被动源面波和体波成像在内蒙古浅覆盖区勘探应用

刘国峰, 刘语, 孟小红, 刘澜波, 苏维俊, 王永志, 张致付. 2021. 被动源面波和体波成像在内蒙古浅覆盖区勘探应用. 地球物理学报, 64(3): 937-948, doi: 10.6038/cjg2021O0064
引用本文: 刘国峰, 刘语, 孟小红, 刘澜波, 苏维俊, 王永志, 张致付. 2021. 被动源面波和体波成像在内蒙古浅覆盖区勘探应用. 地球物理学报, 64(3): 937-948, doi: 10.6038/cjg2021O0064
LIU GuoFeng, LIU Yu, MENG XiaoHong, LIU LanBo, SU WeiJun, WANG YongZhi, ZHANG ZhiFu. 2021. Surface wave and body wave imaging of passive seismic exploration in shallow coverage area application of Inner Mongolia. Chinese Journal of Geophysics (in Chinese), 64(3): 937-948, doi: 10.6038/cjg2021O0064
Citation: LIU GuoFeng, LIU Yu, MENG XiaoHong, LIU LanBo, SU WeiJun, WANG YongZhi, ZHANG ZhiFu. 2021. Surface wave and body wave imaging of passive seismic exploration in shallow coverage area application of Inner Mongolia. Chinese Journal of Geophysics (in Chinese), 64(3): 937-948, doi: 10.6038/cjg2021O0064

被动源面波和体波成像在内蒙古浅覆盖区勘探应用

  • 基金项目:

    国家自然科学基金项目"浅覆盖区岩浆热液型矿产勘查地球物理响应研究"(41974161)和"被动源地震勘探反射波成像及其在闽西南矿区立体探测中的应用"(42074131)共同资助

详细信息
    作者简介:

    刘国峰, 男, 1981年生, 博士, 教授, 主要从事地震波传播和金属矿地震勘探研究.E-mail: liugf@cugb.edu.cn

    通讯作者: 孟小红, 女, 教授, 博导, 主要从事重磁反演、矿产勘探综合地球物理应用研究.E-mail: mxh@cugb.edu.cn
  • 中图分类号: P631

Surface wave and body wave imaging of passive seismic exploration in shallow coverage area application of Inner Mongolia

More Information
  • 地震勘探具有勘探深度和分辨率的优势,在矿产勘探中多被采用.但主动源反射地震具有成本高、在矿区采集困难等难题,限制了其广泛应用.无需主动源激发、利用天然噪声的被动源地震应用于勘探,可成为其低成本替代选项.本文在内蒙古浅覆盖区矿区进行了被动源勘探试验,采用相关计算获得拟炮集记录,并基于频率域信噪比计算,在生成拟炮集前实现了面波和体波甄选,分离了面波和体波.应用面波反演的横波速剖面识别了覆盖层厚度.体波数据经反射波常规处理,获得了成像剖面.经与主动源反射剖面对比,主要结构的反射特征呈现了良好的一致性.本文试验验证了被动源勘探在内蒙浅覆盖区具有良好应用前景,为低成本的面积性勘探实施提供了新的选择.

  • 加载中
  • 图 1 

    被动源记录相干计算生成拟炮集记录示意图

    Figure 1. 

    Schematic diagram of cross-coherent calculation of passive seismic records to generate virtual-shot records

    图 2 

    含有三个层位的模型,其中8000个震源随机分布

    Figure 2. 

    A model with 3 layers, there are 8000 random sources in the model

    图 3 

    正演获得的随机噪声记录以及生成的拟炮集记录

    Figure 3. 

    The random noise obtained by forward modeling and the generated virtual shot gather

    图 4 

    数据采集区域位置图,图中红线为本次被动源采集的2 km测线

    Figure 4. 

    Position of the passive seismic line. The red line is our 2 km length passive seismic line

    图 5 

    某路边检波器记录的两天的被动源记录

    Figure 5. 

    Two days of passive seismic records by a roadside receiver

    图 6 

    被动源信号不同频率成分的功率密度谱特征

    Figure 6. 

    Power density spectrum characteristics of different frequency components of passive seismic signal

    图 7 

    频率域计算信噪比参考图

    Figure 7. 

    Spectrum for signal-to-noise ratio calculation in frequency domain

    图 8 

    频率域分离计算后的拟炮集记录

    Figure 8. 

    Virtual shot gathers after frequency domain separation calculation

    图 9 

    面波炮集记录及其频散图

    Figure 9. 

    Shot gather with surface wave and its frequency-velocity spectrum

    图 10 

    面波反演的横波速度模型

    Figure 10. 

    Inverted shear wave velocity model with the surface wave

    图 11 

    拟炮集记录覆盖次数图

    Figure 11. 

    Fold number of the virtual shot gathers

    图 12 

    被动源反射信号速度分析和局部叠加

    Figure 12. 

    Reflection velocity analysis and local stack for passive seismic data

    图 13 

    被动源(a)和主动源(b)反射波叠加剖面对比

    Figure 13. 

    Stack sections of (a) passive seismic and (b) active seismic for reflections

    表 1 

    被动源生成的拟单炮记录观测系统主要参数

    Table 1. 

    The main geometry parameters of the virtual shot gathers from passive seismic

    参数 参数
    记录长度 5 s 炮点距 20 m
    采样间隔 1 ms 检波点距 20 m
    总炮数 100 最大覆盖次数 100
    每炮道数 100 CMP范围 1~198
    最小炮检距 0 m 最大炮检距 2000 m
    下载: 导出CSV
  •  

    Bostock M G, Rondenay S, Shragge J. 2001. Multiparameter two-dimensional inversion of scattered teleseismic body waves: 1. Theory for oblique incidence. Journal of Geophysical Research: Solid Earth, 106(B12): 30771-30782. doi: 10.1029/2001JB000330

     

    Boullenger B, Verdel A, Paap B, et al. 2015. Studying CO2 storage with ambient-noise seismic interferometry: A combined numerical feasibility study and field-data example for Ketzin, Germany. Geophysics, 80(1): Q1-Q13. doi: 10.1190/geo2014-0181.1

     

    Cheraghi S, Craven A J, Bellefleur G. 2015. Feasibility of virtual source reflection seismology using interferometry for mineral exploration: A test study in the Lalor Lake volcanogenic massive sulphide mining area, Manitoba, Canada. Geophysical Prospecting, 63(4): 833-848. doi: 10.1111/1365-2478.12244

     

    Cheraghi S, White D J, Draganov D, et al. 2017. Passive seismic reflection interferometry: A case study from the Aquistore CO2 storage site, Saskatchewan, Canada. Geophysics, 82(3): B79-B93. doi: 10.1190/geo2016-0370.1

     

    Cole S P. 1995. Passive seismic and drill-bit experiments using 2-D arrays[Ph. D. thesis]. Stanford: Stanford University.

     

    Draganov D, Campman X, Thorbecke J, et al. 2009. Reflection images from ambient seismic noise. Geophysics, 74(5): A63-A67. doi: 10.1190/1.3193529

     

    Draganov D, Campman X, Thorbecke J, et al. 2013. Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz). Journal of Geophysical Research: Solid Earth, 118(8): 4345-4360. doi: 10.1002/jgrb.50339

     

    Girard A G, Shragge J. 2019a. Automated processing strategies for ambient seismic data. Geophysical Prospecting, 68(1): 293-312. http://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.12794

     

    Girard A G, Shragge J. 2019b. Direct migration of ambient seismic data. Geophysical Prospecting, 68(1): 270-292. http://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2478.12792

     

    Lü Q T, Zhang X P, Tang J T, et al. 2019. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China. Chinese Journal of Geophysics (in Chinese), 62(10): 3629-3664, doi:10.6038/cjg2019N0056.

     

    Moschetti M P, Ritzwoller M H, Shapiro N M. 2007. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems, 8(8): Q08010, doi:10.1029/2007GC001655.

     

    Olivier G, Brenguier F, Campillo M, et al. 2015. Body-wave reconstruction from ambient seismic noise correlations in an underground mine. Geophysics, 80(3): KS11-KS25. doi: 10.1190/geo2014-0299.1

     

    Rickett J, Claerbout J. 1999. Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring. The Leading Edge, 18(8): 957-960. doi: 10.1190/1.1438420

     

    Roots E, Calvert A J, Craven J. 2017. Interferometric seismic imaging around the active Labor mine in the Flin Flon greenstone belt, Canada. Tectonophysics, 718: 92-104. doi: 10.1016/j.tecto.2017.04.024

     

    Schuster G T. 2001. Theory of daylight/interferometric imaging-Tutorial.//71st Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, A32.

     

    Schuster G T, Yu J, Sheng J, et al. 2004. Interferometric/daylight seismic imaging. Geophysical Journal International, 157(2): 838-852. doi: 10.1111/j.1365-246X.2004.02251.x

     

    Schuster G T, Zhou M. 2006. A theoretical overview of model-based and correlation-based redatuming methods. Geophysics, 71(4): SI103-SI110. doi: 10.1190/1.2208967

     

    Shi Z L, Huang Y L, Li J, et al. 2019. Status and development trend of onshore seismic nodal instrument. Petroleum Tubular Goods & Instruments (in Chinese), 15(1): 14-18. http://en.cnki.com.cn/Article_en/CJFDTotal-SYYQ201901003.htm

     

    Thorbecke J W, Draganov D. 2011. Finite-difference modeling experiments for seismic interferometry. Geophysics, 76(6): H1-H18. doi: 10.1190/geo2010-0039.1

     

    Vidal C A, Van Der Neut J, Draganov D, et al. 2011. Retrieval of reflections from ambient-noise field data using illumination diagnostics.//81st Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 1613-1617.

     

    Wang S, Sun X L, Qin J L, et al. 2018. Fine fault structure of Xinfengjiang water reservoir area from high-frequency ambient noise tomography. Chinese Journal of Geophysics (in Chinese), 61(2): 593-603, doi:10.6038/cjg2018L0434.

     

    Wang S, Sun X L, Liu L B, et al. 2020. Sub-surface structures and site effects extracted from ambient noise in metropolitan Guangzhou, China. Engineering Geology, 268: 105526. doi: 10.1016/j.enggeo.2020.105526

     

    Wapenaar K, Fokkema J. 2006. Green's function representations for seismic interferometry. Geophysics, 71: SI33-SI46. doi: 10.1190/1.2213955

     

    Wapenaar K. 2006. Green's function retrieval by cross-correlation in case of one-sided illumination. Geophysical Research Letters, 33(19): L19304, doi:10.1029/2006GL027747.

     

    Wapenaar K, Draganov D, Snieder R, et al. 2010. Tutorial on seismic interferometry: Part 1-Basic principles and applications. Geophysics, 75(5): 75A195-75A209. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=GPYSA700007500000575A195000001&idtype=cvips&gifs=Yes

     

    Weaver R L, Lobkis O I. 2001. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies. Physical Review Letters, 87(13): 134301. doi: 10.1103/PhysRevLett.87.134301

     

    Weaver R L, Lobkis O I. 2002. On the emergence of the Green's function in the correlations of a diffuse field: Pulse-echo using thermal phonons. Ultrasonics, 40: 435-439. doi: 10.1016/S0041-624X(02)00156-7

     

    Xu Z, Juhlin C, Gudmundsson O, et al. 2012. Reconstruction of subsurface structure from ambient seismic noise: an example from Ketzin, Germany. Geophysical Journal International, 189(2): 1085-1102. doi: 10.1111/j.1365-246X.2012.05411.x

     

    Yan H W, Liu J, Tian Y. 2017. Magnetic characteristics and airborne radioactive anomaly characteristics of the shallow coverage in Baiyintuga area in Inner Mongolia. Modern Mining (in Chinese), (3): 35-39, 45. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYKB201703006.htm

     

    Yu D X, Wu Q J, Wang P, et al. 2016. Love wave phase velocity tomography in the south-central Mongolia from earthquakes. Acta Seismologica Sinica (in Chinese), 38(1): 41-52. http://www.researchgate.net/publication/298695952_Love_wave_phase_velocity_tomography_in_the_south-central_Mongolia_from_earthquakes

     

    Zhang J H, Zang S T, Zhou Z X, et al. 2009. Quantitative computation and comparison of S/N ratio in seismic data. Oil Geophysical Prospecting (in Chinese), 44(4): 481-486. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ200904021.htm

     

    Zhang P, Han L G, Liu Q, et al. 2015. Interpolation of seismic data from active and passive sources and their joint migration imaging. Chinese Journal of Geophysics (in Chinese), 58(5): 1754-1766, doi:10.6038/cjg20150525.

     

    Zhao D, Wang G J, Wang G T, et al. 1995. The application of genetic algorithm to Rayleigh wave inversion. Geophysical & Geochemical Exploration (in Chinese), 19(3): 178-186. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH503.002.htm

     

    Zhu H, Wang D L, Shi Z A, et al. 2012. Passive seismic imaging of seismic interferometry. Progress in Geophysics (in Chinese), 27(2): 496-502, doi:10.6038/j.issn.1004-2903.2012.02.012.

     

    吕庆田, 张晓培, 汤井田等. 2019. 金属矿地球物理勘探技术与设备: 回顾与进展. 地球物理学报, 62(10): 3629-3664, doi:10.6038/cjg2019N0056. http://www.geophy.cn//CN/abstract/abstract15177.shtml

     

    史子乐, 黄艳林, 李静等. 2019. 陆上地震数据采集节点设备现状与发展. 石油管材与仪器, 5(1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYQ201901003.htm

     

    王爽, 孙新蕾, 秦加岭等. 2018. 利用密集地震台网高频环境噪声研究广东新丰江库区浅层地下结构. 地球物理学报, 61(2): 593-603, doi:10.6038/cjg2018L0434. http://www.geophy.cn//CN/abstract/abstract14358.shtml

     

    严昊伟, 刘君, 田野. 2017. 内蒙古白音图嘎浅覆盖区地层磁性及航空放射性异常特征. 现代矿业, (3): 35-39, 45. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201703006.htm

     

    余大新, 吴庆举, 王鹏等. 2016. 蒙古中南部地区基于天然地震的勒夫波相速度层析成像. 地震学报, 38(1): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201601004.htm

     

    张军华, 藏胜涛, 周振晓等. 2009. 地震资料信噪比定量计算及方法比较. 石油地球物理勘探, 44(4): 481-486. doi: 10.3321/j.issn:1000-7210.2009.04.018

     

    张盼, 韩立国, 刘强等. 2015. 主动源与被动源地震数据插值及联合数据成像. 地球物理学报, 58(5): 1754-1766, doi:10.6038/cjg20150525. http://www.geophy.cn//CN/abstract/abstract11505.shtml

     

    赵东, 王光杰, 王光泰等. 1995. 用遗传算法进行瑞利波反演. 物探与化探, 19(3): 178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH503.002.htm

     

    朱恒, 王德利, 时志安等. 2012. 地震干涉技术被动源地震成像. 地球物理学进展, 27(2): 496-502, doi:10.6038/j.issn.1004-2903.2012.02.012.

  • 加载中

(13)

(1)

计量
  • 文章访问数:  788
  • PDF下载数:  499
  • 施引文献:  0
出版历程
收稿日期:  2020-02-25
修回日期:  2020-10-06
上线日期:  2021-03-10

目录