低信噪比海底多分量地震数据波场分离方法

刘学义, 程玖兵, 王腾飞, 耿建华, 刘玉柱. 2021. 低信噪比海底多分量地震数据波场分离方法. 地球物理学报, 64(2): 684-699, doi: 10.6038/cjg2021O0238
引用本文: 刘学义, 程玖兵, 王腾飞, 耿建华, 刘玉柱. 2021. 低信噪比海底多分量地震数据波场分离方法. 地球物理学报, 64(2): 684-699, doi: 10.6038/cjg2021O0238
LIU XueYi, CHENG JiuBing, WANG TengFei, GENG JianHua, LIU YuZhu. 2021. Wavefield decomposition of ocean bottom multi-component seismograms with low signal-to-noise ratio. Chinese Journal of Geophysics (in Chinese), 64(2): 684-699, doi: 10.6038/cjg2021O0238
Citation: LIU XueYi, CHENG JiuBing, WANG TengFei, GENG JianHua, LIU YuZhu. 2021. Wavefield decomposition of ocean bottom multi-component seismograms with low signal-to-noise ratio. Chinese Journal of Geophysics (in Chinese), 64(2): 684-699, doi: 10.6038/cjg2021O0238

低信噪比海底多分量地震数据波场分离方法

  • 基金项目:

    国家重点研发计划(2017YFB0202903,2018YFC0310104)和国家自然科学基金(41630964,41674117)以及国家科技重大专项(2017ZX05005-004)资助

详细信息
    作者简介:

    刘学义, 男, 1992年生, 同济大学博士在读, 主要从事海底多分量地震数据成像、反演方法研究.E-mail:xueyiliu@tongji.edu.cn

    通讯作者: 程玖兵, 教授, 研究方向:地震波传播、成像及反演及其在油气资源勘探和岩石圈成像中的应用.E-mail:cjb1206@tongji.edu.cn
  • 中图分类号: P631

Wavefield decomposition of ocean bottom multi-component seismograms with low signal-to-noise ratio

More Information
  • 以多分量地震观测为基础,联合纵波和转换横波数据能更有效地估计地下介质的弹性和物性参数,提升地质构造成像与油气储层描述的精度.在海底多分量地震数据处理过程中,观测记录的上-下行波分解和P/S波分离可压制水层鸣震以及P与S波之间的串扰,对偏移成像和纵横波速度建模至关重要.但受海底环境、仪器与观测因素共同影响,许多海底多分量地震资料都无法基于现有的海底波场分离方法与流程取得合理的结果.本文以海底声波场与弹性波场分离基本原理为基础,通过对方法流程的修正,摆脱常规流程对中小偏移距直达波信号的依赖性.借助模拟数据实验讨论了波场分离对海底介质参数、噪声的敏感性.结合东海YQ探区海底多分量地震资料上-下行P/S波分离及其叠前深度偏移处理,验证了本文方法流程的可行性.

  • 加载中
  • 图 1 

    海底多分量地震记录波场分离示意图

    Figure 1. 

    Schematic diagram of wavefield decomposition for ocean bottom multi-component seismic recordings

    图 2 

    东海QY探区海底多分量共接收点记录

    Figure 2. 

    OBS common-receiver gathers from QY area in East China Sea

    图 3 

    浅水各向同性层状介质模型

    Figure 3. 

    Layered isotropic medium model in shallow water

    图 4 

    二维三分量共炮点道集

    Figure 4. 

    Synthetic two-dimensional three-component (2D3C) common-shot gathers

    图 5 

    波场分离对海底介质参数的敏感性

    Figure 5. 

    Sensitivity of wavefield decomposition to seabed medium parameters

    图 6 

    频率域畸变因子

    Figure 6. 

    Distortion factor in the frequency domain

    图 7 

    vz分量频率域校正因子

    Figure 7. 

    Calibration operator in the frequency domain for vz component

    图 8 

    τ-pvz分量数据

    Figure 8. 

    vz component of seismogram in τ-p domain

    图 9 

    估计的b(p)曲线

    Figure 9. 

    Estimated b(p) curve

    图 10 

    vx分量频率域校正因子

    Figure 10. 

    Calibration operator in the frequency domain for vx component

    图 11 

    检波器校正前后上-下行P/S模式分离结果对比

    Figure 11. 

    Comparison of up-down P/S decomposition results before and after geophone calibration

    图 12 

    偏移距100 m处抽道对比图

    Figure 12. 

    Comparison the seismic traces at the offset of 100 m

    图 13 

    含随机噪声vz分量记录

    Figure 13. 

    vz component recordings with random noise

    图 14 

    校正因子结果对比

    Figure 14. 

    Comparison of calibration operators

    图 15 

    20 dB信噪比数据b(p)曲线

    Figure 15. 

    The estimated b(p) curves of SNR=20 dB data

    图 16 

    偏移距100 m处分离的上行P/S波地震道对比

    Figure 16. 

    Comparison of decomposed seismic traces of P- and S-waves at the offset of 100 m

    图 17 

    vz分量频率域校正因子

    Figure 17. 

    Calibration operator in frequency domain of z-component

    图 18 

    声波场共接收点记录分离结果

    Figure 18. 

    Acoustic wavefield decomposition of common-receiver gathers at the ocean bottom

    图 19 

    实际数据b(p)曲线

    Figure 19. 

    The estimated b(p) curves of the field data

    图 20 

    vx分量频率域校正因子

    Figure 20. 

    Calibration operator in frequency domain for x-component

    图 21 

    海底共接收点数据弹性波场分离结果

    Figure 21. 

    Elastic wavefield decomposition of common-receiver gathers at the ocean bottom

    图 22 

    海底界面反射/透射系数分析

    Figure 22. 

    Reflection and transmission coefficients at the seafloor interface

    图 23 

    反射PP波叠前深度偏移结果

    Figure 23. 

    Prestack depth migration results of reflected PP waves

    图 24 

    基于分离后上行S波记录的反射PS波叠前深度偏移结果

    Figure 24. 

    Prestack depth migration result of the separated up-going S-wave recording

  •  

    Aki K, Richards P G. 2002. Quantitative Seismology. 2nd ed. Sausalito, California:University Science Books.

     

    Amundsen L. 1993. Wavenumber-based filtering of marine point-source data. Geophysics, 58(9):1335-1348. doi: 10.1190/1.1443516

     

    Amundsen L, Reitan A. 1995. Estimation of sea-floor wave velocities and density from pressure and particle velocity by AVO analysis. Geophysics, 60(5):1575-1578. doi: 10.1190/1.1443890

     

    Amundsen L, Ikelle L T, Martin J. 2000. Multiple attenuation and P/S splitting of multicomponent OBC data at a heterogeneous sea floor. Wave Motion, 32(1):67-78. doi: 10.1016/S0165-2125(99)00047-5

     

    Cho W H, Spencer T W. 1992. Estimation of polarization and slowness in mixed wavefields. Geophysics, 57(6):805-814. doi: 10.1190/1.1443294

     

    Dragoset W, Barr F J. 1994. Ocean-bottom cable dual-sensor scaling.//64th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 857-860.

     

    Edme P, Singh S C. 2009. Receiver function decomposition of OBC data:theory. Geophysical Journal International, 177(3):966-977. doi: 10.1111/j.1365-246X.2009.04147.x

     

    Frasier C W. 1970. Discrete time solution of plane P-SV waves in a plane layered medium. Geophysics, 35(2):197-219. doi: 10.1190/1.1440085

     

    Haggerty P E. 1956-07-31. Method and apparatus for canceling reverberations in water layers. US, 2757356.

     

    He B S, Zhang H X. 2006. Vector prestack depth migration of multi-component wavefield. Oil Geophysical Prospecting (in Chinese), 41(4):369-374. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ200604001.htm

     

    He B S, Tang P W, Li K R, et al. 2019. Difficulties of multi-component seismic wave reverse-time migration. Periodical of Ocean University of China (in Chinese), 49(1):77-84. http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201901010.htm

     

    Hu T Y, Zhang G J, Zhao W, et al. 2004. Decomposition of multicomponent seismic wavefileds. Chinese Journal of Geophysics (in Chinese), 47(3):504-508. http://www.oalib.com/paper/1568474

     

    Li W X, Cui J C, Wu W L, et al. 2018. State of the art and applications of the Multi-component seismic processing technology in CNOOC. Chinese Journal of Geophysics (in Chinese), 61(3):1136-1149, doi:10.6038/cjg2018L0355.

     

    Liu L H, Lv C C, Hao T Y, et al. 2012. Data processing methods of OBS and its development tendency in detection of offshore oil and gas resources. Progress in Geophysics (in Chinese), 27(6):2673-2684, doi:10.6038/j.issn.1004-2903.2012.06.047.

     

    Liu Z W, Sa L M, Zhang M, et al. 2008. Progress of application of multi-wave seismic technology in part of gas-fields of China. Oil Geophysical Prospecting (in Chinese), 43(6):668-672. http://www.researchgate.net/publication/292688915_Progress_of_application_of_multi-wave_seismic_technology_in_part_of_gas-fields_of_China

     

    Lu J, Wang Y, Ji Y X, et al. 2018. Imaging techniques of multi-component seismic data. Chinese Journal of Geophysics (in Chinese), 61(8):3499-3514, doi:10.6038/cjg2018L0031.

     

    Muijs R, Robertsson J O A, Curtis A, et al. 2003. Near-surface seismic properties for elastic wavefield decomposition:Estimates based on multicomponent land and seabed recordings. Geophysics, 68(6):2073-2081. doi: 10.1190/1.1635061

     

    Muijs R, Robertsson J O A, Holliger K. 2004. Data-driven adaptive decomposition of multicomponent seabed recordings. Geophysics, 69(5):1329-1337. doi: 10.1190/1.1801949

     

    Muijs R, Robertsson J O A, Holliger K. 2007. Data-driven adaptive decomposition of multicomponent seabed seismic recordings:application to shallow-water data from the North Sea. Geophysics, 72(6):V133-V142. doi: 10.1190/1.2778766

     

    Osen A, Amundsen L, Reitan A. 1999. Removal of water-layer multiples from multi-component sea-bottom data. Geophysics, 64(3):838-851. doi: 10.1190/1.1444594

     

    Ren Z M, Liu Y. 2016. A hierarchical elastic full-waveform inversion scheme based on wavefield separation and the multistep-length approach. Geophysics, 81(3):R99-R123. doi: 10.1190/geo2015-0431.1

     

    Schalkwijk K M, Wapenaar C P A, Verschuur D J. 2003. Adaptive decomposition of multicomponent ocean-bottom seismic data into downgoing and upgoing P- and S-waves. Geophysics, 68(3):1091-1102. doi: 10.1190/1.1581081

     

    Schalkwijk K W, Wapenaar C P A, Verschuur D J. 1999. Application of two-step decomposition to multicomponent ocean-bottom data:Theory and case study. Journal of Seismic Exploration, 8(3):261-278. http://www.researchgate.net/publication/288416573_Application_of_two-step_decomposition_to_multicomponent_ocean-bottom_data_Theory_and_case_study

     

    Stewart R R, Gaiser J E, Brown R J, et al. 2002. Converted wave seismic exploration:Methods. Geophysics, 67(5):1348-1363. doi: 10.1190/1.1512781

     

    Tao C H, He Q D. 1993. Separation of P- and S-waves in multi-component surface seismic data. Geophysical Prospecting for Petroleum (in Chinese), 32(2):47-55. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYWT199302004.htm

     

    Wang T F, Cheng J B. 2015. Elastic wave mode decoupling for full waveform inversion.//85th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 1461-1466.

     

    Wang T F, Cheng J B. 2017. Elastic full waveform inversion based on mode decomposition:the approach and mechanism. Geophysical Journal International, 209(2):606-622. doi: 10.1093/gji/ggx038

     

    Wang T F. 2017. Elastic full waveform inversion based on wave mode decomposition[Ph. D. thesis] (in Chinese). Shanghai: Tongji University.

     

    Wang T F, Cheng J B, Guo Q, et al. 2018. Elastic wave-equation-based reflection kernel analysis and traveltime inversion using wave mode decomposition. Geophysical Journal International, 215(1):450-470. doi: 10.1093/gji/ggy291

     

    Wang Y B, Singh S C, Barton P J. 2002. Separation of P- and SV-wavefields from multi-component seismic data in the τ-p domain. Geophysical Journal International, 151(2):663-672. doi: 10.1046/j.1365-246X.2002.01797.x

     

    White J E. 1965. Seismic Waves: Radiation, Transmission, and Attenuation. New York: McGraw-Hill.

     

    Xu S Y, Li Y P, Ma Z T. 1999. Seperation of P- and S-wave fields via the τ-q transfrom. China Offshore Oil and Gas (Geology) (in Chinese), 13(5):334-337.

     

    Xu W C, Wang T F, Cheng J B. 2019. Elastic model low-to intermediate-wavenumber inversion using reflection traveltime and waveform of multicomponent seismic data. Geophysics, 84(1):R123-R137. http://www.researchgate.net/publication/328656183_Elastic_model_low-to-intermediate_wavenumber_inversion_using_reflection_traveltime_and_waveform_of_multicomponent_seismic_data

     

    Yan J, Sava P. 2008. Isotropic angle-domain elastic reverse-time migration. Geophysics, 73(6):S229-S239. doi: 10.1190/1.2981241

     

    Zhang Y G, Wang Y, Wang M Y. 2004. Some key problems in the multi-component seismic exploration. Chinese Journal of Geophysics (in Chinese), 47(1):151-155. http://www.researchgate.net/publication/290300048_Some_key_problems_in_the_multi-_component_seismic_exploration/download

     

    何兵寿, 张会星. 2006.多分量波场的矢量法叠前深度偏移技术.石油地球物理勘探, 41(3):369-374. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200604001.htm

     

    何兵寿, 唐朋威, 李凯瑞等. 2019.多分量地震资料逆时偏移的难点问题.中国海洋大学学报, 49(1):77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201901010.htm

     

    胡天跃, 张广娟, 赵伟等. 2004.多分量地震波波场分解研究.地球物理学报, 47(3):504-508. doi: 10.3321/j.issn:0001-5733.2004.03.021 http://www.geophy.cn//CN/abstract/abstract1581.shtml

     

    李维新, 崔炯成, 武文来等. 2018.中海油多分量地震处理技术的发展与应用实例.地球物理学报, 61(3):1136-1149, doi:10.6038/cjg2018L0355. http://www.geophy.cn//CN/abstract/abstract14432.shtml

     

    刘丽华, 吕川川, 郝天珧等. 2012.海底地震仪数据处理方法及其在海洋油气资源探测中的发展趋势.地球物理学进展, 27(6):2673-2684, doi:10.6038/j.issn.1004-2903.2012.06.047.

     

    刘振武, 撒利明, 张明等. 2008.多波地震技术在中国部分气田的应用和进展.石油地球物理勘探, 43(6):668-672. doi: 10.3321/j.issn:1000-7210.2008.06.010

     

    芦俊, 王赟, 季玉新等. 2018.多分量地震数据的成像技术.地球物理学报, 61(8):3499-3514, doi:10.6038/cjg2018L0031. http://www.geophy.cn//CN/abstract/abstract14648.shtml

     

    陶春辉, 何樵登. 1993.地面多分量地震资料纵-横波分离方法.石油物探, 32(2):47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT199302004.htm

     

    王腾飞. 2017.弹性波模式解耦全波形反演方法[博士论文].上海: 同济大学.

     

    许世勇, 李彦鹏, 马在田. 1999. τ-q变换法波场分离.中国海上油气(地质), 13(5):334-337. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199905006.htm

     

    张永刚, 王赟, 王妙月. 2004.目前多分量地震勘探中的几个关键问题.地球物理学报, 47(1):151-155. doi: 10.3321/j.issn:0001-5733.2004.01.023 http://www.geophy.cn//CN/abstract/abstract1586.shtml

  • 加载中

(24)

计量
  • 文章访问数:  594
  • PDF下载数:  293
  • 施引文献:  0
出版历程
收稿日期:  2020-06-25
修回日期:  2020-12-15
上线日期:  2021-02-10

目录