阿留申—阿拉斯加俯冲带及周边地区地幔过渡带结构研究

肖勇, 张瑞青, 况春利. 2021. 阿留申—阿拉斯加俯冲带及周边地区地幔过渡带结构研究. 地球物理学报, 64(3): 838-850, doi: 10.6038/cjg2021O0085
引用本文: 肖勇, 张瑞青, 况春利. 2021. 阿留申—阿拉斯加俯冲带及周边地区地幔过渡带结构研究. 地球物理学报, 64(3): 838-850, doi: 10.6038/cjg2021O0085
XIAO Yong, ZHANG RuiQing, KUANG ChunLi. 2021. Mantle transition zone structure beneath the Alaska-Aleutian subduction zone and its surroundings. Chinese Journal of Geophysics (in Chinese), 64(3): 838-850, doi: 10.6038/cjg2021O0085
Citation: XIAO Yong, ZHANG RuiQing, KUANG ChunLi. 2021. Mantle transition zone structure beneath the Alaska-Aleutian subduction zone and its surroundings. Chinese Journal of Geophysics (in Chinese), 64(3): 838-850, doi: 10.6038/cjg2021O0085

阿留申—阿拉斯加俯冲带及周边地区地幔过渡带结构研究

  • 基金项目:

    国家自然科学基金(41874073,U1839210,40974061)和中国地震局地球物理研究所基本科研业务专项(DQJB19A0113)资助

详细信息
    作者简介:

    肖勇, 男, 1994年生, 硕士研究生, 主要从事地球深部结构方面研究.E-mail: 2398703317@qq.com

    通讯作者: 张瑞青, 研究员, 主要从事固体地球物理和深部结构探测方面的研究.E-mail: zrq@cea-igp.ac.cn
  • 中图分类号: P315

Mantle transition zone structure beneath the Alaska-Aleutian subduction zone and its surroundings

More Information
  • 利用国家测震台网固定台站和"中国地震科学台阵探测"项目在南北地震带北段布设的宽频带流动台阵记录到的极远震事件,通过SS前驱波震相研究,获得了阿留申—阿拉斯加俯冲带东段及邻区下方410 km和660 km间断面的埋深和起伏形态特征.为增强对SS前驱波震相的识别,我们采用了时差校正和共反射点叠加分析.叠加结果显示,毗邻阿留申俯冲带的白令海、阿拉斯加半岛、以及阿拉斯加中南部和东部地区下方,410 km和660 km间断面的埋深基本呈正相关关系,因而具有正常的过渡带厚度.这表明在阿留申—阿拉斯加俯冲带东段,北太平洋板块还没有俯冲到地幔过渡带深度范围内.其次,在阿拉斯加西部地区下方,660 km间断面出现明显下沉,而上覆的410 km间断面埋深接近于全球平均值,从而导致过渡带明显加厚.据此,我们推测在阿拉斯加西部地区下方地幔过渡带底部可能存在库拉残留板块.

  • 加载中
  • 图 1 

    (a) 本文研究区域(蓝框)及所用台站(绿色三角形)和地震事件(红色圆形)分布图;(b) SS前驱波震相的反射点(黑色圆点)及四条测线(红色虚线)位置示意图

    Figure 1. 

    (a) Map showing study area (blue box), seismic stations (green triangles) and selected events (red circles); (b) Map showing SS precursors bounce points (black dots) and seismic profiles (red dashed lines)

    图 2 

    (a) SS波和前驱波震相的射线路径示意图,其中红色三角形代表台站,红色五角星表示地震事件;(b) 青海区域台网李家峡台站记录到的切向分量波形图

    Figure 2. 

    (a) Sketch showing ray paths of SS and its precursors. Red triangles represent the seismic stations. Red star represents the event; (b) Transverse component waveform recorded by Lijiaxia station of Qinghai Regional Network

    图 3 

    (a)、(b)分别为时差校正前、后的SS波及其前驱波震相的理论地震图

    Figure 3. 

    Synthetic seismograms of SS and its precursors before (a) and after (b) moveout correction

    图 4 

    (a)、(b) 分别为时差校正前、后的实际观测资料波形沿震中距排列的走时图

    Figure 4. 

    Observed waveforms arranged by epicentral distances before (a) and after (b) moveout correction

    图 5 

    (a) 沿AA′测线的SS前驱波共反射点叠加剖面图,其中顶部数字表示每个面元中叠加的波形数,粉色圆点表示地震分布;(b)和(c) 分别表示叠加剖面中410 km和660 km间断面对应的深度值分布

    Figure 5. 

    (a) Depth section of stacked tangential components along profile AA′ aligned on the SS arrivals. The top numeral is the number of records within one cap. Pink dots represent earthquakes. The depths of the 410 km and 660 km discontinuities are shown in (b) and (c), respectively.

    图 6 

    沿BB′测线的SS前驱波共反射点叠加剖面图(图中标注同图 5)

    Figure 6. 

    Depth section of stacked tangential components along profile BB′ aligned on the SS arrivals(other explanations are same as Fig. 5)

    图 7 

    沿CC′测线的SS前驱波共反射点叠加剖面图(图中标注同图 5)

    Figure 7. 

    Depth section of stacked tangential components along profile of CC′ aligned on the SS arrivals (other explanations are same as Fig. 5)

    图 8 

    沿DD′测线的SS前驱波共反射点叠加剖面图(图中标注同图 5)

    Figure 8. 

    Depth section of stacked tangential components along profile of DD′ aligned on the SS arrivals (other explanations are same as Fig. 5)

    表 1 

    李家峡台站记录到的发生在墨西哥南部海岸的地震事件信息

    Table 1. 

    Seismic event at the coast of southern Mexico recorded by the Lijiaxia station

    Time/UTC Latitude/°N Longitude/°W Depth/km Magnitude/MW Distance/(°)
    2012-03-20 18∶02∶47.6 16.47 98.37 19 7.5 124.426
    下载: 导出CSV
  •  

    Ai Y S, Zheng T Y. 2003. The upper mantle discontinuity structure beneath eastern China. Geophysical Research Letters, 30(21):2089, doi:10.1029/2003GL017678.

     

    Bina C R, Helffrich G. 1994. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research: Solid Earth, 99(B8): 15853-15860, doi:10.1029/94JB00462.

     

    Burdick S, Vernon F L, Martynov V, et al. 2017. Model update May 2016: Upper-mantle heterogeneity beneath North America from travel-time tomography with global and USArray data. Seismological Research Letters, 88(2A): 319-325, doi:10.1785/0220160186.

     

    Cao Q, Van Der Hilst R D, De Hoop M V, et al. 2011. Seismic imaging of transition zone discontinuities suggests hot mantle west of Hawaii. Science, 332(6033): 1068-1071, doi:10.1126/science.1202731.

     

    Castle J C, Creager K C. 2000. Local sharpness and shear wave speed jump across the 660 km discontinuity. Journal of Geophysical Research: Solid Earth, 105(B3): 6191-6200, doi:10.1029/1999JB900424.

     

    Chambers K, Woodhouse J H, Deuss A. 2005. Topography of the 410 km discontinuity from PP and SS precursors. Earth and Planetary Science Letters, 235(3-4): 610-622, doi:10.1016/j.epsl.2005.05.014.

     

    Collier J D, Helffrich G R. 1997. Topography of the "410" and "660" km seismic discontinuities in the Izu-Bonin subduction zone. Geophysical Research Letters, 24(12): 1535-1538, doi:10.1029/97GL01383.

     

    Dahm H H, Gao S S, Kong F S, et al. 2017. Topography of the mantle transition zone discontinuities beneath Alaska and its geodynamic implications: constraints from receiver function stacking. Journal of Geophysical Research: Solid Earth, 122(12): 10352-10363, doi:10.1002/2017JB014604.

     

    Fei Y, Van Orman J, Li J, et al. 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research: Solid Earth, 109(B2): B02305, doi:10.1029/2003JB002562.

     

    Flanagan M P, Shearer P M. 1998. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. Journal of Geophysical Research: Solid Earth, 103(B2): 2673-2692, doi:10.1029/97JB03212.

     

    Fukao Y, Obayashi M. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth, 118(11): 5920-5938, doi:10.1002/2013JB010466.

     

    Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39(3): 291-323, doi:10.1029/1999RG000068.

     

    GeoPRISMS Office. 2013. Geodynamic processes at rifting and subducting margins. (2019-05-20). https: //missouriepscor. org/tags/geodynamic-processes-rifting-and-subducting-margins.

     

    Gong J H, Ge Z X. 2016. Finite-frequency effects of SS precursor. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 52(6): 1014-1024, doi:10.13209/j.0479-8023.2016.049.

     

    Gorbatov A, Widiyantoro S, Fukao Y, et al. 2000. Signature of remnant slabs in the North Pacific from P-wave tomography. Geophysical Journal International, 142(1): 27-36, doi:10.1046/j.1365-246x.2000.00122.x.

     

    Gou T, Zhao D P, Huang Z C, et al. 2019. Aseismic deep slab and mantle flow beneath Alaska: Insight from anisotropic tomography. Journal of Geophysical Research: Solid Earth, 124(2): 1700-1724, doi:10.1029/2018JB016639.

     

    Gu Y, Dziewonski A M, Agee C B. 1998. Global de-correlation of the topography of transition zone discontinuities. Earth and Planetary Science Letters, 157(1-2): 57-67, doi:10.1016/S0012-821X(98)00027-2.

     

    Gu Y J, Dziewoński A M, Ekström G. 2003. Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities. Geophysical Journal International, 154(2): 559-583, doi:10.1046/j.1365-246X.2003.01967.x.

     

    Hédervári P. 1975. Connection between the underthrusting of lithosphere and surficial volcanism in the seismic belt of the Aleutian-Alaska region. Modern Geology, 5(3): 143-153.

     

    Heit B, Yuan X H, Bianchi M, et al. 2010. Study of the lithospheric and upper-mantle discontinuities beneath eastern Asia by SS precursors. Geophysical Journal International, 183(1): 252-266, doi:10.1111/j.1365-246X.2010.04714.x.

     

    Houser C, Masters G, Flanagan M, et al. 2008. Determination and analysis of long-wavelength transition zone structure using SS precursors. Geophysical Journal International, 174(1): 178-194, doi:10.1111/j.1365-246X.2008.03719.x.

     

    Huang Q C, Schmerr N, Waszek L, et al. 2019. Constraints on seismic anisotropy in the mantle transition zone from long-period SS precursors. Journal of Geophysical Research: Solid Earth, 124(7): 6779-6800, doi:10.1029/2019JB017307.

     

    Irifune T, Higo Y, Inoue T, et al. 2008. Sound velocities of majorite garnet and the composition of the mantle transition region. Nature, 451(7180): 814-817, doi:10.1038/nature06551.

     

    Irifune T, Nishiyama N, Kuroda K, et al. 1998. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science, 279(5357): 1698-1700, doi:10.1126/science.279.5357.1698.

     

    Ita J, Stixrude L. 1993. Density and elasticity of model upper mantle compositions and their implications for whole mantle structure. //Takahashi E, Jeanloz R, Rubie D eds. Evolution of the Earth and Planets. Washington, DC: Geophysical Monograph Series, 74 111-130.

     

    Ito E, Takahashi E. 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research: Solid Earth, 94(B8): 10637-10646, doi:10.1029/JB094iB08p10637.

     

    Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2): 429-465, doi:10.1111/j.1365-246X.1991.tb06724.x.

     

    Koulakov I Y, Dobretsov N L, Bushenkova N A, et al. 2011. Slab shape in subduction zones beneath the Kurile-Kamchatka and Aleutian arcs based on regional tomography results. Russian Geology and Geophysics, 52(6): 650-667, doi:10.1016/j.rgg.2011.05.008.

     

    Lawrence J F, Shearer P M. 2008. Imaging mantle transition zone thickness with SdS-SS finite-frequency sensitivity kernels. Geophysical Journal International, 174(1): 143-158, doi:10.1111/j.1365-246X.2007.03673.x.

     

    Li C, Van Der Hilst R D, Engdahl E R, et al. 2008a. A new global model for P wave speed variations in Earth's mantle. Geochemistry, Geophysics, Geosystems, 9(5): Q05018, doi:10.1029/2007GC001806.

     

    Li J, Chen Q F, Vanacore E, et al. 2008b. Topography of the 660 km discontinuity beneath northeast China: Implications for a retrograde motion of the subducting Pacific slab. Geophysical Research Letters, 35(1): L01302, doi:10.1029/2007GL031658.

     

    Liu C X, Wang Z. 2014. Structure imaging of the crust and upper mantle in south of Alaska. Chinese Journal of Geophysics (in Chinese), 57(7): 2113-2126, doi:10.6038/cjg20140708.

     

    Liu Q Y, Kind R, Li S C. 1996. Maximal likelihood estimation and nonlinear inversion of the complex receiver function spectrum ratio. Acta Geophysica Sinica (in Chinese), 39(4): 500-511. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX604.009.htm

     

    Liu Z L, Li J H, Cui X, et al. 2018. Geometry of aleutian subduction zone and its kinematic genesis. Geological Review (in Chinese), 64(3): 543-550. http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201803002.htm

     

    Lizarralde D, Holbrook W S, McGeary S, et al. 2002. Crustal construction of a volcanic arc, wide-angle seismic results from the western Alaska Peninsula. Journal of Geophysical Research: Solid Earth, 107(B8): EPM 4-1-EPM 4-21, doi:10.1029/2001JB000230.

     

    Ma Y Y, Ge Z X. 2018. Topography of upper mantle discontinuities beneath nazca plate and its surrounding area reveals from SS precursor and its tectonic significance. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 54(6): 1186-1194, doi:10.13209/j.0479-8023.2017.179.

     

    Martin-Short R, Allen R M, Bastow I D. 2016. Subduction geometry beneath south central Alaska and its relationship to volcanism. Geophysical Research Letters, 43(18): 9509-9517, doi:10.1002/2016GL070580.

     

    Niu F L, Inoue H, Suetsugu D, et al. 2000. Seismic evidence for a thinner mantle transition zone beneath the South Pacific Superswell. Geophysical Research Letters, 27(13): 1981-1984, doi:10.1029/1999GL011280.

     

    Ohtani E, Litasov K, Hosoya T, et al. 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Physics of the Earth and Planetary Interiors, 143-144: 255-269, doi:10.1016/j.pepi.2003.09.015.

     

    Qi C, Zhao D P, Chen Y. 2007. Search for deep slab segments under Alaska. Physics of the Earth and Planetary Interiors, 165(1-2): 68-82, doi:10.1016/j.pepi.2007.08.004.

     

    Ringwood A E. 1991. Phase transformations and their bearing on the constitution and dynamics of the Mantle. Geochimica et Cosmochimica Acta, 55(8): 2083-2110, doi:10.1016/0016-7037(91)90090-R.

     

    Schmerr N, Garnero E. 2006. Investigation of upper mantle discontinuity structure beneath the central Pacific using SS precursors. Journal of Geophysical Research: Solid Earth, 111(B8): B08305, doi:10.1029/2005JB004197.

     

    Schmerr N, Garnero E J. 2007. Upper mantle discontinuity topography from thermal and chemical heterogeneity. Science, 318(5850): 623-626, doi:10.1126/science.1145962.

     

    Shearer P M, Masters T G. 1992. Global mapping of topography on the 660 km discontinuity. Nature, 355(6363): 791-796, doi:10.1038/355791a0.

     

    Simmons N A, Myers S C, Johannesson G, et al. 2012. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. Journal of Geophysical Research: Solid Earth, 117(B10): B10302, doi:10.1029/2012JB009525.

     

    Tajima F, Grand S P. 1998. Variation of transition zone high-velocity anomalies and depression of 660 km discontinuity associated with subduction zones from the southern Kuriles to Izu-Bonin and Ryukyu. Journal of Geophysical Research: Solid Earth, 103(B7): 15015-15036, doi:10.1029/98JB00752.

     

    Tibi R, Wiens D A. 2005. Detailed structure and sharpness of upper mantle discontinuities in the Tonga subduction zone from regional broadband arrays. Journal of Geophysical Research: Solid Earth, 110(B6): B06313, doi:10.1029/2004JB003433.

     

    Tono Y, Kunugi T, Fukao Y, et al. 2005. Mapping of the 410- and 660 km discontinuities beneath the Japanese islands. Journal of Geophysical Research: Solid Earth, 110(B3): B03307, doi:10.1029/2004JB003266.

     

    Tseng T L, Chen W P. 2004. Contrasts in seismic wave speeds and density across the 660 km discontinuity beneath the Philippine and the Japan Seas. Journal of Geophysical Research: Solid Earth, 109(B4): B04302, doi:10.1029/2003JB002613.

     

    Van Der Meer D G, Van Hinsbergen D J J, Spakman W. 2018. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 723: 309-448, doi:10.1016/j.tecto.2017.10.004.

     

    Van Stiphout A M, Cottaar S, Deuss A. 2019. Receiver function mapping of mantle transition zone discontinuities beneath Alaska using scaled 3-D velocity corrections. Geophysical Journal International, 219(2): 1432-1446, doi:10.1093/gji/ggz360.

     

    Wang B S, Niu F L. 2010. A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China. Journal of Geophysical Research: Solid Earth, 115(B6): B06308, doi:10.1029/2009JB006608.

     

    Wang X, Li J, Chen Q F. 2017. Topography of the 410 km and 660 km discontinuities beneath the Japan Sea and adjacent regions by analysis of multiple-ScS waves. Journal of Geophysical Research: Solid Earth, 122(2): 1264-1283, doi:10.1002/2016JB013357.

     

    Wang X R, Li Q S, Li G H, et al. 2018. Seismic triplication used to reveal slab subduction that had disappeared in the late Mesozoic beneath the northeastern South China Sea. Tectonophysics, 727: 28-40, doi:10.1016/j.tecto.2017.12.030.

     

    Wei S S, Shearer P M. 2017. A sporadic low-velocity layer atop the 410 km discontinuity beneath the Pacific Ocean. Journal of Geophysical Research: Solid Earth, 122(7): 5144-5159, doi:10.1002/2017JB014100.

     

    Wu Q J, Zeng R S. 1998. The crustal structure of Qinghai-Xizang plateau inferred from broadband teleseismic waveform. Acta Geophysica Sinica (in Chinese), 41(5): 669-679. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199805010.htm

     

    Wu W B, Ni S D, Irving J C E. 2019. Inferring Earth's discontinuous chemical layering from the 660-kilometer boundary topography. Science, 363(6428): 736-740, doi:10.1126/science.aav0822.

     

    Yu C Q, Day E A, De Hoop M V, et al. 2017. Mapping mantle transition zone discontinuities beneath the Central Pacific with array processing of SS precursors. Journal of Geophysical Research: Solid Earth, 122(12): 10364-10378, doi:10.1002/2017JB014327.

     

    Zhang R Q, Li Y H, Yao X R. 2006. A review of latest crustal and upper mantle discontinuities studies beneath northeast China in northwest Pacific subduction zone. Progress in Geophysics (in Chinese), 21(4): 1080-1085. http://www.oalib.com/paper/1696468

     

    Zhang R Q, Wu Q J, Li Y H, et al. 2011. Differential patterns of SH and P wave velocity structures in the transition zone beneath northwestern Tibet. Science China Earth Sciences, 54(10): 1551-1562, doi:10.1007/s11430-011-4228-8.

     

    Zhang R Q, Wu Q J, Li Y H, et al. 2012. Lateral variations in SH velocity structure of the transition zone beneath Korea and adjacent regions. Journal of Geophysical Research: Solid Earth, 117(B9): B09315, doi:10.1029/2011JB008900.

     

    Zhang R Q, Wu Y, Gao Z Y, et al. 2017. Upper mantle discontinuity structure beneath eastern and southeastern Tibet: New constraints on the Tengchong intraplate volcano and signatures of detached lithosphere under the western Yangtze Craton. Journal of Geophysical Research: Solid Earth, 122(2): 1367-1380, doi:10.1002/2016JB013551.

     

    Zhao D P, Yamamoto Y, Yanada T. 2013. Global mantle heterogeneity and its influence on teleseismic regional tomography. Gondwana Research, 23(2): 595-616, doi:10.1016/j.gr.2012.08.004.

     

    Zheng X F, Ouyang B, Zhang D N, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 52(5): 1412-1417, doi:10.3969/j.issn.0001-5733.2009.05.031.

     

    Zheng Z, Ventosa S, Romanowicz B. 2015. High resolution upper mantle discontinuity images across the Pacific Ocean from SS precursors using local slant stack filters. Geophysical Journal International, 202(1): 175-189, doi:10.1093/gji/ggv118.

     

    Zhu L P, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3): 619-627, doi:10.1046/j.1365-246X.2002.01610.x.

     

    宫健华, 盖增喜. 2016. SS前驱震相有限频效应研究. 北京大学学报(自然科学版), 52(6): 1014-1024, doi:10.13209/j.0479-8023.2016.049.

     

    柳存喜, 王志. 2014. 南阿拉斯加地壳及上地幔结构成像研究. 地球物理学报, 57(7): 2113-2126, doi:10.6038/cjg20140708. http://www.geophy.cn//CN/abstract/abstract10481.shtml

     

    刘启元, Kind R, 李顺成. 1996. 接收函数复谱比的最大或然性估计及非线性反演. 地球物理学报, 39(4): 500-511. doi: 10.3321/j.issn:0001-5733.1996.04.008 http://www.geophy.cn//CN/abstract/abstract4096.shtml

     

    刘仲兰, 李江海, 崔鑫等. 2018. 阿留申俯冲带几何学特征及运动学成因模式. 地质论评, 64(3): 543-550. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201803002.htm

     

    马宇岩, 盖增喜. 2018. 利用SS前驱波研究纳斯卡-南美俯冲带周边上地幔间断面起伏及其动力学意义. 北京大学学报自然科学版, 54(6): 1186-1194, doi:10.13209/j.0479-8023.2017.179.

     

    吴庆举, 曾融生. 1998. 用宽频带远震接收函数研究青藏高原的地壳结构. 地球物理学报, 41(5): 669-679. doi: 10.3321/j.issn:0001-5733.1998.05.010 http://www.geophy.cn//CN/abstract/abstract3915.shtml

     

    臧绍先. 1989. 俯冲带的穿透与地幔对流. 地球物理学进展, 4(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ198901000.htm

     

    臧绍先, 周元泽, 蒋志勇. 2003. 伊豆-小笠原地区地幔间断面的起伏及其意义. 中国科学(D辑), 33(3): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200303000.htm

     

    张瑞青, 李永华, 姚雪绒. 2006. 西北太平洋俯冲带东北地区壳幔结构研究进展. 地球物理学进展, 21(4): 1080-1085. doi: 10.3969/j.issn.1004-2903.2006.04.005

     

    张瑞青, 吴庆举, 李永华等. 2011. 藏西北地幔过渡带地震波速度结构研究. 中国科学: 地球科学, 41(5): 700-712. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105009.htm

     

    郑秀芬, 欧阳飚, 张东宁等. 2009. "国家数字测震台网数据备份中心"技术系统建设及其对汶川大地震研究的数据支撑. 地球物理学报, 52(5): 1412-1417, doi:10.3969/j.issn.0001-5733.2009.05.031. http://www.geophy.cn//CN/abstract/abstract1034.shtml

  • 加载中

(8)

(1)

计量
  • 文章访问数:  513
  • PDF下载数:  257
  • 施引文献:  0
出版历程
收稿日期:  2020-03-05
修回日期:  2020-08-19
上线日期:  2021-03-10

目录