Features of topside ionospheric background over China and its adjacent areas obtained by the ZH-1 satellite
-
摘要:
利用ZH-1(CSES)卫星LAP载荷原位电子密度数据对中国及邻区(0°-54°N,70°-140°E)的顶部电离层背景分布及随季节变化进行了详细分析,研究结果显示:(1)研究区赤道异常的纬度延伸范围、随经度分布形态及它们的季节变化,具有与其他研究结果一致的规律性.(2)中纬度区,白天电子密度存在一个低值带,夜间电子密度呈现高值带.昼夜对比结果显示夜间电子密度升高现象在研究区中纬以上所有季节都存在,但在向低纬延伸时与赤道异常现象呈互补分布,此强彼弱,反之亦然.(3)白天观测的电子密度,半年异常表现为随纬度升高,两峰值出现时间由春秋季向夏季演变,最终过渡到中纬只有夏季峰值的年变形态;季节异常仅在赤道附近4°范围内出现.夜间观测的电子密度,北纬22°以上、50°以下出现半年异常,22°以下出现季节异常.(4)月均值背景总体上表现为夜间电子密度较白天相对波动更剧烈;其中白天电子密度,分季、夏季较冬季波动更剧烈,赤道异常区较中纬区波动更剧烈;夜间电子密度,在所有时、空上波动水平大致相当.(5)研究区电离层背景时空变化特征较为复杂,数据波动亦随时空有变化,对电离层相关科学问题的研究需关注数据背景的分析.综合这些结果及与其他同期观测数据的比较结果,我们认为ZH-1卫星原位电子密度观测数据的相对变化与其他数据集一致.同时,研究区背景数据也呈现了以往研究中未被发现的特征.ZH-1卫星观测数据具有一致的地方时和观测地点,为电离层相关科学问题的系统性研究提供了一个很好的数据集.
-
关键词:
- ZH-1(CSES)卫星 /
- LAP载荷 /
- 电子密度原位观测数据 /
- 电离层背景 /
- 时空特征
Abstract:Topside ionospheric background distribution and its seasonal variations over China and its adjacent areas, e.g. 0°-54°N and 70°-140°E, are studied using the in situ electron density (Ne) measurements obtained by the LAP payload on board the ZH-1 (CSES) satellite. Results are as followings:(1) Regularities consistent with results from previous studies are shown on the latitudinal extension, longitudinal distribution, and seasonal variations of the EIA (Equatorial Ionization Anomaly) phenomenon in the study area. (2) In the mid-latitude regions, there is a relative low-value zone for the daytime Ne, which shows relative high-value data during nighttime. Nighttime Ne enhancement is shown in all the mid-latitudes for all the seasons when comparing the nighttime and daytime Ne together. The equatorward extension of this phenomenon is in contrast to the poleward extension of the EIA phenomenon; when this phenomenon extends, the EIA shrinks, and vice versa. (3) For the daytime Ne, semiannual anomaly demonstrates a regular pattern, in which the two peaks start in spring and autumn equinoxes at the Equator, then evolve toward the summer solstice with increasing latitude, and finally combine into one summer time peak in mid-latitudes; seasonal anomaly only appears within latitude 4° of the Equator. While for the nighttime Ne, semiannual anomaly appears between latitude 22° and 50°, and seasonal anomaly appears below latitude 22°. (4) The monthly average background of the ionosphere generally shows that the nighttime Ne varies more dramatically than the daytime Ne. For the daytime Ne, observations in both equinoxes and summer solstice vary more violently than that in winter solstice, and observations in EIA regions vary more violently than that in mid-latitude regions. And for the nighttime Ne, observation variations are roughly similar in all seasons and latitudes. (5) Features of the ionospheric background, which fluctuates with time and space in the study area, are relatively complicated, therefore it is necessary to pay attention to the ionosphere background and its fluctuations when conducting studies on ionosphere related scientific problems. Based on the above results and comparisons with other simultaneous observations, we believe that the relative variations of the in situ Ne measurements from the ZH-1 satellite are in consistent with that from other datasets. Besides the well-known ionosphere features, some features which were not found in previous studies are found from the ionosphere background in the study area. The in situ Ne measurements from the ZH-1 satellite are a good data source for systematic studies on ionosphere-related scientific problems due to the similar local times and locations of the observations.
-
-
-
Aravindan P, Iyer K N. 1990. Day-to-day variability in ionospheric electron content at low latitudes. Planetary and Space Science, 38(6):743-750, doi:10.1016/0032-0633(90)90033-m.
Balan N, Otsuka Y, Bailey G J, et al. 1998. Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar. Journal of Geophysical Research:Space Physics, 103(A5):9481-9495, doi:10.1029/97ja03137.
Bellchambers W H, Piggott W R. 1958. Ionospheric measurements made at Halley bay. Nature, 182(4649):1596-1597, doi:10.1038/1821596a0.
Burns A G, Solomon S C, Wang W, et al. 2012. Daytime climatology of ionospheric NmF2 and hmF2 from COSMIC data. Journal of Geophysical Research:Space Physics, 117(A9):A09315, doi:10.1029/2012ja017529.
Fatkullin M N. 1970. The seasonal anomaly in the electron density of the topside F2-region. Journal of Atmospheric and Terrestrial Physics, 32(6):1067-1075, doi:10.1016/0021-9169(70)90118-2.
He L M, Heki K. 2017. Ionospheric anomalies immediately before MW7.0-8.0 earthquakes. Journal of Geophysical Research:Space Physics, 122(8):8659-8678, doi:10.1002/2017ja024012.
He Y, Yang D, Qian J, et al. 2011. Response of the ionospheric electron density to different types of seismic events. Natural Hazards and Earth System Sciences, 11(8):2173-2180, doi:10.5194/nhess-11-2173-2011.
Horvath I. 2006. A total electron content space weather study of the nighttime Weddell Sea Anomaly of 1996/1997 southern summer with TOPEX/Poseidon radar altimetry. Journal of Geophysical Research:Space Physics, 111(A12):A12317, doi:10.1029/2006JA011679.
Huang L F. 2015. Research on the hemispheric asymmetry of the ionospheric equatorial ionization anomaly and scintillation characteristics[Ph. D. thesis] (in Chinese). Nanjing: Nanjing University of Information Science & Technology.
Immel T J, Sagawa E, England S L, et al. 2006. Control of equatorial ionospheric morphology by atmospheric tides. Geophysical Research Letters, 33(15):L15108, doi:10.1029/2006GL026161.
Jakowski N, Hoque M M, Kriegel M, et al. 2015. The persistence of the NWA effect during the low solar activity period 2007-2009. Journal of Geophysical Research:Space Physics, 120(10):9148-9160, doi:10.1002/2015ja021600.
Jee G, Burns A G, Kim Y H, et al. 2009. Seasonal and solar activity variations of the Weddell Sea Anomaly observed in the TOPEX total electron content measurements. Journal of Geophysical Research:Space Physics, 114(A4):A04307, doi:10.1029/2008ja013801.
Kil H, DeMajistre R, Paxton L J, et al. 2006. Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI. Journal of Atmospheric and Solar-Terrestrial Physics, 68(14):1672-1681, doi:10.1016/j.jastp.2006.05.024.
King J W, Hawkins G L, Seabrook C. 1968. The seasonal behaviour of the topside ionosphere. Journal of Atmospheric and Terrestrial Physics, 30(9):1701-1706, doi:10.1016/0021-9169(68)90018-4.
Le H, Liu J Y, Liu L. 2011. A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002-2010. Journal of Geophysical Research:Space Physics, 116(A2):A02303, doi:10.1029/2010ja015781.
Lee W K, Kil H, Kwak Y S, et al. 2011. The winter anomaly in the middle-latitude F region during the solar minimum period observed by the Constellation Observing System for Meteorology, Ionosphere, and Climate. Journal of Geophysical Research:Space Physics, 116(A2):A02302, doi:10.1029/2010ja015815.
Li M, Parrot M. 2013. Statistical analysis of an ionospheric parameter as a base for earthquake prediction. Journal of Geophysical Research:Space Physics, 118(6):3731-3739, doi:10.1002/jgra.50313.
Liang F C, Li X, Feng J, et al. 2020. Variation of foF2 layer during low solar activity period (2005-2007) in low latitude of China. Chinese Journal of Radio Science, 35(5):785-790.
Lin C H, Liu J Y, Fang T W, et al. 2007. Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC. Geophysical Research Letters, 34(19):L19101, doi:10.1029/2007gl030741.
Lin C H, Liu C H, Liu J Y, et al. 2010. Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC. Journal of Geophysical Research:Space Physics, 115(A3):A03308, doi:10.1029/2009ja014084.
Liu H X, Thampi S V, Yamamoto M. 2010. Phase reversal of the diurnal cycle in the midlatitude ionosphere. Journal of Geophysical Research:Space Physics, 115(A1):A01305, doi:10.1029/2009JA014689.
Liu L B, Zhao B Q, Wan W X, et al. 2007. Yearly variations of global plasma densities in the topside ionosphere at middle and low latitudes. Journal of Geophysical Research:Space Physics, 112(7):A07303, doi:10.1029/2007JA012283.
Mei X F, Luo W H, Cai H T, et al. 2019. Characteristic of the Equatorial Ionization Anomaly strength and hemispheric asymmetry based on IGS network during 2001-2008. Chinese Journal of Geophysics (in Chinese), 62(9):3235-3246, doi:10.6038/cjg2019M0069.
Meza A, Natali M P, Fernández L I. 2012. Analysis of the winter and semiannual ionospheric anomalies in 1999-2009 based on GPS global International GNSS Service maps. Journal of Geophysical Research:Space Physics, 117(A1):A01319, doi:10.1029/2011ja016882.
Mukherjee S, Sarkar S, Purohit P K, et al. 2010. Seasonal variation of total electron content at crest of equatorial anomaly station during low solar activity conditions. Advances in Space Research, 46(3):291-295, doi:10.1016/j.asr.2010.03.024.
Rishbeth H, Mendillo M. 2001. Patterns of F2-layer variability. Journal of Atmospheric and Solar-Terrestrial Physics, 63(15):1661-1680, doi:10.1016/s1364-6826(01)00036-0.
Sagawa E, Immel T J, Frey H U, et al. 2005. Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. Journal of Geophysical Research:Space Physics, 110(A11):A11302, doi:10.1029/2004JA010848.
Sai Gowtam V, Ram S T. 2017. Ionospheric winter anomaly and annual anomaly observed from Formosat-3/COSMIC Radio Occultation observations during the ascending phase of solar cycle 24. Advances in Space Research, 60(8):1585-1593, doi:10.1016/j.asr.2017.03.017.
Scherliess L, Thompson D C, Schunk R W. 2008. Longitudinal variability of low-latitude total electron content:Tidal influences. Journal of Geophysical Research:Space Physics, 113(A1):A01311, doi:10.1029/2007ja012480.
Shen X H, Zhang X M, Yuan S G, et al. 2018. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Science China Technological Sciences, 61(5):634-642, doi:10.1007/s11431-018-9242-0.
Sunda S, Vyas B M. 2013. Local time, seasonal, and solar cycle dependency of longitudinal variations of TEC along the crest of EIA over India. Journal of Geophysical Research:Space Physics, 118(10):6777-6785, doi:10.1002/2013ja018918.
Tian Y Y, Hao Y Q, Zhang D H, et al. 2019. Single crest phenomenon in the equatorial ionospheric anomaly region and its longitudinal distribution caused by nonmigrating tides. Chinese Journal of Geophysics (in Chinese), 62(11):4067-4081, doi:10.6038/cjg2019M0645.
Tsai H F, Liu J Y, Tsai W H, et al. 2001. Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions. Journal of Geophysical Research:Space Physics, 106(A12):30363-30369, doi:10.1029/2001ja001107.
Walker G O. 1981. Longitudinal structure of the F-region equatorial anomaly-a review. Journal of Atmospheric and Terrestrial Physics, 43(8):763-774, doi:10.1016/0021-9169(81)90052-0.
Wang X Y, Cheng W L, Yang D H, et al. 2019. Preliminary validation of in situ electron density measurements onboard CSES using observations from Swarm Satellites. Advances in Space Research, 64(4):982-994, doi:10.1016/j.asr.2019.05.025.
Wu C C, Fry C D, Liu J Y, et al. 2004. Annual TEC variation in the equatorial anomaly region during the solar minimum:September 1996-August 1997. Journal of Atmospheric and Solar-Terrestrial Physics, 66(3-4):199-207, doi:10.1016/j.jastp.2003.09.017.
Xiong C, Lühr H, Ma S Y. 2013. The magnitude and inter-hemispheric asymmetry of equatorial ionization anomaly-based on CHAMP and GRACE observations. Journal of Atmospheric and Solar-Terrestrial Physics, 105-106:160-169, doi:10.1016/j.jastp.2013.09.010.
Xu Z Z, Wang W M, Wang B, et al. 2012. Analysis and prediction of ionospheric total electron content of the Equatorial Ionization Anomaly around 120°E longitude. Chinese Journal of Geophysics (in Chinese), 55(7):2185-2192, doi:10.6038/j.issn.0001-5733.2012.07.005.
Yan R, Shen X H, Huang J P, et al. 2018. Examples of unusual ionospheric observations by the CSES prior to earthquakes. Earth and Planetary Physics, 2(6):515-526, doi:10.26464/epp2018050.
Yonezawa T. 1971. The solar-activity and latitudinal characteristics of the seasonal, non-seasonal and semi-annual variations in the peak electron densities of the F2-layer at noon and at midnight in middle and low latitudes. Journal of Atmospheric and Terrestrial Physics, 33(6):889-907, doi:10.1016/0021-9169(71)90089-4.
Yu H F, Zhu Y Z, Deng Z X. 2017. Change of ionospheric crest in china sector based on GPS-TEC. GNSS World of China (in Chinese), 42(6):24-29. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QUDW201706005.htm
Zhang M L, Wan W X, Liu L B, et al. 2009. Variability study of the crest-to-trough TEC ratio of the equatorial ionization anomaly around 120°E longitude. Advances in Space Research, 43(11):1762-1769, doi:10.1016/j.asr.2008.09.031.
Zhao B Q, Wan W X, Liu L B, et al. 2009. Characteristics of the ionospheric total electron content of the equatorial ionization anomaly in the Asian-Australian region during 1996-2004. Annales Geophysicae, 27(10):3861-3873, doi:10.5194/angeo-27-3861-2009.
黄林峰. 2015.东南亚电离层赤道异常半球不对称性及闪烁特征研究[博士论文].南京: 南京信息工程大学.
梁奉超, 李雪, 冯静等. 2020.太阳活动低年(2005-2007)期间中国低纬地区电离层foF2变化特性.电波科学学报, 35(5):785-790. https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX202005021.htm
梅雪飞, 罗伟华, 蔡红涛等. 2019.基于IGS台网观测的2001-2008年赤道电离异常的强度和半球不对称特征.地球物理学报, 62(9):3235-3246, doi:10.6038/cjg2019M0069.
田耀宇, 郝永强, 张东和等. 2019.非迁移潮作用下的电离层赤道异常区单峰现象及其经度分布.地球物理学报, 62(11):4067-4081, doi:10.6038/cjg2019M0645.
徐振中, 王伟民, 王博等. 2012. 120°E赤道电离异常区电子浓度总含量分析与预测.地球物理学报, 55(7):2185-2192, doi:10.6038/j.issn.0001-5733.2012.07.005.
余侯芳, 朱云舟, 邓忠新. 2017.利用GPS观测研究我国赤道异常驼峰区电离层TEC变化.全球定位系统, 42(6):24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201706005.htm
-