多尺度孔隙岩石的核磁共振扩散耦合现象及其探测方法

田志. 2021. 多尺度孔隙岩石的核磁共振扩散耦合现象及其探测方法. 地球物理学报, 64(3): 1119-1130, doi: 10.6038/cjg2021O0081
引用本文: 田志. 2021. 多尺度孔隙岩石的核磁共振扩散耦合现象及其探测方法. 地球物理学报, 64(3): 1119-1130, doi: 10.6038/cjg2021O0081
TIAN Zhi. 2021. NMR diffusional coupling of multiple-scale porous rock and its detection. Chinese Journal of Geophysics (in Chinese), 64(3): 1119-1130, doi: 10.6038/cjg2021O0081
Citation: TIAN Zhi. 2021. NMR diffusional coupling of multiple-scale porous rock and its detection. Chinese Journal of Geophysics (in Chinese), 64(3): 1119-1130, doi: 10.6038/cjg2021O0081

多尺度孔隙岩石的核磁共振扩散耦合现象及其探测方法

  • 基金项目:

    国家科技重大专项"大型油气田及煤层气开发"子课题"渤海湾盆地北部油气富集规律与油气增储领域研究"(2016ZX05006-005)和中国石油天然气股份有限公司重大科技专项"辽河油田原油千万吨持续稳产关键技术研究"(2017E-16)联合资助

详细信息
    作者简介:

    田志, 男, 1992年生, 工程师, 主要从事岩石物理、油气地球物理勘探等方面研究. E-mail: tianzhicup@foxmail.com

  • 中图分类号: P631

NMR diffusional coupling of multiple-scale porous rock and its detection

  • 油藏岩石的孔隙连通性是反映流体渗流难易程度的重要参数,对渗透率、有效孔隙度等岩石物理参数的评价具有重要作用.连通的孔隙中,核磁共振(NMR)弛豫的交换会产生扩散耦合现象,可作为孔隙连通性的表征和探测方法.本文提出利用横向弛豫T2-T2脉冲序列测量岩石的扩散耦合现象.运用随机游走方法模拟多孔岩石的核磁共振响应特征,分析扩散耦合的影响因素,推导表征扩散耦合强度的弛豫交换速率计算公式.结果表明:孔隙间的扩散耦合强度与T2-T2脉冲序列的混合时间呈正相关性,基于双孔弛豫交换模型推导的弛豫交换速率计算公式能够准确表征双尺度孔隙系统的扩散耦合强度.在孔隙尺寸不满足快扩散条件时,会出现与扩散耦合无关的非对角峰信号.针对含多类型孔隙的碳酸盐岩模型,随混合时间的增加,扩散耦合强度变大,一维T2谱的形态畸变程度加重,在T2-T2二维谱中,代表微裂缝、粒间小孔、溶蚀大孔的信号能量变化趋势不同,反映不同类型孔隙间的连通性存在差异.本文的分析与讨论丰富了核磁共振弛豫在岩石物理性质评价中的应用方向,对利用核磁共振评价复杂孔隙岩石的孔隙结构和连通性提供了新思路和新方法.

  • 加载中
  • 图 1 

    T2-T2脉冲序列

    Figure 1. 

    T2-T2 pulse sequence

    图 2 

    T2-T2谱示意图

    Figure 2. 

    Sketch map of T2-T2 spectra

    图 3 

    μGC模型及其切片(黑色为孔隙,白色为骨架)

    Figure 3. 

    μGC model and its slice(black is pore. white is matrix)

    图 4 

    基于μGC模型的六组混合时间不同的T2(A)-T2(B)二维谱结果

    Figure 4. 

    T2-T2 maps of μGC model with different mixing time

    图 5 

    基于双孔弛豫交换模型的六组混合时间不同的T2(A)-T2(B)二维谱结果

    Figure 5. 

    T2-T2 maps of two-site model with different mixing time

    图 6 

    弛豫交换速率K的计算方法

    Figure 6. 

    Calculation of relaxation exchange rate K

    图 7 

    μGC模型二维峰值强度与混合时间之间的关系

    Figure 7. 

    The relationship between the 2D peak intensities and mixing time of μGC model

    图 8 

    扩散耦合通道关闭时的T2(A)-T2(B)二维谱

    Figure 8. 

    T2-T2 maps when the diffusional coupling channels closed

    图 9 

    不同混合时间的回波串信号对比

    Figure 9. 

    Comparison of echo train signals with different mixing time

    图 10 

    碳酸盐岩数字岩石模型

    Figure 10. 

    Digital rock model of carbonate rock

    图 11 

    碳酸盐岩数字岩心模型的四组混合时间不同的T2(A)-T2(B)二维谱结果

    Figure 11. 

    T2(A)-T2(B) maps of carbonate rock model with different mixing time

    图 12 

    碳酸盐岩模型二维非对角峰值强度与混合时间之间的关系

    Figure 12. 

    The relationship between the intensities of 2D non-diagonal peaks and mixing time of the carbonate rock model

    表 1 

    μGC模型参数设置

    Table 1. 

    Parameter settings of μGC model

    参数名称 参数设置
    大颗粒半径/μm 175
    小颗粒半径/μm 7.5
    粒间孔隙度/% 24.2
    粒内孔隙度/% 33.1
    总孔隙度/% 57.3
    D0/(μm2·s-1) 2.0×103
    ρ2/(μm·s-1) 10
    ρ1/(μm·s-1) 0
    下载: 导出CSV

    表 2 

    双孔弛豫交换模型参数设置

    Table 2. 

    Parameter settings of two-site model

    参数名称 参数设置
    VA/μm3 8.94×106
    VB/μm3 6.51×106
    R2A/s-1 6.20
    R2B/s-1 0.83
    R1A=R1B 0
    K/(μm3·s-1) 2.43×106
    下载: 导出CSV
  •  

    Anand V, Hirasaki G J. 2007. Diffusional coupling between micro and macroporosity for NMR relaxation in sandstones and grainstones. Petrophysics, 48(4): 289-307. http://www.researchgate.net/publication/286896867_Diffusional_Coupling_Between_Micro_And_Macroporosity_For_NMR_Relaxation_In_Sandstones_And_Grainstones1

     

    Anand V, Hirasaki G J, Fleury M. 2008. NMR diffusional coupling: effects of temperature and clay distribution. Petrophysics, 49(4): 362-372. http://www.researchgate.net/publication/241782862_NMR_Diffusional_Coupling_Effects_of_Temperature_And_Clay_Distribution1

     

    Bloch F. 1946. Nuclear induction. Physical Review, 70(7-8): 460-474. doi: 10.1103/PhysRev.70.460

     

    Cheng J J, Wu L, Song G P. 2014. A study of regulation inversion method in 2D NMR logging based on SVD and BRD. Chinese Journal of Geophysics (in Chinese), 57(10): 3453-3465, doi:10.6038/cjg20141031.

     

    Chi L, Heidari Z. 2015. Diffusional coupling between microfractures and pore structure and its impact on nuclear magnetic resonance measurements in multiple-porosity systems. Geophysics, 80(1): D31-D42. doi: 10.1190/geo2013-0467.1

     

    Coates G R, Xiao L Z, Prammer M G. 1999. NMR Logging Principles and Applications. Texas: Gulf Publishing Company.

     

    Codd S L, Vogt S J, Hornemann J A, et al. 2011. NMR relaxation measurements of biofouling in model and geological porous media. Organic Geochemistry, 42(8): 965-971. doi: 10.1016/j.orggeochem.2011.03.014

     

    Dang H L, Wang X F, Cui P X, et al. 2020. Research on the characteristics of spontaneous imbibition oil displacement with the low permeability tight-sandstone oil reservoir using the Nuclear Magnetic Resonance (NMR) technology. Progress in Geophysics (in Chinese), 35(5): 1759-1769, doi:10.6038/pg2020DD0441.

     

    Deng K J, Xie R H. 2010. NMR Logging Theory and Applications (in Chinese). Dongying: Press of China University of Petroleum.

     

    Fleury M, Soualem J. 2009. Quantitative analysis of diffusional pore coupling from T2-store-T2 NMR experiments. Journal of Colloid & Interface Science, 336(1): 250-259. http://europepmc.org/abstract/MED/19439315

     

    Guo J F, Xie R H, Zou Y L. 2016. Simulation of NMR responses in sandstone and restricted diffusion. Chinese Journal of Geophysics (in Chinese), 59(7): 2703-2712, doi:10.6038/cjg20160733.

     

    Johnson D L, Schwartz L M. 2014. Analytic theory of two-dimensional NMR in systems with coupled macro- and micro pores. Physical Review E, 90(3-1): 032407. http://www.ncbi.nlm.nih.gov/pubmed/25314457

     

    Lee J H, Labadie C, Springer C S Jr, et al. 1993. Two-dimensional inverse Laplace transform NMR: altered relaxation times allow detection of exchange correlation. Journal of the American Chemical Society, 115(17): 7761-7764. doi: 10.1021/ja00070a022

     

    Liang C, Xiao L Z, Zhou C C, et al. 2019. Two-dimensional nuclear magnetic resonance method for wettability determination of tight sand. Magnetic Resonance Imaging, 56: 144-150. doi: 10.1016/j.mri.2018.09.020

     

    McConnell H M. 1958. Reaction rates by nuclear magnetic resonance. Journal of Chemical Physics, 28(3): 430-431. doi: 10.1063/1.1744152

     

    McDonald P J, Korb J P, Mitchell J, et al. 2005. Surface relaxation and chemical exchange in hydrating cement pastes: a two-dimensional NMR relaxation study. Physical Review E, 72(1): 011409. doi: 10.1103/PhysRevE.72.011409

     

    Ramakrishnan T S, Schwartz L M, Fordham E J, et al. 1999. Forward models for nuclear magnetic resonance in carbonate rocks. Log Analyst, 40(4): 260-270. http://ci.nii.ac.jp/naid/10005375807

     

    Schwartz L M. 1990. Modeling transport in granular porous media.//SPWLA 31st Annual Logging Symposium Transactions. Lafayette, Louisiana: Society of Petrophysicists and Well-Log Analysts.

     

    Schwartz L M, Johnson D L, Mitchell J, et al. 2013. Modeling two-dimensional magnetic resonance measurements in coupled pore systems. Physical Review E, 88(3): 032813. doi: 10.1103/PhysRevE.88.032813

     

    Song R B, Song Y Q, Vembusubramanian M, et al. 2016. The robust identification of exchange from T2-T2 time-domain features. Journal of Magnetic Resonance, 265: 164-171. doi: 10.1016/j.jmr.2016.02.001

     

    Song Y Q, Ryu S, Sen P N. 2000. Determining multiple length scales in rocks. Nature, 406(6792): 178-181. doi: 10.1038/35018057

     

    Tian Z, Xiao L Z, Liao G Z, et al. 2019. Study on digital rock reconstruction method based on sedimentological process. Chinese Journal of Geophysics (in Chinese), 62(1): 248-259, doi:10.6038/cjg2019L0457.

     

    Torrey H C. 1956. Bloch equations with diffusion terms. Physical Review, 104(3): 563-565. doi: 10.1103/PhysRev.104.563

     

    Toumelin E, Torres-Verdín C, Sun B Q, et al. 2007. Random-walk technique for simulating NMR measurements and 2D NMR maps of porous media with relaxing and permeable boundaries. Journal of Magnetic Resonance, 188(1): 83-96. doi: 10.1016/j.jmr.2007.05.024

     

    van Landeghem M, Haber A, De Lacaillerie J B D, et al. 2010. Analysis of multisite 2D relaxation exchange NMR. Concepts in Magnetic Resonance Part A, 36(3): 153-169. http://onlinelibrary.wiley.com/doi/full/10.1002/cmr.a.20157

     

    Wang D, Chen M, Wang J W, et al. 2019. New method of permeability calculation based on classification conversion of T2 spectrum and capillary pressure curves. Progress in Geophysics (in Chinese), 34(5): 1900-1909, doi:10.6038/pg2019CC0280.

     

    Wang J, Xiao L Z, Liao G Z, et al. 2018. Theoretical investigation of heterogeneous wettability in porous media using NMR. Scientific Reports, 8: 13450. doi: 10.1038/s41598-018-31803-w

     

    Wang X Z, Zhao X S, Dang H L, et al. 2020. Research on the characteristics of spontaneous imbibition and displacement of the tight reservoir with the NMR method. Progress in Geophysics (in Chinese), 35(5): 1870-1877, doi:10.6038/pg2020DD0386.

     

    Washburn K E, Callaghan P T. 2006. Tracking pore to pore exchange using relaxation exchange spectroscopy. Physical Review Letters, 97(17): 175502. doi: 10.1103/PhysRevLett.97.175502

     

    Yu Z, Zhang Y, Xiao L Z, et al. 2019. Characterization of porous media by T2-T2 correlation beyond fast diffusion limit. Magnetic Resonance Imaging, 56: 19-23. doi: 10.1016/j.mri.2018.10.008

     

    Zhang Y, Xiao L Z, Liao G Z. 2018. Spatially resolved pore-size-T2 correlations for low-field NMR. Microporous & Mesoporous Materials, 269: 142-147. http://www.sciencedirect.com/science/article/pii/S1387181117303529

     

    Zimmerman J R, Brittin W E. 1957. Nuclear magnetic resonance studies in multiple phase systems: lifetime of a water molecule in an adsorbing phase on silica gel. Journal of Physical Chemistry, 61(10): 1328-1333. doi: 10.1021/j150556a015

     

    Zou Y L, Xie R H, Guo J F, et al. 2015. Reconstruction of digital core of tight reservoir and simulation of NMR response. Journal of China University of Petroleum (Edition of Natural Science) (in Chinese), 39(6): 63-71. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201506008.htm

     

    程晶晶, 吴磊, 宋公仆. 2014. 基于SVD和BRD的二维核磁共振测井正则化反演算法研究. 地球物理学报, 57(10): 3453-3465, doi:10.6038/cjg20141031.

     

    党海龙, 王小锋, 崔鹏兴等. 2020. 基于核磁共振技术的低渗透致密砂岩油藏渗吸驱油特征研究. 地球物理学进展, 35(5): 1759-1769, doi:10.6038/pg2020DD0441.

     

    邓克俊, 谢然红. 2010. 核磁共振测井理论及应用. 东营: 中国石油大学出版社.

     

    郭江峰, 谢然红, 邹友龙. 2016. 砂岩核磁共振响应模拟及受限扩散. 地球物理学报, 59(7): 2703-2712, doi:10.6038/cjg20160733.

     

    田志, 肖立志, 廖广志等. 2019. 基于沉积过程的数字岩石建模方法研究. 地球物理学报, 62(1): 248-259, doi:10.6038/cjg2019L0457.

     

    王迪, 陈敏, 王健伟等. 2019. 基于T2和毛管压力分类转换的渗透率计算新方法. 地球物理学进展, 34(5): 1900-1909, doi:10.6038/pg2019CC0280.

     

    王香增, 赵习森, 党海龙等. 2020. 基于核磁共振的致密油藏自发渗吸及驱替特征研究. 地球物理学进展, 35(5): 1870-1877, doi:10.6038/pg2020DD0386.

     

    邹友龙, 谢然红, 郭江峰等. 2015. 致密储层数字岩心重构及核磁共振响应模拟. 中国石油大学学报(自然科学版), 39(6): 63-71. doi: 10.3969/j.issn.1673-5005.2015.06.008

  • 加载中

(12)

(2)

计量
  • 文章访问数:  555
  • PDF下载数:  238
  • 施引文献:  0
出版历程
收稿日期:  2020-03-05
修回日期:  2020-12-31
上线日期:  2021-03-10

目录