地-空瞬变电磁法电阻率成像研究与应用

马振军, 底青云, 薛国强, 高雅. 2021. 地-空瞬变电磁法电阻率成像研究与应用. 地球物理学报, 64(3): 1090-1105, doi: 10.6038/cjg2021O0186
引用本文: 马振军, 底青云, 薛国强, 高雅. 2021. 地-空瞬变电磁法电阻率成像研究与应用. 地球物理学报, 64(3): 1090-1105, doi: 10.6038/cjg2021O0186
MA ZhenJun, DI QingYun, XUE GuoQiang, GAO Ya. 2021. The research and application of resistivity imaging of semi-airborne transient electromagnetic method. Chinese Journal of Geophysics (in Chinese), 64(3): 1090-1105, doi: 10.6038/cjg2021O0186
Citation: MA ZhenJun, DI QingYun, XUE GuoQiang, GAO Ya. 2021. The research and application of resistivity imaging of semi-airborne transient electromagnetic method. Chinese Journal of Geophysics (in Chinese), 64(3): 1090-1105, doi: 10.6038/cjg2021O0186

地-空瞬变电磁法电阻率成像研究与应用

  • 基金项目:

    北京市科技计划"地球深部探测技术"攻关专项"大深度航空电磁探测系统研制"(Z181100005718001)经费资助

详细信息
    作者简介:

    马振军, 男, 1991年生, 博士, 主要从事航空、地-空瞬变电磁法研究工作.E-mail: mazhenjun15@163.com

    通讯作者: 底青云, 1964年生, 研究员, 博士生导师, 主要从事勘探电磁学理论方法研究.E-mail: qydi@mail.iggcas.ac.cn
  • 中图分类号: P631

The research and application of resistivity imaging of semi-airborne transient electromagnetic method

More Information
  • 地-空瞬变电磁法(Semi-airborne transient electromagnetic,SATEM)凭借适应能力强、探测深度大、实时性强等特点,适用于湖泊、沼泽、山区等地形复杂地区观测.SATEM接收数据量大、精度要求高,传统成像方法基于地面视电阻率计算未考虑飞行高度,开展SATEM的高精度快速成像研究对实际运用有重要作用.针对SATEM中电性源发射装置感应电流分布,接收装置设置于空中以及两者不在相同平面的特点,本文考虑横向、纵向感应电流差异,飞行高度对视电阻率影响等因素,提出电性源SATEM电阻率成像方法.首先,基于电性源瞬变电磁场感应电流分布特征及各分量空间分布、扩散特性分析,推导出基于均匀半空间磁场与感应电压解析解,然后定义了电性源地-空瞬变电磁法早期、晚期、全期视电阻率;最后根据对感应电流分布分析定义了横向分量和纵向分量的成像深度,并研究了成像深度受飞行高度、发射磁矩、偏移距、偏移角度的影响;对煤炭采空区的实测结果表明,利用本文提出的电阻率成像方法可以更加精确定位目标体位置.

  • 加载中
  • 图 1 

    均匀大地电偶极子坐标示意图

    Figure 1. 

    Schematic diagram of uniform geoelectric dipole coordinates

    图 2 

    电性源TEM场扩散特性

    Figure 2. 

    TEM field diffusion characteristics

    图 3 

    电性源TEM场响应平面分布图

    Figure 3. 

    Distribution of responses of TEM

    图 4 

    电性源TEM场响应剖面图

    Figure 4. 

    Section of responses of TEM

    图 5 

    早期视电阻率典型模型计算

    Figure 5. 

    Typical model calculation of early apparent resistivity

    图 6 

    早期视电阻率随高度变化图

    Figure 6. 

    Early apparent resistivity changes with height

    图 7 

    晚期视电阻率典型模型计算

    Figure 7. 

    Typical model calculation of later apparent resistivity

    图 8 

    晚期视电阻率随高度变化图

    Figure 8. 

    Later apparent resistivity changes with height

    图 9 

    B-场全期视电阻率计算流程图

    Figure 9. 

    Flow chart of apparent resistivity calculation of B-field

    图 10 

    核函数随u的变化特征

    Figure 10. 

    The variation characteristics of kernel function with u

    图 11 

    基于感应电压全期视电阻率计算流程图

    Figure 11. 

    Flow chart of apparent resistivity calculation of induced voltage

    图 12 

    基于B-场及感应电压计算全期视电阻率对比

    Figure 12. 

    Comparison of apparent resistivity calculated based on B-field and induced voltage

    图 13 

    成像深度与扩散深度关系图

    Figure 13. 

    Relation between imaging depth and diffusion depth

    图 14 

    飞行高度和发射磁距对成像深度的影响

    Figure 14. 

    The influence of flight altitude and launch magnetic distance on imaging depth

    图 15 

    测线布置图

    Figure 15. 

    Survey line of SATEM

    图 16 

    视电阻率-深度成像对比

    Figure 16. 

    Depth-apparent resistivity imaging contrast

    图 17 

    基于测井数据的岩性分布图

    Figure 17. 

    Formation stratigraphy of the mining area based on well logging from boreholes

  •  

    Allah S A, Mogi T, Ito H, et al. 2014. Three-dimensional resistivity modelling of grounded electrical-source airborne transient electromagnetic (GREATEM) survey data from the Nojima Fault, Awaji Island, South-East Japan. Exploration Geophysics, 45(1): 49-61. doi: 10.1071/EG12086

     

    Allah S A, Mogi T. 2016. Three-dimensional resistivity modeling of GREATEM survey data from Ontake Volcano, northwest Japan. Earth, Planets and Space, 68: 76. doi: 10.1186/s40623-016-0443-z

     

    Bai D H, Meju M A, Lu J, et al. 2003. Numerical calculation of all-time apparent resistivity for the central loop transient electromagnetic method. Chinese Journal of Geophysics (in Chinese), 46(5): 697-704.

     

    Chen W Y, Xue G Q, Cui J W, et al. 2016. Study on the response and optimal observation area for SOTEM. Chinese Journal of Geophysic (in Chinese), 59(2): 739-748, doi:10.6038/cjg20160231.

     

    Cui J W. 2015. Calculation of all-time apparent resistivity for the SOTEM[Ph. D. thesis] (in Chinese). Nanchang: Donghua University of Technology.

     

    Di Q Y, Tian F, Suo Y, et al. 2021. Linkage of deep lithospheric structures to intraplate earthquakes: A perspective from multi-source and multi-scale geophysical data in the South China Block. Earth-Science Reviews, 214(1): 103504, doi:10.1016/j.earscirev.2021.103504.

     

    Di Q Y, Wang R. 2008. Controlled Source Audio-Frequency Magneto Tellurics (in Chinese). Beijing: Science Press.

     

    Di Q Y, Zhu R X, Xue G Q, et al. 2019. New development of the Electromagnetic (EM) methods for deep exploration. Chinese Journal of Geophysics (in Chinese), 62(6): 2128-2138, doi:10.6038/cjg2019M0633.

     

    Huang H P, Rudd J. 2008. Conductivity-depth imaging of helicopter-borne TEM data based on a pseudolayer half-space model. Geophysics, 73(3): F115-F120. doi: 10.1190/1.2904984

     

    Ito H, Mogi T A, Jomori A, et al. 2011. Further investigations of underground resistivity structures in coastal areas using grounded-source airborne electromagnetics. Earth, Planets and Space, 63(8): e9-e12. doi: 10.5047/eps.2011.08.003

     

    Ito H, Kaieda H, Mogi T, et al. 2014. Grounded electrical-source airborne transient electromagnetics (GREATEM) survey of Aso Volcano, Japan. Exploration Geophysics, 45(1): 43-48. doi: 10.1071/EG12074

     

    Jin Y J, Wang Y, Xu J, et al. 2013. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship. Chinese Journal of Geophysics (in Chinese), 56(11): 3640-3650, doi:10.6038/cjg20131105.

     

    Kaufman A A, Keller G V. 1983. Frequency and transient soundings. Amsterdam: Elsevier.

     

    Li X, Zhang Y Y, Lu X S, et al. 2015. Inverse synthetic aperture imaging of ground-airborne transient electromagnetic method with a galvanic source. Chinese Journal of Geophysics (in Chinese), 58(1): 277-288, doi:10.6038/cjg20150125.

     

    Liu R, Guo R W, Liu J X, et al. 2019. An efficient footprint-guided compact finite element algorithm for 3-D airborne electromagnetic modeling. IEEE Geoscience and Remote Sensing Letters, 16(12): 1809-1813. doi: 10.1109/LGRS.2019.2913896

     

    Ma Z J, Di Q Y. 2019. Correction of receiver noise in half-airborne transient electromagnetic method with electric source.//89th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.

     

    Ma Z Z, Di Q Y, Lei D, et al. 2020. The optimal survey area of the semi-airborne TEM method. Journal of Applied Geophysics, 172: 103884. doi: 10.1016/j.jappgeo.2019.103884

     

    Mao L F. 2013. Conductivity-depth imaging algorithm for central-loop helicopter TEM. CT Theory and Applications(in Chinese), 22(3): 429-437.

     

    Meyer U, Siemon B, Becken M. 2016. New airborne methods and procedures for the exploration of mineral resources: An overview of BGR activities.//86th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.

     

    Mogi T, Kusunoki K, Kaieda H, et al. 2009. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, North-Eastern Japan. Exploration Geophysics, 40(1): 1-7. doi: 10.1071/EG08115

     

    Piao H R. 1990. The Principle of Electromagnetic Sounding (in Chinese). Beijing: Geological Publishing House.

     

    Smirnova M V, Becken M, Nittinger C G, et al. 2019. A novel semi-airborne frequency-domain CSEM system. Three-dimensional inversion of semi-airborne data from the flight experiment over an ancient mining area near Schleiz, Germany. Geophysics, 84(5): 1-48.

     

    Smith R S, Annan A P, McGowan P D. 2001. A comparison of data from airborne, semi-airborne, and ground electromagnetic systems. Geophysics, 66(5): 1379-1385. doi: 10.1190/1.1487084

     

    Xu J. 2014. Apparent resistivity inversion Research of Electrical-source of Semi-airborne transient electromagnetic based on neural network method[Master thesis] (in Chinese). Changchun: Jilin University.

     

    Xue G Q, Li X, Yu S B, et al. 2018. The application of ground-airborne tem systems for underground cavity detection in China. Journal of Environmental and Engineering Geophysics, 23(1): 103-113. doi: 10.2113/JEEG23.1.103

     

    Yan S, Shi X X, Chen M S. 2009. The probing depth of transient electromagnetic field method. Chinese Journal of Geophysics (in Chinese), 52(6): 1583-1591, doi:10.3969/j.issn.0001-5733.2009.06.020.

     

    Yin C C, Piao H R. 1991. A study of the dfyinition of apparentresistivity in electromagnetic sounding. Geophysical and Geochemical Exploration (in Chinese), 15(4): 290-299.

     

    Yin C C, Qiu C K, Liu Y H, et al. 2016. Time-domain electromagnetic diffusion and imaging depth for airborne electromagnetic data. Chinese Journal of Geophysics (in Chinese), 59(8): 3079-3086, doi:10.6038/cjg20160830.

     

    白登海, Meju M A, 卢健等. 2003. 时间域瞬变电磁法中心方式全程视电阻率的数值计算. 地球物理学报, 46(5): 697-704. doi: 10.3321/j.issn:0001-5733.2003.05.018

     

    崔江伟. 2015. 电性源短偏移距瞬变电磁法全程视电阻率计算研究[博士论文]. 南昌: 东华理工大学.

     

    陈卫营, 薛国强, 崔江伟等. 2016. SOTEM响应特性分析与最佳观测区域研究. 地球物理学报, 59(2): 739-748, doi:10.6038/cjg20160231

     

    底青云, 王若. 2008. 可控源音频大地电磁数据正反演及方法应用. 北京: 科学出版社.

     

    底青云, 朱日祥, 薛国强等. 2019. 我国深地资源电磁探测新技术研究进展. 地球物理学报, 62(6): 2128-2138, doi:10.6038/cjg2019M0633.

     

    嵇艳鞠, 王远, 徐江等. 2013. 无人飞艇长导线源时域地空电磁勘探系统及其应用. 地球物理学报, 56(11): 3640-3650, doi:10.6038/cjg20131105.

     

    李貅, 张莹莹, 卢绪山等. 2015. 电性源瞬变电磁地空逆合成孔径成像. 地球物理学报, 58(1): 277-288, doi:10.6038/cjg20150125.

     

    毛立峰. 2013. 中心回线式直升机TEM资料的电导率-深度成像方法. CT理论与应用研究, 22(3): 429-437.

     

    朴化荣. 1990. 电磁测深法原理. 北京: 地质出版社.

     

    闫述, 石显新, 陈明生. 2009. 瞬变电磁法的探测深度问题. 地球物理学报, 52(6): 1583-1591, doi:10.3969/j.issn.0001-5733.2009.06.020.

     

    徐江. 2014. 基于人工神经网络电性源半航空视电阻率反演方法研究[硕士论文]. 长春: 吉林大学.

     

    殷长春, 朴华荣. 1991. 电磁测深法视电阻率定义问题的研究. 物探与化探, 15(4): 290-299.

     

    殷长春, 邱长凯, 刘云鹤. 2016. 时间域航空电磁扩散特征和成像深度研究. 地球物理学报, 59(8): 3079-3086, doi:10.6038/cjg20160830.

  • 加载中

(17)

计量
  • 文章访问数:  615
  • PDF下载数:  403
  • 施引文献:  0
出版历程
收稿日期:  2020-05-22
修回日期:  2020-12-05
上线日期:  2021-03-10

目录