Wavefield decomposition of ocean bottom multi-component seismograms with low signal-to-noise ratio
-
摘要:
以多分量地震观测为基础,联合纵波和转换横波数据能更有效地估计地下介质的弹性和物性参数,提升地质构造成像与油气储层描述的精度.在海底多分量地震数据处理过程中,观测记录的上-下行波分解和P/S波分离可压制水层鸣震以及P与S波之间的串扰,对偏移成像和纵横波速度建模至关重要.但受海底环境、仪器与观测因素共同影响,许多海底多分量地震资料都无法基于现有的海底波场分离方法与流程取得合理的结果.本文以海底声波场与弹性波场分离基本原理为基础,通过对方法流程的修正,摆脱常规流程对中小偏移距直达波信号的依赖性.借助模拟数据实验讨论了波场分离对海底介质参数、噪声的敏感性.结合东海YQ探区海底多分量地震资料上-下行P/S波分离及其叠前深度偏移处理,验证了本文方法流程的可行性.
Abstract:Based on multi-component seismic observation, combined P-wave and converted S-wave data permits to more effectively estimate the elasticity and physical properties of subsurface media, and improve the accuracy of geological structure imaging and petroleum reservoir characterization. For the processing of ocean bottom seismic data, up-/down-going and P/S wave decomposition of the multi-component seismograms can suppress the water-layer reverberation and cross-talk between the P- and S-waves, and thus play a vital role in seismic migration and construction of P- and S-wave velocity models. However, affected affected by the seafloor environment, instrumental and observation factors, many ocean bottom multi-component seismic data sets have unreasonable results using the existing wavefield decomposition methods and workflow. In this paper, starting from the basic principle of acoustic and elastic wavefield decomposition, we modify the existing approach and workflow to avoid the dependence on direct waves at small-to-medium offsets. Through synthetic data experiments, we investigate the sensitivity of wavefield decomposition to seabed medium parameters and signal-to-noise ratio. Combined with the up/down and P/S decomposition and pre-stack depth migration, we demonstrate the feasibility of the proposed workflow with a multi-component seismic data set acquired by ocean-bottom seismographs (OBS) in the YQ field of the East China Sea.
-
Key words:
- Multi-component /
- Ocean bottom seismograph /
- Elastic waves /
- P/S decomposition /
- East China Sea
-
-
-
Aki K, Richards P G. 2002. Quantitative Seismology. 2nd ed. Sausalito, California:University Science Books.
Amundsen L. 1993. Wavenumber-based filtering of marine point-source data. Geophysics, 58(9):1335-1348. doi: 10.1190/1.1443516
Amundsen L, Reitan A. 1995. Estimation of sea-floor wave velocities and density from pressure and particle velocity by AVO analysis. Geophysics, 60(5):1575-1578. doi: 10.1190/1.1443890
Amundsen L, Ikelle L T, Martin J. 2000. Multiple attenuation and P/S splitting of multicomponent OBC data at a heterogeneous sea floor. Wave Motion, 32(1):67-78. doi: 10.1016/S0165-2125(99)00047-5
Cho W H, Spencer T W. 1992. Estimation of polarization and slowness in mixed wavefields. Geophysics, 57(6):805-814. doi: 10.1190/1.1443294
Dragoset W, Barr F J. 1994. Ocean-bottom cable dual-sensor scaling.//64th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 857-860.
Edme P, Singh S C. 2009. Receiver function decomposition of OBC data:theory. Geophysical Journal International, 177(3):966-977. doi: 10.1111/j.1365-246X.2009.04147.x
Frasier C W. 1970. Discrete time solution of plane P-SV waves in a plane layered medium. Geophysics, 35(2):197-219. doi: 10.1190/1.1440085
Haggerty P E. 1956-07-31. Method and apparatus for canceling reverberations in water layers. US, 2757356.
He B S, Zhang H X. 2006. Vector prestack depth migration of multi-component wavefield. Oil Geophysical Prospecting (in Chinese), 41(4):369-374. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ200604001.htm
He B S, Tang P W, Li K R, et al. 2019. Difficulties of multi-component seismic wave reverse-time migration. Periodical of Ocean University of China (in Chinese), 49(1):77-84. http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201901010.htm
Hu T Y, Zhang G J, Zhao W, et al. 2004. Decomposition of multicomponent seismic wavefileds. Chinese Journal of Geophysics (in Chinese), 47(3):504-508. http://www.oalib.com/paper/1568474
Li W X, Cui J C, Wu W L, et al. 2018. State of the art and applications of the Multi-component seismic processing technology in CNOOC. Chinese Journal of Geophysics (in Chinese), 61(3):1136-1149, doi:10.6038/cjg2018L0355.
Liu L H, Lv C C, Hao T Y, et al. 2012. Data processing methods of OBS and its development tendency in detection of offshore oil and gas resources. Progress in Geophysics (in Chinese), 27(6):2673-2684, doi:10.6038/j.issn.1004-2903.2012.06.047.
Liu Z W, Sa L M, Zhang M, et al. 2008. Progress of application of multi-wave seismic technology in part of gas-fields of China. Oil Geophysical Prospecting (in Chinese), 43(6):668-672. http://www.researchgate.net/publication/292688915_Progress_of_application_of_multi-wave_seismic_technology_in_part_of_gas-fields_of_China
Lu J, Wang Y, Ji Y X, et al. 2018. Imaging techniques of multi-component seismic data. Chinese Journal of Geophysics (in Chinese), 61(8):3499-3514, doi:10.6038/cjg2018L0031.
Muijs R, Robertsson J O A, Curtis A, et al. 2003. Near-surface seismic properties for elastic wavefield decomposition:Estimates based on multicomponent land and seabed recordings. Geophysics, 68(6):2073-2081. doi: 10.1190/1.1635061
Muijs R, Robertsson J O A, Holliger K. 2004. Data-driven adaptive decomposition of multicomponent seabed recordings. Geophysics, 69(5):1329-1337. doi: 10.1190/1.1801949
Muijs R, Robertsson J O A, Holliger K. 2007. Data-driven adaptive decomposition of multicomponent seabed seismic recordings:application to shallow-water data from the North Sea. Geophysics, 72(6):V133-V142. doi: 10.1190/1.2778766
Osen A, Amundsen L, Reitan A. 1999. Removal of water-layer multiples from multi-component sea-bottom data. Geophysics, 64(3):838-851. doi: 10.1190/1.1444594
Ren Z M, Liu Y. 2016. A hierarchical elastic full-waveform inversion scheme based on wavefield separation and the multistep-length approach. Geophysics, 81(3):R99-R123. doi: 10.1190/geo2015-0431.1
Schalkwijk K M, Wapenaar C P A, Verschuur D J. 2003. Adaptive decomposition of multicomponent ocean-bottom seismic data into downgoing and upgoing P- and S-waves. Geophysics, 68(3):1091-1102. doi: 10.1190/1.1581081
Schalkwijk K W, Wapenaar C P A, Verschuur D J. 1999. Application of two-step decomposition to multicomponent ocean-bottom data:Theory and case study. Journal of Seismic Exploration, 8(3):261-278. http://www.researchgate.net/publication/288416573_Application_of_two-step_decomposition_to_multicomponent_ocean-bottom_data_Theory_and_case_study
Stewart R R, Gaiser J E, Brown R J, et al. 2002. Converted wave seismic exploration:Methods. Geophysics, 67(5):1348-1363. doi: 10.1190/1.1512781
Tao C H, He Q D. 1993. Separation of P- and S-waves in multi-component surface seismic data. Geophysical Prospecting for Petroleum (in Chinese), 32(2):47-55. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYWT199302004.htm
Wang T F, Cheng J B. 2015. Elastic wave mode decoupling for full waveform inversion.//85th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 1461-1466.
Wang T F, Cheng J B. 2017. Elastic full waveform inversion based on mode decomposition:the approach and mechanism. Geophysical Journal International, 209(2):606-622. doi: 10.1093/gji/ggx038
Wang T F. 2017. Elastic full waveform inversion based on wave mode decomposition[Ph. D. thesis] (in Chinese). Shanghai: Tongji University.
Wang T F, Cheng J B, Guo Q, et al. 2018. Elastic wave-equation-based reflection kernel analysis and traveltime inversion using wave mode decomposition. Geophysical Journal International, 215(1):450-470. doi: 10.1093/gji/ggy291
Wang Y B, Singh S C, Barton P J. 2002. Separation of P- and SV-wavefields from multi-component seismic data in the τ-p domain. Geophysical Journal International, 151(2):663-672. doi: 10.1046/j.1365-246X.2002.01797.x
White J E. 1965. Seismic Waves: Radiation, Transmission, and Attenuation. New York: McGraw-Hill.
Xu S Y, Li Y P, Ma Z T. 1999. Seperation of P- and S-wave fields via the τ-q transfrom. China Offshore Oil and Gas (Geology) (in Chinese), 13(5):334-337.
Xu W C, Wang T F, Cheng J B. 2019. Elastic model low-to intermediate-wavenumber inversion using reflection traveltime and waveform of multicomponent seismic data. Geophysics, 84(1):R123-R137. http://www.researchgate.net/publication/328656183_Elastic_model_low-to-intermediate_wavenumber_inversion_using_reflection_traveltime_and_waveform_of_multicomponent_seismic_data
Yan J, Sava P. 2008. Isotropic angle-domain elastic reverse-time migration. Geophysics, 73(6):S229-S239. doi: 10.1190/1.2981241
Zhang Y G, Wang Y, Wang M Y. 2004. Some key problems in the multi-component seismic exploration. Chinese Journal of Geophysics (in Chinese), 47(1):151-155. http://www.researchgate.net/publication/290300048_Some_key_problems_in_the_multi-_component_seismic_exploration/download
何兵寿, 张会星. 2006.多分量波场的矢量法叠前深度偏移技术.石油地球物理勘探, 41(3):369-374. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200604001.htm
何兵寿, 唐朋威, 李凯瑞等. 2019.多分量地震资料逆时偏移的难点问题.中国海洋大学学报, 49(1):77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201901010.htm
胡天跃, 张广娟, 赵伟等. 2004.多分量地震波波场分解研究.地球物理学报, 47(3):504-508. doi: 10.3321/j.issn:0001-5733.2004.03.021 http://www.geophy.cn//CN/abstract/abstract1581.shtml
李维新, 崔炯成, 武文来等. 2018.中海油多分量地震处理技术的发展与应用实例.地球物理学报, 61(3):1136-1149, doi:10.6038/cjg2018L0355. http://www.geophy.cn//CN/abstract/abstract14432.shtml
刘丽华, 吕川川, 郝天珧等. 2012.海底地震仪数据处理方法及其在海洋油气资源探测中的发展趋势.地球物理学进展, 27(6):2673-2684, doi:10.6038/j.issn.1004-2903.2012.06.047.
刘振武, 撒利明, 张明等. 2008.多波地震技术在中国部分气田的应用和进展.石油地球物理勘探, 43(6):668-672. doi: 10.3321/j.issn:1000-7210.2008.06.010
芦俊, 王赟, 季玉新等. 2018.多分量地震数据的成像技术.地球物理学报, 61(8):3499-3514, doi:10.6038/cjg2018L0031. http://www.geophy.cn//CN/abstract/abstract14648.shtml
陶春辉, 何樵登. 1993.地面多分量地震资料纵-横波分离方法.石油物探, 32(2):47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT199302004.htm
王腾飞. 2017.弹性波模式解耦全波形反演方法[博士论文].上海: 同济大学.
许世勇, 李彦鹏, 马在田. 1999. τ-q变换法波场分离.中国海上油气(地质), 13(5):334-337. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199905006.htm
张永刚, 王赟, 王妙月. 2004.目前多分量地震勘探中的几个关键问题.地球物理学报, 47(1):151-155. doi: 10.3321/j.issn:0001-5733.2004.01.023 http://www.geophy.cn//CN/abstract/abstract1586.shtml
-