沉积盆地台网稀疏地区中等强度浅源地震起始深度测定——以2013年前郭MS5.8和2016年Fairview MW5.1地震序列为例

王向腾, 李志伟, 邓居智, 高金哲, 李红星, 姚振岸, 李晶晶. 2021. 沉积盆地台网稀疏地区中等强度浅源地震起始深度测定——以2013年前郭MS5.8和2016年Fairview MW5.1地震序列为例. 地球物理学报, 64(3): 851-863, doi: 10.6038/cjg2021O0239
引用本文: 王向腾, 李志伟, 邓居智, 高金哲, 李红星, 姚振岸, 李晶晶. 2021. 沉积盆地台网稀疏地区中等强度浅源地震起始深度测定——以2013年前郭MS5.8和2016年Fairview MW5.1地震序列为例. 地球物理学报, 64(3): 851-863, doi: 10.6038/cjg2021O0239
WANG XiangTeng, LI ZhiWei, DENG JuZhi, GAO JinZhe, LI HongXing, YAO ZhenAn, LI JingJing. 2021. Hypocentral depth determination for moderate-magnitude shallow earthquakes in sedimentary basins with sparse network——case studies of the 2013 Qainguo MS5.8 and the 2016 Fairview MW5.1 earthquake sequences. Chinese Journal of Geophysics (in Chinese), 64(3): 851-863, doi: 10.6038/cjg2021O0239
Citation: WANG XiangTeng, LI ZhiWei, DENG JuZhi, GAO JinZhe, LI HongXing, YAO ZhenAn, LI JingJing. 2021. Hypocentral depth determination for moderate-magnitude shallow earthquakes in sedimentary basins with sparse network——case studies of the 2013 Qainguo MS5.8 and the 2016 Fairview MW5.1 earthquake sequences. Chinese Journal of Geophysics (in Chinese), 64(3): 851-863, doi: 10.6038/cjg2021O0239

沉积盆地台网稀疏地区中等强度浅源地震起始深度测定——以2013年前郭MS5.8和2016年Fairview MW5.1地震序列为例

  • 基金项目:

    国家自然科学基金(41804044,42004040,41674077),核资源与环境国家重点实验室开放基金(NRE1920),大地测量与地球动力学国家基金(SKLGED2020-4-1-E)以及国家重点研发计划(2018YFC1504202)联合资助

详细信息
    作者简介:

    王向腾, 男, 东华理工大学地球物理与测控技术学院讲师, 主要从事地震定位与震源参数研究.E-mail: wangxt@whigg.ac.cn

    通讯作者: 李志伟, 男, 研究员, 主要从事地震学研究.E-mail: zwli@whigg.ac.cn
  • 中图分类号: P315

Hypocentral depth determination for moderate-magnitude shallow earthquakes in sedimentary basins with sparse network——case studies of the 2013 Qainguo MS5.8 and the 2016 Fairview MW5.1 earthquake sequences

More Information
  • 沉积盆地中的中等强度浅源地震起始深度不仅是地震成灾研究的重要参数,还是深地下工程开采诱发地震成因研究的关键信息.然而在台网稀疏、沉积层结构复杂的盆地地区,仅利用直达波到时,常常难以获得较为准确的地震起始深度.基于参考事件的Pn/Pg相对定位方法加入Pn震相,可以有效提高震源深度的测定精度.本文针对松辽盆地中2013年前郭MS5.8地震序列以及Oklahoma州2016年Fairview MW5.1地震序列,利用Pn/Pg方法测定了两个地震序列中较大地震的起始破裂深度.结果显示:在2013年前郭地震序列中,两个较大地震起始深度和质心深度均在3~5 km左右,震源机制中含有较大的非双力偶源成分.而2016年Fairview MW5.1地震,主震起始深度约7 km,质心深度约8 km,5个较大的前震则深度分布在5~9 km.根据上述测定结果,推测2013年11月前郭MS5.8地震序列可能与震源附近的注水活动有关,而2016年Fairview MW5.1地震则可能由较远处注水活动触发.

  • 加载中
  • 图 1 

    (a) Pg(黑色)与Pn(红色)震相台站分布图; (b) 震中距30 km之内的流动台站分布情况,三角为地震台站,黑色圆点为参考地震

    Figure 1. 

    (a) Distribution of seismic stations for Pg (black), Pn (red); (b) Distributions of earthquakes and seismic stations. Black triangles are two permanent and potable seismic stations, black dots denote reference event

    图 2 

    2013年11月22日MS5.2参考地震事件波形图,粗细红色竖线分别代表拾取的到时以及最大的误差范围

    Figure 2. 

    Waveforms of reference event on 22 November, 2013, the thick and thin lines represent arrivaltimes of P waves and maximum errors, respectively

    图 3 

    MS5.6(a)与MS5.8(b)地震Pn和Pg震相相对到时差随方位角分布

    Figure 3. 

    Distribution of Pn and Pg relative difference traveltimes for the MS 5.6 (a) and MS5.8 (b) earthquake

    图 4 

    两个较大地震起始深度随残差分布,MS5.8 (a),MS5.6 (b)

    Figure 4. 

    Distribution of relative traveltime residuals with depth for two MS 5.5+ earthquakes

    图 5 

    2013年11月23日前郭MS5.8主震VR随震源深度分布(a)以及最佳深度波形拟合情况(b)

    Figure 5. 

    Variance reduction residuals versus centroid depth (a) and waveform matching in the optimal centroid depth (b) of the MS5.8 mainshock on 23 November 2013

    图 6 

    地震事件以及台站分布情况

    Figure 6. 

    Distributions of earthquakes and seismic stations

    图 7 

    MW5.1主震的Pg(a)和Pn(b)震相P波初动示意图,(c)为图(b)局部放大情形,粗细红色竖线分别代表拾取的到时以及最大的误差范围

    Figure 7. 

    The onsets of Pg (a) and Pn (b) for MW5.1 mainshock, (c) zoom in view of (b), the thick and thin lines represent arrivaltimes of P waves and maximum errors, respectively

    图 8 

    Pn和Pg相对到时差分布图

    Figure 8. 

    Distribution of Pn and Pg relative difference traveltimes

    图 9 

    MW5.1主震起始深度随残差分布,参考事件MW4.2 (a)和参考事件MW4.4 (b)

    Figure 9. 

    Distribution of relative traveltime residuals with depth for reference MW4.2 (a) and MW4.4 (b)

    图 10 

    MW4.4和MW4.2参考事件Pn和Pg震相相对到时差随方位角分布情况

    Figure 10. 

    Distribution of Pn (red) and Pg (black) relative difference traveltimes with azimuth for MW4.4 and MW4.2 reference event

    图 11 

    Pn以及Pg震相数据比例对震源深度测定结果的影响

    Figure 11. 

    Uncertainties of hypocentral depth inversion for the mainshock based on MW4.2 (a) and MW4.4 (b) aftershock with different ratios of Pn and Pg phases

    图 12 

    2016年2月13日Oklahoma地区MW5.1地震及其较大前震和余震分布

    Figure 12. 

    Distribution of the Fairview MW5.1 mainshock and early large aftershocks

    图 13 

    利用远震深度震相测定2016年Fairview MW5.1主震震源深度,红色与黑色曲线分别为合成与观测地震波形

    Figure 13. 

    Focal depth determination of the 2016 Fairview MW5.1 mainshock based on teleseismic depth phases, red and black lines denote synthetic and observed waveforms, respectively

    表 1 

    地震定位所使用的速度模型

    Table 1. 

    Crustal velocity model for earthquake location

    厚度/km VP(km·s-1) VS(km·s-1)
    1.0 2.5 1.2
    1.0 4.6 2.7
    2.0 5.2 3.0
    2.0 5.5 3.2
    9.5 6.2 3.6
    18.5 6.4 3.7
    0 8.2 4.7
    下载: 导出CSV

    表 2 

    MS5.2参考事件定位结果

    Table 2. 

    The hypocenter locations of MS5.2 reference earthquake

    Origin Time
    YYYY-MM-DD
    HH∶MM∶SS
    Latitude
    (°)
    Longitude
    (°)
    Depth
    (km)
    ERH
    (km)
    ERZ
    (km)
    2013-11-22
    08∶18∶49.50
    44.6572 124.1213 3.6 0.64 1.0
    下载: 导出CSV

    表 3 

    2013年前郭MS5.8地震序中两个较大地震深度重新定位结果

    Table 3. 

    The hypocenter locations of two large earthquakes in 2013 Qianguo earthquake sequence

    发震时刻 经度
    (°)
    纬度
    (°)
    深度
    (km)
    (CENC1)
    深度
    (km)
    (刘俊清2)
    深度
    (km)
    本文1
    震级
    MS
    2013-10-31
    11∶03∶34
    124.11 44.66 15 4 3.5 5.6
    2013-11-23
    06:04:24
    124.11 44.64 9 4 3.5 5.8
    1地震起始深度,2质心深度.
    下载: 导出CSV

    表 4 

    2016年7月8日MW4.2参考事件定位结果

    Table 4. 

    The hypocenter locations of MW4.2 earthquake on 8 July 2016

    Origin Time
    YYYY-MM-DDHH∶MM∶SS
    Latitude(°) Longitude(°) Depth(km) ERH(km) ERZ(km) Model
    2016-07-08 22∶29∶37.90 36.4698 -98.7447 7.44 0.32 0.22 Herrmann et al., 2011
    2016-07-08 22∶29∶38.18 36.4688 -98.7438 6.20 0.31 0.60 Keranen et al., 2013
    2016-07-08 22∶29∶37.99 36.4723 -98.7468 7.14 0.25 0.50 OGS 1D model
    下载: 导出CSV

    表 5 

    2016年7月9日MW4.4参考事件定位结果

    Table 5. 

    The hypocenter locations of MW4.4 earthquake on 9 July 2016

    Origin Time
    YYYY-MM-DD HH∶MM∶SS
    Latitude (°) Longitude (°) Depth(km) ERH(km) ERZ(km) Model
    2016-07-09 02∶04∶27.41 36.4603 -98.7570 7.78 0.36 0.19 Herrmann et al., 2011
    2016-07-09 02∶04∶27.65 36.4588 -98.7560 6. 97 0.31 0.53 Keranen et al, 2013
    2016-07-09 02∶04∶27.44 36.4597 -98.7585 7.88 0.32 0.20 OGS 1D model
    下载: 导出CSV

    表 6 

    2016年2月13 MW5.1地震序列几个较大前震以及余震重新定位结果

    Table 6. 

    The hypocenter locations of several large foreshocks and aftershocks of the MW5.1 sequence

    发震时刻 经度(°) 纬度(°) 深度(km)
    (NEIC1)
    深度(km)
    (Yeck1)
    深度(km)(2) 深度(km)
    本文1
    震级MW
    2015-11-15 09∶45∶31.50 -98.755 36.460 5.10 11.12 8 6.5 4.3
    2015-12-06 01∶01∶42.30 -98.761 36.470 6.12 9.44 7 6.5 4.3
    2016-01-06 19∶25∶25.10 -98.722 36.479 9.40 7 6 5.0 4.0
    2016-01-07 04∶27∶28.10 -98.731 36.476 7.10 9.75 9 6.0 4.4
    2016-01-07 08∶37∶11.40 -98.734 36.475 6.60 10.07 8 8.5 4.0
    2016-02-13 17∶07∶6.88 -98.732 36.464 8.31 9.06 9 7.0 5.1
    2016-07-08 22∶29∶37.90 -98.745 36.470 6.35 7.21 7 6.9 4.2*
    2016-07-09 02∶04∶27.44 -98.757 36.460 7.24 9.70 7 7.50 4.4*
    注:1地震起始深度,2质心深度(http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/),*本文两个参考余震事件.
    下载: 导出CSV
  •  

    Chen X W, Nakata N, Pennington C, et al. 2017. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks. Scientific Reports, 7:4945. doi: 10.1038/s41598-017-04992-z

     

    Chong J J, Ni S D, Zeng X F. 2010. sPL, an effective seismic phase for determining focal depth at near distance. Chinese Journal of Geophysics (in Chinese), 53(11): 2620-2630, doi:10.3969/j.issn.0001-5733.2010.11.010.

     

    Dreger D, Kaverina A. 2000. Seismic remote sensing for the earthquake source process and near-source strong shaking: A case study of the October 16, 1999 Hector Mine earthquake. Geophysical Research Letters, 27(13): 1941-1944. doi: 10.1029/1999GL011245

     

    Dreger D, Woods B. 2002. Regional distance seismic moment tensors of nuclear explosions. Tectonophysics, 356(1-3): 139-156. doi: 10.1016/S0040-1951(02)00381-5

     

    Fang L H, Wu J P, Wang W L, et al. 2015. Aftershock observation and analysis of the 2013 MS7.0 Lushan earthquake. Seismological Research Letters, 86(4): 1135-1142. doi: 10.1785/0220140186

     

    Goebel T H W, Weingarten M, Chen X, et al. 2017. The 2016 MW5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth and Planetary Science Letters, 472: 50-61. doi: 10.1016/j.epsl.2017.05.011

     

    Guo H, Zhang H J. 2017. Development of double-pair double difference earthquake location algorithm for improving earthquake locations. Geophysical Journal International, 208(1): 333-348. doi: 10.1093/gji/ggw397

     

    He X H, Li T, Wu C Y, et al. 2020. Resolving the rupture directivity and seismogenic structure of the 2017 Jinghe MS6.6 earthquake with regional seismic waveforms. Chinese Journal of Geophysics (in Chinese), 63(4): 1459-1471, doi:10.6038/cjg2020N0309.

     

    Herrmann R B, Benz H, Ammon C J. 2011. Monitoring the earthquake source process in North America. Bulletin of the Seismological Society of America, 101(6): 2609-2625. doi: 10.1785/0120110095

     

    Herrmann R B. 2013. Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84(6): 1081-1088. doi: 10.1785/0220110096

     

    Jia Z, Ni S D, Chu R S, et al. 2016. Joint inversion for earthquake depths using local waveforms and amplitude spectra of rayleigh waves. Pure and Applied Geophysics, 174(1): 261-277. doi: 10.1007/s00024-016-1373-1

     

    Keranen K M, Savage H M, Abers G A, et al. 2013. Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 MW5.7 earthquake sequence. Geology, 41(6): 699-702. doi: 10.1130/G34045.1

     

    Lei X L, Wang Z W, Su J R. 2019. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in south Sichuan basin induced by shale gas hydraulic fracturing. Seismological Research Letters, 90(3): 1099-1110. doi: 10.1785/0220190029

     

    Li S Q, Chen Q F, Zhao L, et al. 2013. Anomalous focal mechanism of the May 2011 MW5.7 deep earthquake in Northeastern China: regional waveform inversion and possible mechanism. Chinese Journal of Geophysics (in Chinese), 56(9): 2959-2970, doi:10.6038/cjg20130910.

     

    Li Z W, Huang Z B, Wang X X, et al. 2015. A study on the reliability of M4~5 earthquakes with anomalous focal depth in the USGS earthquake catalog: several earthquakes in the North-South Seismic Belt. Chinese Journal of Geophysics (in Chinese), 58(4): 1236-1250, doi:10.6038/cjg20150412.

     

    Liang S S, Lei J S, Xu Z G, et al. 2018. Relocation of aftershocks of the 2017 Jiuzhaigou, Sichuan, MS7.0 earthquake and inversion for focal mechanism of the mainshock. Chinese Journal of Geophysics (in Chinese), 61(5): 2163-2175, doi:10.6038/cjg2018L0508.

     

    Liu J Q, Liu C, Lei J S, et al. 2017. The moment tensors of the 2013 Qianguo MS5.8 seismic swarm. Chinese Journal of Geophysics (in Chinese), 60(9): 3418-3431, doi:10.6038/cjg20170912.

     

    Liu S Q, Xue Y, Cai H L, et al. 2015. Discussion on cause factor of Jilin Qianguo MS5.8 earthquake sequence in 2013 using focal depth characteristic of relocation. Journal of Seismological Research (in Chinese), 38(2): 211-220. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201502005.htm

     

    Ross Z E, Ben-Zion Y, Zhu L. 2015. Isotropic source terms of San Jacinto fault zone earthquakes based on waveform inversions with a generalized CAP method. Geophysical Journal International, 200(2): 1269-1280. doi: 10.1093/gji/ggu460

     

    Schoenball M, Ellsworth W L. 2017. Waveform-relocated earthquake catalog for oklahoma and southern kansas illuminates the regional fault network. Seismological Research Letters, 88(5): 1252-1258. doi: 10.1785/0220170083

     

    Spence W. 1980. Relative epicenter determination using P-wave arrival-time differences. Bulletin of the Seismological Society of America, 70(1): 171-183. http://www.researchgate.net/publication/259741849_Relative_epicenter_determination_using_P-wave_arrival-time_differences

     

    Su J R, Zheng Y, Yang J S, et al. 2013. Accurate locating of the Lushan, Sichuan M7.0 earthquake on 20 April 2013 and its aftershocks and analysis of the seismogenic structure. Chinese Journal of Geophysics (in Chinese), 56(8): 2636-2644, doi:10.6038/cjg20130813.

     

    Tian X, Zhang W, Zhang X, et al. 2020. Comparison of single-trace and multiple-trace polarity determination for surface microseismic data using deep learning. Seismological Research Letters, 91(3): 1974-1803. http://www.researchgate.net/publication/339702760_comparison_of_single-trace_and_multiple-trace_polarity_determination_for_surface_microseismic_data_using_deep_learning

     

    Tian Y, Chen X F. 2002. Review of seismic location study. Progress in Geophysics (in Chinese), 17(1): 147-155. http://www.researchgate.net/publication/284307003_Review_of_seismic_location_study

     

    Tsai Y B, Aki K. 1970. Precise focal depth determination from amplitude spectra of surface waves. Journal of Geophysical Research, 75(29): 5729-5744. doi: 10.1029/JB075i029p05729

     

    Wagner M, Husen S, Lomax A, et al. 2013. High-precision earthquake locations in Switzerland using regional secondary arrivals in a 3-D velocity model. Geophysical Journal International, 193(3): 1589-1607. doi: 10.1093/gji/ggt052

     

    Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6): 1353-1368. doi: 10.1785/0120000006

     

    Wang R T, Li Z W, Bao F, et al. 2019. S-wave velocity structure of sediment in Songliao Basin from short-period ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 62(9): 3385-3399, doi:10.6038/cjg2019M0144

     

    Wang X T, Ni S D, Zhou Y, et al. 2019. Topography effects for focal depth inversion of shallow earthquakes based on waveforms: A case study for the M6.3 event on 3 September 2017 in Democratic People's Republic of Korea. Chinese Journal of Geophysics (in Chinese), 62(12): 4684-4695, doi:10.6038/cjg2019M0474.

     

    Wang X T, Wang S F, Li Z W, et al. 2019. Source Characterization of Some Collapse Earthquakes due to Mining Activities in Shandong and Beijing, North China. Seismological Research Letters, 90(1): 183-193. doi: 10.1785/0220180184

     

    Wei X, Wang X T, Li Z W, et al. 2019. Initial rupture depth of the 8 August 2017 M7.0 Jiuzhaigou earthquake derived from Pn/Pg relative location. Chinese Journal of Geophysics (in Chinese), 62(4): 1300-1311, doi:10.6038/cjg2019L0796.

     

    Wu W W, Yang J S, Su J R, et al. 2014. Moment inversion of moderate earthquakes and seismogenic environment in Qianguo-Qian'an source region, 2013, Jilin Province. Chinese Journal of Geophysics (in Chinese), 57(8): 2541-2554, doi:10.6038/cjg20140815.

     

    Xie Z J, Jin B K, Zheng Y, et al. 2013. Source parameters inversion of the 2013 Lushan earthquake by combining teleseismic waveforms and local seismograms. Science China Earth Sciences, 56(7): 1177-1186. doi: 10.1007/s11430-013-4640-3

     

    Xie Z J, Zheng Y, Yao H J, et al. 2018. Preliminary analysis on the source properties and seismogenic structure of the 2017 MS7.0 Jiuzhaigou earthquake. Science China Earth Sciences, 61(3): 339-352. doi: 10.1007/s11430-017-9161-y

     

    Yang Y, Lei J S, Zhang G W, et al. 2019. Crustal velocity structure and seismogenic environment in the source areas of the Qianguo MS5.8 and Songyuan MS5.7 earthquakes. Chinese Journal of Geophysics (in Chinese), 62(11): 4259-4278, doi:10.6038/cjg2019M0652.

     

    Yeck W L, Weingarten M, Benz H M, et al. 2016. Far-field pressurization likely caused one of the largest injection induced earthquakes by reactivating a large preexisting basement fault structure. Geophysical Research Letters, 43(19): 10198-10207. doi: 10.1002/2016GL070861

     

    Yi G X, Long F, Liang M J, et al. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks, northern Sichuan. Chinese Journal of Geophysics (in Chinese), 60(10): 4083-4097, doi:10.6038/cjg20171033.

     

    Yi G X, Long F, Liang M J, et al. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence. Chinese Journal of Geophysics (in Chinese), 62(9): 3432-3447, doi:10.6038/cjg2019N0297.

     

    Zhang G W, Lei J S. 2015. Mechanism of the 2011 Tengchong, Yunnan, MS5.2 double earthquakes. Chinese Journal of Geophysics (in Chinese), 58(4): 1194-1204, doi:10.6038/cjg20150409.

     

    Zhang G W, Lei J S, Sun D Y. 2019. The 2013 and 2017 MS5 seismic swarms in Jilin, NEChina: fluid-triggered earthquakes? Journal of Geophysical Research: Solid Earth, 124(12): 13096-13111. doi: 10.1029/2019JB018649

     

    Zhang H, Chen X H, Zhang L Y. 2017. 3D simultaneous seismic data reconstruction and noise suppression based on the curvelet transform. Applied Geophysics, 14(1): 87-95. doi: 10.1007/s11770-017-0607-z

     

    Zhao B, Gao Y, Liu J, et al. 2019. Focal mechanism inversion and source depth locating of moderate-major earthquakes in the Sichuan region since 2010. Chinese Journal of Geophysics (in Chinese), 62(1): 130-142, doi:10.6038/cjg2019M0155.

     

    Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1): 91-104. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/1/91

     

    Zheng Y, Ni S D, Xie Z J, et al. 2010. Strong aftershocks in the northern segment of the Wenchuan earthquake rupture zone and their seismotectonic implications. Earth, Planets and Space, 62(11): 881-886. doi: 10.5047/eps.2009.06.001

     

    Zhou S Y, Xu Z H, Chen X F. 2001. Analysis on the source characteristics of the 1997 Jiashi swarm, western China. Chinese Journal of Geophysics (in Chinese), 44(5): 654-662. http://www.researchgate.net/publication/289464433_Analysis_on_the_source_characteristics_of_the_1997_Jiashi_Swarm_Western_China

     

    Zhu L P, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5): 1634-1641. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=86/5/1634

     

    Zhu L P, Ben-Zion Y. 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophysical Journal International, 194(2): 839-843. doi: 10.1093/gji/ggt137

     

    Zhu Y Q, Shi Y L, Li P. 1990. A new method for determining focal depth of earthquakes. Seismological and Geomagnetic Observation and Research, 11(2): 4-12.

     

    崇加军, 倪四道, 曾祥方. 2010. sPL, 一个近距离确定震源深度的震相. 地球物理学报, 53(11): 2620-2630, doi:10.3969/j.issn.0001-5733.2010.11.010. http://www.geophy.cn//CN/abstract/abstract3415.shtml

     

    何骁慧, 李涛, 吴传勇等. 2020. 基于区域地震波形的2017年新疆精河MS6.6地震破裂方向性及发震构造研究. 地球物理学报, 63(4): 1459-1471, doi:10.6038/cjg2020N0309. http://www.geophy.cn//CN/abstract/abstract15419.shtml

     

    李圣强, 陈棋福, 赵里等. 2013. 2011年5月中国东北MW5.7深震的非同寻常震源机制: 区域波形反演与成因探讨. 地球物理学报, 56(9): 2959-2970, doi:10.6038/cjg20130910. http://www.geophy.cn//CN/abstract/abstract9748.shtml

     

    李志伟, 黄志斌, 王晓欣等. 2015. USGS地震目录中4~5级震源深度异常地震可靠性初步研究: 以南北地震带若干地震为例. 地球物理学报, 58(4): 1236-1250, doi:10.6038/cjg20150412. http://www.geophy.cn/CN/abstract/abstract11387.shtml

     

    梁姗姗, 雷建设, 徐志国等. 2018. 2017年四川九寨沟MS7.0强震的余震重定位及主震震源机制反演. 地球物理学报, 61(5): 2163-2175, doi:10.6038/cjg2018L0508. http://www.geophy.cn//CN/abstract/abstract14520.shtml

     

    刘俊清, 刘财, 雷建设等. 2017. 2013年前郭MS5.8震群矩张量研究. 地球物理学报, 60(9): 3418-3431, doi:10.6038/cjg20170912. http://www.geophy.cn//CN/abstract/abstract13949.shtml

     

    刘双庆, 薛艳, 蔡宏雷等. 2015. 利用重测定的震源深度特征探讨2013年吉林前郭5.8级震群发震因素. 地震研究, 38(2): 211-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201502005.htm

     

    苏金蓉, 郑钰, 杨建思等. 2013. 2013年4月20日四川芦山M7.0级地震与余震精确定位及发震构造初探. 地球物理学报, 56(8): 2636-2644, doi:10.6038/cjg20130813. http://www.geophy.cn//CN/abstract/abstract9715.shtml

     

    田玥, 陈晓非. 2002. 地震定位研究综述. 地球物理学进展, 17(1): 147-147. doi: 10.3969/j.issn.1004-2903.2002.01.022

     

    王仁涛, 李志伟, 包丰等. 2019. 松辽盆地沉积层结构的短周期地震背景噪声成像研究. 地球物理学报, 62(9): 3385-3399, doi:10.6038/cjg2019M0144. http://www.geophy.cn//CN/abstract/abstract15153.shtml

     

    王向腾, 倪四道, 周勇等. 2019. 地形起伏对基于地震波形的浅源地震深度反演影响-以2017年9月3日朝鲜M6.3事件为例. 地球物理学报, 62(12): 4684-4695, doi:10.6038/cjg2019M0474. http://www.geophy.cn//CN/abstract/abstract15263.shtml

     

    魏星, 王向腾, 李志伟等. 2019. 基于Pn/Pg相对定位方法研究2017年8月8日九寨沟M7.0地震起始破裂深度. 地球物理学报, 62(4): 1300-1311, doi:10.6038/cjg2019L0796. http://www.geophy.cn//CN/abstract/abstract14939.shtml

     

    吴微微, 杨建思, 苏金蓉等. 2014. 2013年吉林前郭-乾安震源区中强地震矩张量反演与区域孕震环境研究. 地球物理学报, 57(8): 2541-2554, doi:10.6038/cjg20140815. http://www.geophy.cn//CN/abstract/abstract10572.shtml

     

    杨宇, 雷建设, 张广伟等. 2019. 前郭MS5.8和松原MS5.7地震震源区地壳速度结构与孕震环境. 地球物理学报, 62(11): 4259-4278, doi:10.6038/cjg2019M0652. http://www.geophy.cn//CN/abstract/abstract15227.shtml

     

    杨智娴, 陈运泰, 郑月军等. 2003. 双差地震定位法在我国中西部地区地震精确定位中的应用. 中国科学(D辑), 33(Z1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1013.htm

     

    易桂喜, 龙锋, 梁明剑等. 2017. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析. 地球物理学报, 60(10): 4083-4097, doi:10.6038/cjg20171033. http://www.geophy.cn//CN/abstract/abstract14070.shtml

     

    易桂喜, 龙锋, 梁明剑等. 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析. 地球物理学报, 62(9): 3432-3447, doi:10.6038/cjg2019N0297. http://www.geophy.cn//CN/abstract/abstract15157.shtml

     

    张广伟, 雷建设. 2015. 2011年云南腾冲5.2级双震发震机理. 地球物理学报, 58(4): 1194-1204, doi:10.6038/cjg20150409. http://www.geophy.cn//CN/abstract/abstract11384.shtml

     

    赵博, 高原, 刘杰等. 2019. 2010年以来四川地区中强地震震源机制反演及深度确定. 地球物理学报, 62(1): 130-142, doi:10.6038/cjg2019M0155. http://www.geophy.cn//CN/abstract/abstract14828.shtml

     

    周仕勇, 许忠淮, 陈晓非. 2001. 伽师强震群震源特征及震源机制力学成因分析. 地球物理学报, 44(5): 654-662. doi: 10.3321/j.issn:0001-5733.2001.05.009 http://www.geophy.cn//CN/abstract/abstract3620.shtml

     

    朱元清, 石耀霖, 李平. 1990. 一种确定地震深度的新方法. 地震地磁观测与研究, 11(2): 4-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZGJ199002001.htm

  • 加载中

(13)

(6)

计量
  • 文章访问数:  454
  • PDF下载数:  222
  • 施引文献:  0
出版历程
收稿日期:  2020-06-28
修回日期:  2020-12-14
上线日期:  2021-03-10

目录