塔里木盆地南部上地幔各向异性研究

许启慧, 盖增喜, 冯永革, 王冠之, 郭震, 梁晓峰. 2021. 塔里木盆地南部上地幔各向异性研究. 地球物理学报, 64(2): 471-483, doi: 10.6038/cjg2021O0153
引用本文: 许启慧, 盖增喜, 冯永革, 王冠之, 郭震, 梁晓峰. 2021. 塔里木盆地南部上地幔各向异性研究. 地球物理学报, 64(2): 471-483, doi: 10.6038/cjg2021O0153
XU QiHui, GE ZengXi, FENG YongGe, WANG GuanZhi, GUO Zhen, LIANG XiaoFeng. 2021. Upper mantle anisotropy analysis around the southern Tarim basin. Chinese Journal of Geophysics (in Chinese), 64(2): 471-483, doi: 10.6038/cjg2021O0153
Citation: XU QiHui, GE ZengXi, FENG YongGe, WANG GuanZhi, GUO Zhen, LIANG XiaoFeng. 2021. Upper mantle anisotropy analysis around the southern Tarim basin. Chinese Journal of Geophysics (in Chinese), 64(2): 471-483, doi: 10.6038/cjg2021O0153

塔里木盆地南部上地幔各向异性研究

  • 基金项目:

    中国科学院战略性先导科技专项(B类)(XDB18000000)资助

详细信息
    作者简介:

    许启慧, 女, 硕士研究生, 主要研究方向为地震各向异性.E-mail:xuqihui@pku.edu.cn

    通讯作者: 盖增喜, 男, 副教授, 主要从事地震学研究.E-mail:zge@pku.edu.cn
  • 中图分类号: P315

Upper mantle anisotropy analysis around the southern Tarim basin

More Information
  • 塔里木南缘位于塔里木块体同青藏高原碰撞的前缘,是认识青藏高原同周围块体相互作用的重要位置.横波分裂方法可以获得岩石圈及软流圈地幔的介质各向异性特征,进而探讨岩石圈变形和地幔流动.本文利用横波分裂方法对中国科学院地质与地球物理研究所、北京大学和南方科技大学联合布设在塔里木盆地南部的8个宽频带流动地震台站记录的SKS和SKKS震相进行分析,获得了塔里木盆地南部上地幔各向异性参数.分析结果显示,研究区快波偏振方向总体比较一致呈近东西向,但存在盆地边缘到盆地内部变化,而慢波延迟时间分布在0.3~1.5 s,差异较大.综合前人对青藏高原北缘和阿尔金断裂周边的横波分裂研究结果,研究区内大部分地区地幔流动方向和绝对板块运动方向保持一致,推测青藏高原北缘同塔里木盆地接触带,青藏高原北缘软流圈南东东向流动对塔里木块体下方地幔流动造成扰动,随着深入到塔里木块体内部,干扰越来越弱;同时青藏高原北部软流圈物质可能对塔里木盆地岩石圈产生影响,随着地幔软流圈物质持续向北运动逐渐冷却,对盆地内部岩石圈的影响程度减弱.

  • 加载中
  • 图 1 

    塔里木盆地及周边区域构造图

    Figure 1. 

    Tectonic map of Tarim basin and surrounding region

    图 2 

    远震事件震中分布图

    Figure 2. 

    Epicenter distribution of teleseismic events

    图 3 

    质量为好的分裂结果实例.T15台站记录的2017年9月20日20时09分发生的MW6.4地震的SKS波分裂结果图

    Figure 3. 

    An example of good splitting result. SKS wave splitting result of the event took place at 2017-09-20 20:09 recorded by T15

    图 4 

    质量为一般的分裂结果实例.T15台站记录的2018年10月16日00时28分发生的MW6.3地震的SKS波分裂结果图

    Figure 4. 

    An example of fair splitting result. SKS wave splitting result of the event took place at 2018-10-16 00:28 recorded by T15

    图 5 

    无效分裂结果实例.T16台站记录的2018年4月30日18时24分发生的MW6.3地震的SKS波分裂结果图

    Figure 5. 

    An example of null splitting result. SKS splitting result of the event took place at 2018-04-30 18:24 recorded by T16

    图 6 

    塔里木盆地南端8个台站SKS、SKKS分裂结果

    Figure 6. 

    Results of the SKS and SKKS wave splitting of 8 stations in southern Tarim basin

    图 7 

    按照方位分布的有效分裂结果和无效分裂结果

    Figure 7. 

    Results of the SKS and SKKS wave splitting and null results according to azimuth distribution

    图 8 

    研究区各向异性结果

    Figure 8. 

    Anisotropic results in study area

    图 9 

    研究区各向异性快波偏振方向(a)和慢波延迟时间(b)的事件数分布直方图

    Figure 9. 

    The histogram of events number distribution of anisotropic fast wave polarization direction (a) and the slow wave delay time (b) in the study area

    表 1 

    塔里木盆地南部SKS、SKKS分裂结果

    Table 1. 

    The SKS and SKKS splitting results beneath southern Tarim basin

    台站代码 经度(°) 纬度(°) φ(°) δt(s) σ(°) σδt(s) 有效数据个数
    SKS SKKS
    T13 82.80 37.70 76.51 1.12 2.14 0.15 15 0
    T15 81.86 36.90 69.76 0.86 4.30 0.18 13 0
    T16 81.86 38.36 89.35 1.06 20.44 0.42 4 0
    T17 81.59 38.09 72.24 0.54 - - 1 0
    T32 80.77 37.95 - - - - 0 0
    T34 79.76 38.28 63.24 0.40 12.42 0.10 3 0
    T37 78.73 37.53 56.28 0.59 1.58 0.15 2 0
    T39 78.61 37.90 74.82 0.56 6.07 0.19 3 2
    注:φ为快波偏振方向与北夹角,顺时针为正值,δt为慢波延迟时间,σσδt分别为快波偏振方向和慢波延迟时间的标准差.
    下载: 导出CSV
  •  

    Bao Z W, Gao Y. 2017. Crustal seismic anisotropy in the Tien Shan and adjacent areas. Chinese Journal of Geophysics (in Chinese), 60(4): 1359-1375, doi: 10.6038/cjg20170411.

     

    Bowman J R, Ando M. 1987. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal International, 88(1): 25-41. doi: 10.1111/j.1365-246X.1987.tb01367.x

     

    Crampin S, Lovell J H. 1991. A decade of shear-wave splitting in the Earth's crust: what does it mean? what use can we make of it? And what should we do next?. Geophysical Journal International, 107(3): 387-407. doi: 10.1111/j.1365-246X.1991.tb01401.x

     

    Crampin S, Peacock S. 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth. Wave Motion, 41(1): 59-77. doi: 10.1016/j.wavemoti.2004.05.006

     

    Feng Q Q, Wu Q J, Li Y H, et al. 2012. Shear wave splitting in Xinjiang region. Acta Seismologica Sinica (in Chinese), 34(3): 296-307, doi: 10.3969/j.issn.0253-3782.2012.03.002.

     

    Feng Y G, Yu Y, Chen Y S, et al. 2016. Upper mantle anisotropy analysis around the western Altun Tagh fault. Chinese Journal of Geophysics (in Chinese), 59(5): 1629-1636, doi: 10.6038/cjg20160508.

     

    Gao Y, Wu J, Yi G X, et al. 2010. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy. Chinese Science Bulletin, 55(31): 3599-3605, doi: 10.1007/s11434-010-4135-y.

     

    Gripp A E, Gordon R G. 1990. Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model. Geophysical Research Letters, 17(8): 1109-1112. doi: 10.1029/GL017i008p01109

     

    Guo G H, Wu C L, Tang G B, et al. 2019. Seismic anisotropy of the northeastern margin of the Tibetan Plateau derived from analysis of SKS and Pms seismic phases. Chinese Journal of Geophysics (in Chinese), 62(5): 1650-1662, doi: 10.6038/cjg2019N0093.

     

    Herquel G, Tapponnier P. 2005. Seismic anisotropy in western Tibet. Geophysical Research Letters, 32(17): L17306, doi: 10.1029/2005GL023561.

     

    Huang Z C, Wang L S, Zhao D P, et al. 2011. Seismic anisotropy and mantle dynamics beneath China. Earth and Planetary Science Letters, 306(1-2): 105-117, doi: 10.1016/j.epsl.2011.03.038.

     

    Jia C Z. 1999. Structural characteristics and oil/gas accumulative regularity in Tarim basin. Xinjiang Petroleum Geology (in Chinese), 20(3): 177-183. http://www.researchgate.net/publication/284685698_Structural_characteristics_and_oilgas_accumulative_regularity_in_Tarim_Basin

     

    Karato S I. 1998. Some remarks on the origin of seismic anisotropy in the D" layer. Earth, Planets and Space, 50(11): 1019-1028. doi: 10.1186/BF03352196

     

    Levin V, Roecker S, Graham P, et al. 2008. Seismic anisotropy indicators in Western Tibet: Shear wave splitting and receiver function analysis. Tectonophysics, 462(1-4): 99-108, doi: 10.1016/j.tecto.2008.03.019.

     

    Levin V, Huang G C D, Roecker S. 2013. Crust-mantle coupling at the northern edge of the Tibetan plateau: Evidence from focal mechanisms and observations of seismic anisotropy. Tectonophysics, 584: 221-229. doi: 10.1016/j.tecto.2012.05.013

     

    Li J H, Wu T W, Lei Y T. 2019. Geology and geomorphology of Tarim basin and its evolution in the Cenozoic. Geological Journal of China Universities (in Chinese), 25(3): 466-473, doi: 10.16108/j.issn1006-7493.2018100.

     

    Li M K, Song X D, Li J T, et al. 2018. Lithospheric structures of the main basins in mainland China and its tectonic implications. Earth Science (in Chinese), 43(10): 3362-3372, doi: 10.3799/dqkx.2018.286.

     

    Li Q S, Gao Y, Wang X B, et al. 2020. New research progress in geophysics and continental dynamics of the Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 63(3): 789-801, doi: 10.6038/cjg2020O0063.

     

    Liu X. 2006. Problems of crustal tectonics and evolution in Xinjiang, Northwest China. Earth Science Frontiers (in Chinese), 13(6): 111-117. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200606016.htm

     

    Nicolas A, Poirier J P. 1976. Crystalline Plasticity and Solid State Flow in Metamorphic Rocks. New York: John Wiley & Sons.

     

    Savage M K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?. Reviews of Geophysics, 37(1): 65-106. doi: 10.1029/98RG02075

     

    Schmid C, Van Der Lee S, Giardini D. 2004. Delay times and shear wave splitting in the Mediterranean region. Geophysical Journal International, 159(1): 275-290. doi: 10.1111/j.1365-246X.2004.02381.x

     

    Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth, 961(B10): 16429-16454. http://adsabs.harvard.edu/abs/1991JGR....9616429S

     

    Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24: 385-432. doi: 10.1146/annurev.earth.24.1.385

     

    Song X D, Li S T, Li Y C, et al. 2004. Structure of lithospheric mantle and its implications for the evolution of major basins in China. Earth Sciences—Journal of China University of Geosciences (in Chinese), 29(5): 531-538. http://www.researchgate.net/publication/292060819_Structure_of_lithospheric_mantle_and_its_implications_for_the_evolution_of_major_basins_in_China

     

    Song Z H, An C Q, Chen G Y, et al. 1991. Study on 3D velocity structure and anisotropy beneath the west China from the love wave dispersion. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 34(6): 694-707. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199106003.htm

     

    Wüstefeld A, Bokelmann G. 2007. Null detection in shear-wave splitting measurements. Bulletin of the Seismological Society of America, 97(4): 1204-1211, doi: 10.1785/0120060190.

     

    Wüstefeld A, Bokelmann G, Zaroli C, et al. 2008. SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5): 515-528, doi: 10.1016/j.cageo.2007.08.002.

     

    Wang C Y, Flesch L M, Silver P G, et al. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36(5): 363-366. doi: 10.1130/G24450A.1

     

    Wang C Y, Chang L J, Ding Z F, et al. 2014. Upper mantle anisotropy and crust-mantle deformation pattern beneath the Chinese mainland. Science China Earth Sciences, 57(1): 132-143, doi: 10.1007/s11430-013-4675-5.

     

    Wang L S, Li C, Yang C. 1996. The lithospheric thermal structure beneath Tarim basin, western China. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 39(6): 794-803. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX606.008.htm

     

    Wang Q, Zhang P Z, Niu Z J, et al. 2001. Present-day crustal movement and tectonic deformation in China continent. Science in China Series D: Earth Sciences, 45(10): 865-874.

     

    Wang Q, Niu F L, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophysical Journal International, 204(1): 167-179. doi: 10.1093/gji/ggv420

     

    Wu J, Zhang Z J, Kong F S, et al. 2015. Complex seismic anisotropy beneath western Tibet and its geodynamic implications. Earth and Planetary Science Letters, 413: 167-175. doi: 10.1016/j.epsl.2015.01.002

     

    Xu Y, Liu F T, Liu J H, et al. 2000. Seismic tomography beneath the orogenic belts and adjacent basins of northwestern China. Science China Earth Sciences (in Chinese), 30(2): 113-122.

     

    Xu Y, Liu F T, Liu J H, et al. 2001. Deep features of continental collision belts in northwestern China and their dynamic implications. Chinese Journal of Geophysics (in Chinese), 44(1): 40-47. http://onlinelibrary.wiley.com/doi/10.1002/cjg2.113/full

     

    Zhao J M, Liu G D, Lu Z X, et al. 2003. Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar basin. Tectonophysics, 376(3-4): 199-239. doi: 10.1016/j.tecto.2003.07.001

     

    Zhao J M, Yuan X H, Liu H B, et al. 2010. The boundary between the Indian and Asian tectonic plates below Tibet. Proceedings of the National Academy of Sciences of the United States of America, 107(25): 11229-11233. doi: 10.1073/pnas.1001921107

     

    Zhao J M, Zhao D P, Zhang H, et al. 2014. P-wave tomography and dynamics of the crust and upper mantle beneath western Tibet. Gondwana Research, 25(4): 1690-1699, doi: 10.1016/j.gr.2013.06.020.

     

    Zheng G, Wang H, Wright T J, et al. 2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. Journal of Geophysical Research: Solid Earth, 122, doi: 10.1002/2017JB014465.

     

    Zheng S H, Gao Y. 1994. Azimuthal anisotropy in lithosphere on the Chinese mainland from observations of SKS at CDSN. Acta Seismologica Sinica (in Chinese), 16(2): 131-140.

     

    鲍子文, 高原. 2017.天山构造带及邻区地壳各向异性.地球物理学报, 60(4): 1359-1375, doi: 10.6038/cjg20170411.

     

    冯强强, 吴庆举, 李永华等. 2012.新疆地区S波分裂研究.地震学报, 34(3): 296-307, doi: 10.3969/j.issn.0253-3782.2012.03.002.

     

    冯永革, 于勇, 陈永顺等. 2016.阿尔金断裂西部邻区的上地幔各向异性研究.地球物理学报, 59(5): 1629-1636, doi: 10.6038/cjg20160508.

     

    高原, 吴晶, 易桂喜等. 2010.从壳幔地震各向异性初探华北地区壳幔耦合关系.科学通报, 55(29): 2837-2843. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201029009.htm

     

    郭桂红, 武澄泷, 唐国彬等. 2019.青藏高原东北缘壳幔各向异性研究:基于SKS和Pms震相分析.地球物理学报, 62(5): 1650-1662, doi: 10.6038/cjg2019N0093.

     

    贾承造. 1999.塔里木盆地构造特征与油气聚集规律.新疆石油地质, 20(3): 177-183. doi: 10.3969/j.issn.1001-3873.1999.03.001

     

    李江海, 吴桐雯, 雷雨婷. 2019.塔里木盆地新生代地质地貌特征及其演化.高校地质学报, 25(3): 466-473, doi: 10.16108/j.issn1006-7493.2018100.

     

    李孟奎, 宋晓东, 李江涛等. 2018.中国大陆大型盆地的岩石圈结构及构造意义.地球科学, 43(10): 3362-3372, doi: 10.3799/dqkx.2018.286.

     

    李秋生, 高原, 王绪本等. 2020.青藏高原地球物理与大陆动力学研究的新进展.地球物理学报, 63(3): 789-801, doi: 10.6038/cjg2020O0063.

     

    刘训. 2006.新疆地壳结构和演化中的若干问题.地学前沿, 13(6): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606016.htm

     

    宋晓东, 李思田, 李迎春等. 2004.岩石圈地幔结构及其对中国大型盆地的演化意义.地球科学——中国地质大学学报, 29(5): 531-538. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200405004.htm

     

    宋仲和, 安昌强, 陈国英等. 1991.中国西部三维速度结构及其各向异性.地球物理学报, 34(6): 694-707. doi: 10.3321/j.issn:0001-5733.1991.06.004

     

    王良书, 李成, 杨春. 1996.塔里木盆地岩石层热结构特征.地球物理学报, 39(6): 794-803. doi: 10.3321/j.issn:0001-5733.1996.06.009

     

    胥颐, 刘福田, 刘建华等. 2000.中国大陆西北造山带及其毗邻盆地的地震层析成像.中国科学, 30(2): 113-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200002000.htm

     

    胥颐, 刘福田, 刘建华等. 2001.中国西北大陆碰撞带的深部特征及其动力学意义.地球物理学报, 44(1): 40-47. doi: 10.3321/j.issn:0001-5733.2001.01.005

     

    郑斯华, 高原. 1994.中国大陆岩石层的方位各向异性.地震学报, 16(2): 131-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB402.000.htm

  • 加载中

(9)

(1)

计量
  • 文章访问数:  508
  • PDF下载数:  338
  • 施引文献:  0
出版历程
收稿日期:  2020-06-22
修回日期:  2020-08-25
上线日期:  2021-02-10

目录