多辐射源地空瞬变电磁响应三维数值模拟研究

李貅, 胡伟明, 薛国强. 2021. 多辐射源地空瞬变电磁响应三维数值模拟研究. 地球物理学报, 64(2): 716-723, doi: 10.6038/cjg2021O0166
引用本文: 李貅, 胡伟明, 薛国强. 2021. 多辐射源地空瞬变电磁响应三维数值模拟研究. 地球物理学报, 64(2): 716-723, doi: 10.6038/cjg2021O0166
LI Xiu, HU WeiMing, XUE GuoQiang. 2021. 3D modeling of multi-radiation source semi-airborne transient electromagnetic response. Chinese Journal of Geophysics (in Chinese), 64(2): 716-723, doi: 10.6038/cjg2021O0166
Citation: LI Xiu, HU WeiMing, XUE GuoQiang. 2021. 3D modeling of multi-radiation source semi-airborne transient electromagnetic response. Chinese Journal of Geophysics (in Chinese), 64(2): 716-723, doi: 10.6038/cjg2021O0166

多辐射源地空瞬变电磁响应三维数值模拟研究

  • 基金项目:

    国家自然科学基金重点项目(41830101,42030106),国家自然科学基金面上基金项目(42074121),中国科学院科研仪器设备研制项目(YJKYYQ20190004)和自然资源部煤炭资源勘查与综合利用重点实验室开放课题(KF2020-3)联合资助

详细信息
    作者简介:

    李貅, 长安大学教授, 主要从事电磁法理论方研究.E-mail:lixiu@chd.edu.cn

    通讯作者: 薛国强, 中国科学院地质与地球物理研究所研究员, 主要从事瞬变电磁法研究与应用研究.E-mail:xueguoqiang@mail.iggcas.ac.cn
  • 中图分类号: P631

3D modeling of multi-radiation source semi-airborne transient electromagnetic response

More Information
  • 地空瞬变电磁法结合地面和航空电磁法的优点,可实现探测深度和工作效率的平衡.当前地空瞬变电磁法采用单一线源激发电磁辐射场,仅能从一个侧面与地质体耦合,难以获得地质体的全息影像.采用多辐射源是解决这一问题的途径.本文采用三维矢量有限元法对两个不同地质体多个辐射源情况下的地空瞬变电磁响应开展了模拟研究,分析了多辐射源在不同辐射方向、不同飞行高度电磁响应的分布特征.研究表明,由多辐射场源作为地空电磁法的发射源,通过分散布设的线源,可以在地下激发与地质体多方位耦合的电磁场,能够获得地下地质体多方位不同高度情况下的耦合信息.同时,多辐射场源能够增强源电磁场的辐射强度,减少单一线源体积效应影响,飞行高度较低时可获得较强的响应幅值,研究结果为多辐射地空瞬变电磁法深部精细探测提供理论依据.

  • 加载中
  • 图 1 

    航空电磁探测系统示意图

    Figure 1. 

    Schematic diagram of airborne electromagnetic detection system

    图 2 

    多辐射源地空电磁探测系统示意图

    Figure 2. 

    Schematic diagram of multi-radiation source semi-airborne electromagnetic detection system

    图 3 

    单元中节点与棱边的关系(引自:李贺,2016)

    Figure 3. 

    Relationship between nodes and edges in an element (from Li H, 2016)

    图 4 

    多辐射源加载示意图(参考:孙怀凤,2013)

    Figure 4. 

    Schematic diagram of multi-radiation source loading(reference to Sun H F, 2013)

    图 5 

    不同飞行高度感生电动势多测道图

    Figure 5. 

    Multi-channel diagram of the dBz/dt with different flight heights

    图 6 

    不同飞行高度感生电动势多测道图

    Figure 6. 

    Multi-channel diagram of the dBz/dt with different flight heights

    图 7 

    双地质体、单一辐射源模型和垂直磁场分量平面图

    Figure 7. 

    Plane diagram of the Bz of two geological bodies with a single radiation source

    图 8 

    双地质体、双辐射源模型和垂直磁场分量平面图

    Figure 8. 

    Plane diagram of the Bz of two geological bodies with two radiation sources

    图 9 

    双地质体、四个辐射源模型和垂直磁场分量平面图

    Figure 9. 

    Plane diagram of the Bz of two geological bodies with four radiation sources

  •  

    Di Q Y, Zhu R X, Xue G Q, et al. 2019. New development of the Electromagnetic (EM) methods for deep exploration. Chinese Journal of Geophysics (in Chinese), 62(6):2128-2138, doi:10.6038/cjg2019M0633.

     

    He J S, Xue G Q. 2018. Review of the key techniques on short-offset electromagnetic detection. Chinese Journal of Geophysics (in Chinese), 61(1):1-8, doi:10.6038/cjg2018L0003.

     

    Ji Y J, Li D S, Yu M M, et al. 2016. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal. Journal of Applied Geophysics, 128:1-7. doi: 10.1016/j.jappgeo.2016.03.001

     

    Ji Y J, Wang Y, Xu J, et al. 2013. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship. Chinese Journal of Geophysics (in Chinese), 56(11):3640-3650, doi:10.6038/cjg20131105.

     

    Li H. 2016. Three dimensional transient electromagnetic forward modeling in the direct time domain field by vector finite element[Master's thesis]. Xi'an: Chang'an University.

     

    Li S Y, Lin J, Yang G H, et al. 2013. Ground-Airborne electromagnetic signals de-noising using a combined wavelet transform algorithm. Chinese Journal of Geophysics (in Chinese), 56(9):3145-3152, doi:10.6038/cjg20130927.

     

    Li X, Zhang Y Y, Lu X S, et al. 2015. Inverse synthetic aperture imaging of ground-airborne transient electromagnetic method with a galvanic source. Chinese Journal of Geophysics (in Chinese), 58(1):277-288, doi:10.6038/cjg20150125.

     

    Mogi T, Kusunoki K, Kaieda H, et al. 2009. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of mount Bandai, North-eastern Japan. Exploration Geophysics, 2009, 40(1):1-7. doi: 10.1071/EG08115

     

    Mogi T, Tanaka Y, Kusunoki K, et al. 1998. Development of Grounded Electrical Source Airborne Transient EM (GREATEM). Exploration Geophysics, 29(1-2):61-64. doi: 10.1071/EG998061

     

    Sun H F. 2013. Three-dimensional transient electromagnetic responses of water bearing structures in tunnels and prediction of water inrush sources[Ph.D. thesis].Jinan: Shandong University.

     

    Wang Y, Ji Y J, Li S Y, et al. 2013. A wavelet-based baseline drift correction method for grounded electrical source airborne transient electromagnetic signals. Exploration Geophysics, 44(4):229-237, doi:10.1071/EG12078.

     

    Wu X, Xue G Q, Xiao P, et al. 2019. The Removal of the high-frequency motion-induced noise in helicopter-borne transient electromagnetic data based on wavelet neural network. Geophysics, 84(1):K1-K9, doi:10.1190/GEO2018-0120.1.

     

    Zhang Y Y, Li X, Li J, et al. 2016. Fast imaging technique of multi-source ground-airborne transient electromagnetic method. Progress in Geophysics (in Chinese), 31(2):869-876, doi:10.6038/pg20160250.

     

    Zhang Y Y, Li X, Yao W H, et al. 2015. Multi-component full field apparent resistivity definition of multi-source ground-airborne transient electromagnetic method with galvanic sources. Chinese Journal of Geophysics (in Chinese), 58(8):2745-2758, doi:10.6038/cjg20150811.

     

    Zhou H G, Lin J, Liu C S, et al. 2016a. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey. Review of Scientific Instruments, 87(3):034503, doi:10.1063/1.4943221.

     

    Zhou H G, Yao Y, Liu C S, et al. 2016b. Feasibility of signal enhancement with multiple grounded-wire sources for a frequency-domain electromagnetic survey. Geophysical Prospecting, 66(4):818-832, doi:10.1111/1365-2478.12596.

     

    Zhou H G, Zhang M, Liu C S, et al. 2018. Divergence of tipper real induction vector in tensor frequency-domain ground-airborne electromagnetic method.//88th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.

     

    底青云, 朱日祥, 薛国强等. 2019.我国深地资源电磁探测新技术研究进展.地球物理学报, 62(6):2128-2138, doi:10.6038/cjg2019M0633. http://www.geophy.cn//CN/abstract/abstract15011.shtml

     

    何继善, 薛国强. 2018.短偏移距电磁探测技术概述.地球物理学报, 61(1):1-8, doi:10.6038/cjg2018L0003. http://www.geophy.cn//CN/abstract/abstract14292.shtml

     

    嵇艳鞠, 王远, 徐江等. 2013.无人飞艇长导线源时域地空电磁勘探系统及其应用.地球物理学报, 56(11):3640-3650, doi:10. 6038/cjg20131105. http://www.geophy.cn//CN/abstract/abstract9876.shtml

     

    李贺. 2016.直接时间域矢量有限元瞬变电磁三维正演模拟[硕士论文].西安: 长安大学.

     

    李肃义, 林君, 阳贵红等. 2013.电性源时域地空电磁数据小波去噪方法研究.地球物理学报, 56(9):3145-3152, doi:10.6038/cjg20130927. http://www.geophy.cn//CN/abstract/abstract9764.shtml

     

    李貅, 张莹莹, 卢绪山等. 2015.电性源瞬变电磁地空逆合成孔径成像.地球物理学报, 58(1):277-288, doi:10.6038/cjg20150125. http://www.geophy.cn//CN/abstract/abstract11177.shtml

     

    孙怀凤. 2013.隧道含水构造三维瞬变电磁场响应特征及突水灾害源预报研究[博士论文].济南: 山东大学.

     

    张莹莹, 李貅, 李佳等. 2016.多辐射场源地空瞬变电磁法快速成像方法研究.地球物理学进展, 31(2):869-876, doi:10.6038/pg20160250.

     

    张莹莹, 李貅, 姚伟华等. 2015.多辐射场源地空瞬变电磁法多分量全域视电阻率定义.地球物理学报, 58(8):2745-2758, doi:10.6038/cjg20150811. http://www.geophy.cn//CN/abstract/abstract11730.shtml

  • 加载中

(9)

计量
  • 文章访问数:  650
  • PDF下载数:  596
  • 施引文献:  0
出版历程
收稿日期:  2020-05-04
修回日期:  2020-12-09
上线日期:  2021-02-10

目录