强震孕育、发生及其复发循环过程的有限单元法模拟

袁杰, 崔泽飞, 朱守彪, 王进廷. 2021. 强震孕育、发生及其复发循环过程的有限单元法模拟. 地球物理学报, 64(2): 537-545, doi: 10.6038/cjg2021O0230
引用本文: 袁杰, 崔泽飞, 朱守彪, 王进廷. 2021. 强震孕育、发生及其复发循环过程的有限单元法模拟. 地球物理学报, 64(2): 537-545, doi: 10.6038/cjg2021O0230
YUAN Jie, CUI ZeFei, ZHU ShouBiao, WANG JinTing. 2021. Finite element method simulation of the earthquake preparation, occurrence, and recurrence cycles. Chinese Journal of Geophysics (in Chinese), 64(2): 537-545, doi: 10.6038/cjg2021O0230
Citation: YUAN Jie, CUI ZeFei, ZHU ShouBiao, WANG JinTing. 2021. Finite element method simulation of the earthquake preparation, occurrence, and recurrence cycles. Chinese Journal of Geophysics (in Chinese), 64(2): 537-545, doi: 10.6038/cjg2021O0230

强震孕育、发生及其复发循环过程的有限单元法模拟

  • 基金项目:

    中国地震局地壳应力研究所基本科研业务专项(ZDJ2020-08)及国家自然科学基金项目(41874060,51725901,51639006)共同资助

详细信息
    作者简介:

    袁杰, 男, 助理研究员, 理学博士.现主要从事震源动力学、工程抗震地震动输入研究.E-mail:yuenjay@sina.cn

    通讯作者: 朱守彪, 男, 研究员, 理学博士, 博士生导师.现主要从事地球动力学、地震活动性及地震预报方法研究.E-mail:zhusb@pku.edu.cn; zhushoubiao@gmail.com
  • 中图分类号: P315;P313

Finite element method simulation of the earthquake preparation, occurrence, and recurrence cycles

More Information
  • 强震孕育发生及其复发过程的定量研究对于预测预报地震有着重要的科学意义;合理连续地计算地震孕育、同震破裂过程及其复发循环特征将有助于我们更好地认识强震发生的时空分布规律.为此,本文基于Newmark隐式时间积分法,根据模拟孕震-同震循环过程的特殊要求,发展了一种新的有限单元计算方法.新方法具有以下特点:(1)在不改变时间积分方法的情况下,实现对时间步长进行自动平滑地缩放,进而可以连续的模拟准静态、动态不同力学状态下的孕震-同震循环过程;(2)模型的初始应力场非人为指定,计算时通过施加重力及缓慢的构造加载获得;(3)地震破裂的成核区域及成核方式等亦非人为给定,模拟中破裂成核是自然形成的,这样更加符合实际地震地质情况.通过大量的模型计算,其结果表明,新的计算方法可以连续稳定的模拟断层孕震-同震及其循环过程,计算结果不仅可以给出强震的复发间隔,同时还可以给出地震时断层破裂行为的详细过程.此外,本文还考察了摩擦系数对地震准周期性的影响,发现断层上的静、动摩擦系数差值直接影响着断层的强震复发周期,两者差值越小,复发周期越短;差值越大,复发间隔越长.

  • 加载中
  • 图 1 

    模型几何及边界条件

    Figure 1. 

    Model geometry and boundary conditions

    图 2 

    断层上盘上的典型点(中间点)的位移随时间的变化曲线

    Figure 2. 

    Displacements change with time at the typical point on the hanging wall of the fault

    图 3 

    断层典型点位置上下盘之间的位错随时间的变化曲线

    Figure 3. 

    Sliding distance at the typical point on the fault vary with time

    图 4 

    孕震期间和同震期间的自动增量步时间的变化

    Figure 4. 

    The change of the automatic time increments during interseismic and coseismic periods

    图 5 

    每次地震事件断层上各点滑移随时间的变化

    Figure 5. 

    Snapshots of the slip profiles at every node along the fault vary with time in each event

    图 6 

    地震事件五中不同时刻断层周边介质的振动速度云图

    Figure 6. 

    Contour distributions of particle velocities at different times around the fault in event 5

    图 7 

    重力作用下,垂直于地表方向应力云图

    Figure 7. 

    The vertical stresses of the models under applying gravity

    图 8 

    不同摩擦系数下,断层典型点位置上下盘之间的位错随时间的变化

    Figure 8. 

    Slip between hanging wall and footwall at the typical point on the fault vary with time in different models in which friction coefficients are different

    表 1 

    显式算法和隐式算法的优缺点

    Table 1. 

    Advantages and disadvantages of explicit and implicit algorithms

    算法 优点 缺点
    中心差分法(显式) 不需要平衡迭代,不存在收敛性问题每步计算成本低 有条件稳定,时间步长Δt必须小于Δtcr=L/(E/ρ)1/2(式中L为模型中尺度最小单元的最小边长)
    Newmark法(隐式) 无条件稳定,即时间步长Δt不影响解的稳定性 处理非线性问题时,需要平衡迭代,存在收敛性问题.每步计算成本高
    下载: 导出CSV

    表 2 

    模型参数

    Table 2. 

    Model parameters

    参数
    P波速度 6000 m·s-1
    S波速度 3464 m·s-1
    泊松比 0.25
    密度 2670 kg·m-3
    构造载荷 15 mm·a-1
    静摩擦系数 0.49
    动摩擦系数 0.47
    特征滑移距离 0.1 m
    下载: 导出CSV
  •  

    Barbot S, Lapusta N, Avouac J P. 2012. Under the hood of the earthquake machine:toward predictive modeling of the seismic cycle. Science, 336(6082):707-710. doi: 10.1126/science.1218796

     

    Ben-Zion Y, Rice J R. 1997. Dynamic simulations of slip on a smooth fault in an elastic solid. Journal of Geophysical Research, 102(B8):17771-17784. doi: 10.1029/97JB01341

     

    Bizzarri A. 2011. On the deterministic description of earthquakes. Reviews of Geophysics, 49(3):RG3002, doi:10.1029/2011RG000356.

     

    Duan B C, Oglesby D D. 2005a. The dynamics of thrust and normal faults over multiple earthquake cycles:Effects of dipping fault geometry. Bulletin of the Seismological Society of America, 95(5):1623-1636. doi: 10.1785/0120040234

     

    Duan B C, Oglesby D D. 2005b. Multicycle dynamics of nonplanar strike-slip faults. Journal of Geophysical Research:Solid Earth, 110(B3):B03304, doi:10.1029/2004JB003298.

     

    Lapusta N, Rice J R, Ben-Zion Y, et al. 2000. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. Journal of Geophysical Research:Solid Earth, 105(B10):23765-23789. doi: 10.1029/2000JB900250

     

    Lapusta N, Liu Y. 2009. Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip. Journal of Geophysical Research:Solid Earth, 114(B9):B09303, doi:10.1029/2008JB005934.

     

    Ma L F, Tao W, Zhang Y, et al. 2018. The numerical simulationstudy of the earthquake cycles and the dynamic evolutionary processes on the Longmen Shan Fault. Chinese Journal of Geophysics(in Chinese), 61(5):1824-1839, doi:10.6038/cjg2018M0226.

     

    Noda H, Lapusta N. 2010. Three-dimensional earthquake sequence simulations with evolving temperature and pore pressure due to shear heating:Effect of heterogeneous hydraulic diffusivity. Journal of Geophysical Research:Solid Earth, 115(B12):B12314, doi:10.1029/2010JB007780.

     

    Olsen-Kettle L, Weatherley D, Saez E, et al. 2008. Analysis of slip-weakening frictional laws with static restrengthening and their implications on the scaling, asymmetry, and mode of dynamic rupture on homogeneous and bimaterial interfaces. Journal of Geophysical Research:Solid Earth, 113(B8):B08307, doi:10.1029/2007JB005454.

     

    Rice J R, Ben-Zion Y. 1996. Slip complexity in earthquake fault models. Proceedings of the National Academy of Sciences of the United States of America, 93(9):3811-3818. doi: 10.1073/pnas.93.9.3811

     

    Ryan K J. 2012. Dynamic models of earthquake rupture on fault stepovers and dip-slip faults using various friction formulations[Master's thesis]. California: University of California.

     

    Ryan K J, Oglesby D D. 2014. Dynamically modeling fault step overs using various friction laws. Journal of Geophysical Research:Solid Earth, 119(7):5814-5829. doi: 10.1002/2014JB011151

     

    Sathiakumar S, Barbot S, Hubbard J. 2020. Earthquake cycles in fault-bend folds. Journal of Geophysical Research:Solid Earth, 125(8):e2019JB018557, doi:10.1029/2019JB018557.

     

    Tse S T, Rice J R. 1986. Crustal earthquake instability in relation to the depth variation of frictional slip properties. Journal of Geophysical Research:Solid Earth, 91(B9):9452-9472. doi: 10.1029/JB091iB09p09452

     

    Wang X C. 2003. Finite Element Method (in Chinese). Beijing:Tsinghua University Press.

     

    Yuan J, Zhu S B. 2014. FEM simulation of the dynamic processes of fault spontaneous rupture. Chinese Journal of Geophysics (in Chinese), 57(1):138-156, doi:10.6038/cjg20140113.

     

    Yuan J, Wang J T, Zhu S B. 2020. Effects of barriers on fault rupture process and strong ground motion based on various friction laws. Applied Sciences, 10(5):1687. doi: 10.3390/app10051687

     

    Zhu S B, Xing H L, Xie F R, et al. 2008. Simulation of earthquake processes by finite element method:The case of megathrust earthquakes on the Sumatra subduction zone. Chinese Journal of Geophysics (in Chinese), 51(2):460-468, doi:10.3321/j.issn:0001-5733.2008.02.018.

     

    Zhu S B, Zhang P Z. 2009. A study on the dynamical mechanisms of the Wenchuan MS8.0 earthquake, 2008. Chinese Journal of Geophysics (in Chinese), 52(2):418-427. http://www.oalib.com/paper/1569163

     

    Zhu S B, Zhang P Z. 2010. Numeric modeling of the strain accumulation and release of the 2008 Wenchuan, Sichuan, China, earthquake. Bulletin of the Seismological Society of America, 100(5B):2825-2839. doi: 10.1785/0120090351

     

    Zhu S B. 2013. Numerical simulation of dynamic mechanisms of the 2008 Wenchuan Ms8.0 earthquake:implications for earthquake prediction. Natural Hazards, 69(2):1261-1279. doi: 10.1007/s11069-013-0629-7

     

    Zhu S B, Zhang P Z. 2013. FEM simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan Earthquake. Tectonophysics, 584:64-80. doi: 10.1016/j.tecto.2012.06.024

     

    马林飞, 陶玮, 张永等. 2018.龙门山断层地震周期及其动力学过程模拟研究.地球物理学报, 61(5):1824-1839, doi:10.6038/cjg2018M0226. http://www.geophy.cn//CN/abstract/abstract14502.shtml

     

    王勖成. 2003.有限单元法.北京:清华大学出版社.

     

    袁杰, 朱守彪. 2014.断层自发破裂动力过程的有限单元法模拟.地球物理学报, 57(1):138-156, doi:10.6038/cjg20140113. http://www.geophy.cn//CN/abstract/abstract10055.shtml

     

    朱守彪, 邢会林, 谢富仁等. 2008.地震发生过程的有限单元法模拟——以苏门答腊俯冲带上的大地震为例.地球物理学报, 51(2):460-468, doi:10.3321/j.issn:0001-5733.2008.02.018. http://www.geophy.cn//CN/abstract/abstract453.shtml

     

    朱守彪, 张培震. 2009. 2008年汶川MS8.0地震发生过程的动力学机制研究.地球物理学报, 52(2):418-427. http://www.geophy.cn//CN/abstract/abstract922.shtml

  • 加载中

(8)

(2)

计量
  • 文章访问数:  1239
  • PDF下载数:  360
  • 施引文献:  0
出版历程
收稿日期:  2020-06-17
修回日期:  2020-09-09
上线日期:  2021-02-10

目录