earthquakes distributions. The balls denoted induced earthquakes, colored by time and scaled by magnitude

    表 1 

    各地层弹性参数及物性参数统计

    Table 1. 

    Statistics of elastic and physical parameters of each formations

    地层 厚度
    (m)
    泊松比
    υ
    杨氏模量
    (GPa)
    孔隙度
    ϕ
    渗透率
    (m2)
    Ireton 160 0.24 48 0.07 6.46×10-18
    Duvernay 40 0.19 50 0.065 4.11×10-19
    SwanHills 100 0.30 70 0.05 7.10×10-19
    Muskeg 100 0.24 66 0.05 3.36×10-18
    Cambrian 200 0.25 66 0.02 5.20×10-20
    Basement 1200 0.25 66 0.02 5.20×10-20
    下载: 导出CSV
  •  

    Atkinson G M, Eaton D W, Ghofrani H, et al. 2016. Hydraulic fracturing and seismicity in the western Canada sedimentary basin. Seismological Research Letters, 87(3): 631-647. doi: 10.1785/0220150263

     

    Bao X W, Eaton D W. 2016. Fault activation by hydraulic fracturing in western Canada. Science, 354(6318): 1406-1409. doi: 10.1126/science.aag2583

     

    Burridge R, Knopoff L. 1967. Model and theoretical seismicity. Bulletin of the Seismological Society of America, 57(3): 341-371.

     

    Catalli F, Meier M A, Wiemer S. 2013. The role of Coulomb stress changes for injection-induced Seismicity: The Basel enhanced geothermal system. Geophysical Research Letter, 40(1): 72-77. doi: 10.1029/2012GL054147

     

    Chen H C, Meng F B, Niu Y L, et al. 2018. Microseismic monitoring of stimulating shale gas reservoir in SW China: 2. spatial clustering controlled by the preexisting faults and fractures. Journal of Geophysical Research: Solid Earth, 123(B2): 1659-1672, doi:10.1002/2017JB014491.

     

    Creaney S, Allan J. 1990. Hydrocarbon generation and migration in the Western Canada Sedimentary basin. Geological Society, London, Special Publications, 50(1): 189-202. doi: 10.1144/GSL.SP.1990.050.01.9

     

    Eaton D W, Davidsen J, Pedersen P K, et al. 2014. Breakdown of the gutenberg-richter relation for microearthquakes induced by hydraulic fracturing: Influence of stratabound fractures. Geophysical Prospecting, 62(4): 806-818. doi: 10.1111/1365-2478.12128

     

    Eaton D W. 2018. Passive Seismic Monitoring of Induced Seismicity: Fundamental Principles and Application to Energy Technologies. Cambridge: Cambridge University Press.

     

    Eaton D W, Igonin N, Poulin A, et al. 2018. Induced seismicity characterization during hydraulic-fracture monitoring with a shallow-wellbore geophone array and broadband sensors. Seismological Research Letters, 89(5): 1641-1651. doi: 10.1785/0220180055

     

    Eaton D W, Schultz R. 2018. Increased likelihood of induced seismicity in highly overpressured shale formations. Geophysical Journal International, 214(1): 751-757. doi: 10.1093/gji/ggy167

     

    Ellsworth W L. 2013. Injection-induced earthquakes. Science, 341(6142): 1225942. doi: 10.1126/science.1225942

     

    Eyre T S, Eaton D W, Garagash D I, et al. 2019. The role of aseismic slip in hydraulic fracturing-induced seismicity. Science, 5(8): eeav7172. http://www.researchgate.net/publication/335455395_The_role_of_aseismic_slip_in_hydraulic_fracturing-induced_seismicity

     

    Fan Z Q, Eichhubl P, Newell P. 2019. Basement fault reactivation by fluid injection into sedimentary reservoirs: Poroelastic effects. Journal of Geophysical Research: Solid Earth, 124(7): 7354-7369. doi: 10.1029/2018JB017062

     

    Haddad M, Eichhubl P. 2020. Poroelastic models for fault reactivation in response to concurrent injection and production in stacked reservoirs. Geomechanics for Energy and the Environment 24: 100181. doi: 10.1016/j.gete.2020.100181

     

    He D F, Lu R Q, Huang H Y, et al. 2019. Tectonic and geological background of the earthquake hazards in Changning shale gas development zone, Sichuan Basin, SW China. Petroleum Exploration & Development (in Chinese), 46(5): 993-1006. http://www.sciencedirect.com/science/article/pii/S1876380419602624

     

    Healy J H, Rubey W W, Griggs D T, et al. 1968. The Denver earthquakes. Science, 161(3848): 1301-1310. doi: 10.1126/science.161.3848.1301

     

    Hui G, Chen S G, Chen Z X, et al. 2021. An integrated approach to characterize hydraulic fracturing-induced seismicity in shale reservoirs. Journal of Petroleum Science and Engineering, 196: 107624. doi: 10.1016/j.petrol.2020.107624

     

    King G C P, Devès M H. 2015. Fault interaction, earthquake stress changes, and the evolution of seismicity.//Schubert G ed. Treatise on Geophysics. 2nd ed. Oxford: Elsevier, 4: 243-271.

     

    Lei X L, Huang D J, Su J R, et al. 2017. Fault reactivation and earthquakes with magnitudes of up to MW4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China. Science Report, 7(1): 7971. doi: 10.1038/s41598-017-08557-y

     

    Lei X L, Wang Z W, Su J R. 2019. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in south sichuan basin induced by shale gas hydraulic fracturing. Seismological Research Letters, 90(3): 1099-1110. doi: 10.1785/0220190029

     

    Lei X L, Su J R, Wang Z W. 2020. Growing seismicity in the Sichuan Basin and its association with industrial activities. Science China Earth Sciences, 63(11): 1633-1660, doi:10.1007/s11430-020-9646-x.

     

    Lele S P, Tyrrell T, Dasari G R. 2017. Geomechanical analysis of fault reactivation due to hydraulic fracturing. //87th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    McGarr A F. 2014. Maximum magnitude earthquakes induced by fluid injection. Journal of Geophysical Research: Solid Earth, 119(2): 1008-1019. doi: 10.1002/2013JB010597

     

    Pawley S, Schultz R, Playter T, et al. 2018. The geological susceptibility of induced earthquakes in the Duvernay play. Geophysical Research Letters, 45(4): 1786-1793. doi: 10.1002/2017GL076100

     

    Pedersen S I, Randen T, Sonneland L, et al. 2002. Automatic 3D fault interpretation by artificial ants.//72nd Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, G037.

     

    Raleigh C B, Healy J H, Bredehoeft J D. 1976. An experiment in earthquake control at Rangely, Colorado. Science, 191(4233): 1230-1237. doi: 10.1126/science.191.4233.1230

     

    Schultz R, Wang R J, Gu Y J, et al. 2017. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta. Journal of Geophysical Research: Solid Earth, 122(1): 492-505. doi: 10.1002/2016JB013570

     

    Schultz R, Atkinson G, Eaton D W, et al. 2018. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play. Science, 359(6373): 304-308. doi: 10.1126/science.aao0159

     

    Schultz R, Wang R J. 2020. Newly emerging cases of hydraulic fracturing induced seismicity in the Duvernay East Shale Basin. Tectonophysics, 779: 228393. doi: 10.1016/j.tecto.2020.228393

     

    Shen L W, Schmitt D R, Haug K. 2019. Quantitative constraints to the complete state of stress from the combined borehole and focal mechanism inversions: Fox Creek, Alberta. Tectonophysics, 764: 110-123. doi: 10.1016/j.tecto.2019.04.023

     

    Stiros S C, Kontogianni V A. 2009. Coulomb stress changes: From earthquakes to underground excavation failures. International Journal of Rock Mechanics and Mining Science, 46(1): 182-187. doi: 10.1016/j.ijrmms.2008.09.013

     

    Tadokoro K, Ando M, Nishigami K. 2000. Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration. Journal of Geophysical Research: Solid Earth, 105(B3): 6089-6104. doi: 10.1029/1999JB900416

     

    Wang H F. 2000. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton, NJ: Princeton University Press, 2000.

     

    Wang R J, Gu Y J, Schultz R, et al. 2018. Faults and non-double-couple components for induced earthquakes. Geophysical Research Letters, 45(17): 8966-8975. doi: 10.1029/2018GL079027

     

    Weir R, Lawton D, Lines L, et al. 2019. Application of structural interpretation and simultaneous inversion to reservoir characterization of the duvernay formation, Fox Creek, Alberta, Canada. The Leading Edge, 38(2): 151-160. doi: 10.1190/tle38020151.1

     

    Yehya A, Yang Z, Rice J R. 2018. Effect of fault architecture and permeability evolution on response to fluid injection. Journal of Geophysical Research: Solid Earth, 123(11): 9982-9997. doi: 10.1029/2018JB016550

     

    Yew H C, Weng X W. 1997. Mechanics of Hydraulic Fracturing. Oxford: Gulf Professional Publishing.

     

    Zhang D X, Yang T Y. 2015. Environmental impacts of hydraulic fracturing in shale gas development in the United States. Petroleum Exploration & Development (in Chinese), 42(6): 801-807. http://www.sciencedirect.com/science/article/pii/S1876380415300859

     

    Zhang H L, Eaton W D, Rodriguez G, et al. 2019. Source-Mechanism analysis and stress inversion for hydraulic-fracturing-induced event sequences near Fox Creek, Alberta. Bulletin of the Seismological Society of America, 109(2): 636-651. doi: 10.1785/0120180275

     

    Zoback M D. 2007. Reservoir Geomechanics. Cambridge: Cambridge University Press.

     

    Zoback M D, Gorelick S M. 2012. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 109(26): 10164-10168. doi: 10.1073/pnas.1202473109

     

    何登发, 鲁人齐, 黄涵宇等. 2019. 长宁页岩气开发区地震的构造地质背景. 石油勘探与开发, 46(5): 993-1006. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201905021.htm

     

    张东晓, 杨婷云. 2015. 美国页岩气水力压裂开发对环境的影响. 石油勘探与开发, 42(6): 801-807. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506015.htm

     

    张致伟, 程万正, 梁明剑等. 2012. 四川自贡-隆昌地区注水诱发地震研究. 地球物理学报, 55(5): 1635-1645. http://www.geophy.cn//CN/abstract/abstract8667.shtml

  • 加载中

(10)

(1)

计量
  • 文章访问数:  546
  • PDF下载数:  262
  • 施引文献:  0
出版历程
收稿日期:  2020-07-10
修回日期:  2020-12-25
上线日期:  2021-03-10

目录