大气边界层研究进展

车军辉, 赵平, 史茜, 杨秋彦. 2021. 大气边界层研究进展. 地球物理学报, 64(3): 735-751, doi: 10.6038/cjg2021O0057
引用本文: 车军辉, 赵平, 史茜, 杨秋彦. 2021. 大气边界层研究进展. 地球物理学报, 64(3): 735-751, doi: 10.6038/cjg2021O0057
CHE JunHui, ZHAO Ping, SHI Qian, YANG QiuYan. 2021. Research progress in atmospheric boundary layer. Chinese Journal of Geophysics (in Chinese), 64(3): 735-751, doi: 10.6038/cjg2021O0057
Citation: CHE JunHui, ZHAO Ping, SHI Qian, YANG QiuYan. 2021. Research progress in atmospheric boundary layer. Chinese Journal of Geophysics (in Chinese), 64(3): 735-751, doi: 10.6038/cjg2021O0057

大气边界层研究进展

  • 基金项目:

    国家重点研发计划项目"青藏高原地-气相互作用及其对下游天气气候的影响"(2018YFC1505700)和财政部/科技部公益性行业(气象)科研专项"第三次青藏高原科学试验——边界层与对流层观测"(GYHY201406001)联合资助

详细信息
    作者简介:

    车军辉, 博士研究生, 主要从事青藏高原气象学研究.E-mail: chejunhui9@163.com

    通讯作者: 赵平, 研究员, 主要从事青藏高原气象学和季风研究.E-mail: zhaop@cma.gov.cn
  • 中图分类号: P404

Research progress in atmospheric boundary layer

More Information
  • 大气边界层对云和对流的发展、演变有重要作用.本文回顾了在大气边界层高度计算方法,边界层的时空分布特征、结构和发展机理,以及边界层参数化方案等方面的主要研究进展.大气边界层高度计算方法主要分为基于大气廓线观测数据计算和基于模式参数化方案计算两大类;大气边界层高度频率分布形态具有明显的日变化特征,并且稳定、中性和对流边界层高度的频率分布呈现出不同的Gamma分布特征;地面湿度状况对边界层发展影响明显,对于不同的下垫面热力性质和地形状况,大气边界层高度呈现出明显的空间差异,青藏高原边界层高度明显高于一般平原地区;在强烈的地面加热驱动下,对流边界层与残余层通过正反馈机制循环增长可以形成4000 m以上的超高大气边界层;研制大气边界层、浅对流以及云物理方案的统一参数化框架是未来数值预报模式的发展趋势.

  • 加载中
  • 图 1 

    大气边界层研究进展的示意图

    Figure 1. 

    Schematic diagram of the research progress in atmospheric boundary layer (ABL)

    图 2 

    陆地上高压区的大气边界层结构(对“ http://www.zhihu.com/question/21763748/answer/31231125”图进行了修改)

    Figure 2. 

    The structure of the atmospheric boundary layer in a high pressure region over land (a modification of http://www.zhihu.com/question/21763748/answer/31231125)

    图 3 

    (a) 中国2011年1月—2015年7月夏季02时(BJT;黑线)、08时(红线)、14时(蓝线)和20时(绿线)大气边界层高度的发生频率以及每个时刻的探空样本数(N)和边界层高度平均值(Guo et al., 2016);(b) 美国稳定(stable)、中性(neutral)和不稳定(unstable)三类边界层高度的发生频率,括号内数字为各类边界层观测的样本数,平滑曲线为拟合的各类边界层高度频率Gamma分布曲线,(ks)表示Gamma分布参数值(Liu and Liang, 2010)

    Figure 3. 

    (a) Frequency distribution of the ABL height at 02∶00 BJT (black), 08∶00 BJT (red), 14∶00 BJT (blue), and 20:00 BJT (green) during the summertime from January 2011 to July 2015 in China, in which the number of soundings (N) and the mean value at each observed time are given (Guo et al., 2016); and (b) frequency distribution of the stable boundary layer (stable), neutral boundary layer (neutral), and unstable boundary layer (unstable) heights in United States, in which the sample number is listed in the legend in parentheses, and a smooth curve is drawn for the fitting Gamma distribution with the specified values of parameters (k, s) (Liu and Liang, 2010)

    图 4 

    (a) 夏季平均的美国地区00时(UTC)(Seidel et al., 2012)和中国地区(b)08时、(c)14时、(d)20时(BJT)(Guo et al., 2016)ERA-Interim再分析(彩色阴影)和实测(彩色圆点)边界层高度的空间分布, 对图(b)—(d)进行了修改

    Figure 4. 

    Spatial distributions of summer mean ABL heights from the ERA-Interim reanalysis (color shaded) and sounding observation (color dots) at (a) 00∶00 UTC in United States (Seidel et al., 2012), and at (b) 08∶00 BJT, (c) 14∶00 BJT, and (d) 20∶00 BJT in China (Guo et al., 2016), a modification of figure (b)—(d)

    图 5 

    青藏高原改则站2008年2月25日不同时刻(a)温度、(b)位温、(c)风速、(d)比湿廓线,廓线采样时间分别为01时(BJT;黑线)、07时(红线)、13时(蓝线)和19时(紫线),各颜色水平虚线表示相应时刻的对流边界层顶,各颜色水平实线表示相应时刻的对流层顶,SL、RL、ML分别表示稳定层、残余层和混合层(Chen et al., 2013)

    Figure 5. 

    Profiles of (a) temperature, (b) potential temperature, (c) wind speed, (d) water vapor content at Gaize station of the Tibetan Plateau on 25 Feb 2008. Profiles were recorded at 01∶00 BJT (dark line), 07∶00 BJT (red line), 13∶00 BJT (blue line), and 19∶00 BJT (magenta line). The horizontal dashed lines are for the tops of the convective boundary layer and horizontal solid lines are for the positions of the tropopause. The stable layer (SL), residual layer (RL), and mixed layer (ML) are also marked (Chen et al., 2013)

    图 6 

    对流边界层厚度与实时感热通量(a)和累积感热通量(b)的关系(张强等,2019)

    Figure 6. 

    Relationship between the convective boundary layer thickness and the real-time (a) and cumulative sensible heat fluxes (b)(Zhang et al., 2019)

    图 7 

    残余层夹卷能量计算方法的示意图,线段AB表示无残余层时的理想逆位温廓线(张强等,2019)

    Figure 7. 

    Schematic diagram of calculation method for entrainment energy in residual layer. The AB line represents the ideal inverted potential temperature profile without residual layer (Zhang et al., 2019)

    图 8 

    2006年6月28日西北干旱区(a)感热、潜热日变化,(b)浮力夹卷热通量日变化,(c)热力数值模型模拟的对流边界层高度日变化,(d)浮力夹卷引入后热力数值模型模拟的对流边界层高度日变化(赵建华等,2011)

    Figure 8. 

    Diurnal variations of (a) sensible and latent heat fluxes, (b) buoyancy entrainment, and convective boundary layer height simulated by the thermal numerical model (c) without and (d) with the buoyancy entrainment in the drought region of northwestern China on 28 June 2006 (Zhao et al., 2011)

    图 9 

    模拟的波多黎各圣胡安(San Juan, Puerto Rico;18.3°N, 66°W)7月平均(a)温度、(b)比湿、(c)湍流输送系数、(d)比湿通量和(e)比湿倾向廓线.虚线表示局地边界层方案(Local)模拟结果,实线为非局地边界层方案(Nonlocal) 模拟结果.(a)和(b)给出了探空观测结果(带点水平杆)(Holtslag and Boville, 1993)

    Figure 9. 

    The simulated profiles of July mean temperature (a), specific humidity (b), turbulence transfer coefficient (c), specific humidity flux (d), and specific humidity tendency (e) in a grid point near San Juan, Puerto Rico (18.3°N, 66°W). Solid lines are for the local diffusion scheme, and dashed lines are for the nonlocal diffusion scheme. In (a) and (b) radiosonde observational results are also given (dots with horizontal bars) (Holtslag and Boville, 1993)

    表 1 

    计算大气边界层高度的观测平台及性能(Seibert et al., 2000)

    Table 1. 

    Measuring platforms and their performances for the ABL height determination (Seibert et al., 2000)

    方法 优势 缺点
    直接观测平台 无线电探空 长期观测,资料连续,可用于气候尺度研究
    通信网络传输延时短,便于业务应用
    与自由大气观测兼容
    几分钟内倾斜上升穿过边界层
    每天固定时刻探测,时间分辨率低
    空间漂移大,影响测风精度
    系留气球 可改变上升速度调控垂直分辨率
    能够观测湍流和痕量气体浓度
    限于野外试验,观测高度低于500 m
    大风和强对流天气时无法工作
    气象铁塔 可长时间连续观测,低层垂直分辨率高
    可以加载多种传感器设备,实现气象、化学和湍流观测
    成本较高
    探测高度一般在50~300 m
    遥感观测平台 飞机观测 时间、空间分辨率高,满足中小尺度研究
    可以加载多种传感器设备,实现气象、化学和湍流观测
    成本较高,一般用于野外试验
    一般在白天探测
    受天气条件、航线限制
    多普勒天气/风廓线雷达 可应用地基和机载等多种平台
    RHI/PPI体扫模式可获取三维空间信息
    采样率高,能够持续运行
    最低探测高度高于200 m
    垂直分辨率低(50~250 m)
    成本较高,晴空时无法有效探测
    探测风速分量,结果难于精确解释
    激光雷达 可应用地基和机载等多种平台
    RHI/PPI体扫模式可获取三维空间信息
    采样率高,直接探测气溶胶(污染物)信息
    成本较高,因安全因素难于无人值守
    空间分辨率低,需要大气有颗粒物存在
    物质聚积层与湍流边界层不等价,探测结果难于精确解释
    声雷达 操作简便、经济适用,可无人长期运行
    时间和垂直空间分辨率高
    小型雷达可以探测浅薄的稳定边界层
    有限的探测距离(500~1000 m)
    噪声污染
    探测结果易受干扰,难于精确解释
    下载: 导出CSV

    表 2 

    基于廓线数据的大气边界层高度计算方法(Seidel et al., 2010)

    Table 2. 

    Calculation methods of the ABL height with vertical profile data (Seidel et al., 2010)

    名称 方法
    气块法 虚位温廓线第一次与地面虚位温相等的位置
    位温梯度法 位温梯度最大的位置
    比湿梯度法 比湿梯度最小的位置
    相对湿度梯度法 相对湿度梯度最小的位置
    N梯度法 大气折射率(N)梯度最小的位置
    盖顶逆温层法 盖顶逆温层的底部
    贴地逆温层法 贴地逆温层的顶部
    下载: 导出CSV

    表 3 

    基于探空数据计算的超高对流边界层高度

    Table 3. 

    Radiosonde-retrieved heights of super deep convective boundary layer

    参考文献 测站位置 月份 站点高度(km) 边界层高度(km) 备注
    Chen等(2013) 青藏高原改则
    (32.17°N, 80.03°E)
    2 4.4 5.0 冬季
    Gamo(1996) 非洲和亚洲沙漠 7 1.1 4.0~6.0 夏季
    Cuesta等(2008) 撒哈拉沙漠(22.79°N, 5.53°E) 6 1.1 6.0 夏季
    张强等(2004) 西北戈壁沙漠
    (40.17N°, 94.52°E)
    7 1.1 4.0 夏季
    Takemi和Satomura(2000) 银川半荒漠区
    (38.49°N, 106.24°)
    5 1.1 4.0 春季
    Raman等(1990) 印度新德里
    (28.43°N, 77.18°E)
    6 0.2 4.7 季风前
    李茂善等(2011) 那曲
    (31.37°N, 91.90°E)
    4 4.5 4.4 春季
    杨洋等(2016) 新疆博湖流域戈壁地区
    (41.17°N, 85.33°E)
    6 1.1 4.4 夏季
    下载: 导出CSV
  •  

    Ao C O, Waliser D E, Chan S K, et al. 2012. Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. Journal of Geophysical Research: Atmospheres, 117(D16): D16117, doi:10.1029/2012JD017598.

     

    Baklanov A A, Grisogono B, Bornstein R, et al. 2011. The nature, theory, and modeling of atmospheric planetary boundary layers. Bulletin of the American Meteorological Society, 92(2): 123-128, doi:10.1175/2010BAMS2797.1.

     

    Betts A K, Ball J H, Beljaars A C M, et al. 1996. The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. Journal of Geophysical Research: Atmospheres, 101(D3): 7209-7225, doi:10.1029/95jd02135.

     

    Betts A K, Viterbo P, Beljaars A, et al. 1998. Evaluation of land-surface interaction in ECMWF and NCEP/NCAR reanalysis models over grassland (FIFE) and boreal forest (BOREAS). Journal of Geophysical Research: Atmospheres, 103(D18): 23079-23085, doi:10.1029/98jd02023.

     

    Beyrich F. 1997. Mixing height estimation from sodar data-a critical discussion. Atmospheric Environment, 31(23): 3941-3953, doi:10.1016/s1352-2310(97)00231-8.

     

    Blay-Carreras E, Pino D, De Arellano J V, et al. 2014. Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer. Atmospheric Chemistry and Physics, 14(9): 4515-4530, doi:10.5194/acp-14-4515-2014.

     

    Bogenschutz P A, Gettelman A, Morrison H, et al. 2013. Higher-order turbulence closure and its impact on climate simulations in the community atmosphere model. Journal of Climate, 26(23): 9655-9676, doi:10.1175/jcli-d-13-00075.1.

     

    Bradley R S, Keimig F T, Diaz H F. 1993. Recent changes in the North American Arctic boundary layer in winter. Journal of Geophysical Research: Atmospheres, 98(D5): 8851-8858, doi:10.1029/93JD00311.

     

    Bretherton C S, Park S. 2009. A new moist turbulence parameterization in the community atmosphere model. Journal of Climate, 22(12): 3422-3448, doi:10.1175/2008JCLI2556.1.

     

    Chen X L, Ma Y M, Hu Z Y, et al. 2010. Analysis of atmospheric structure in Gaize Region of western Tibetan Plateau during pre-onset and onset of monsoon. Chinese Journal of Atmospheric Sciences (in Chinese), 34(1): 83-94, doi:10.3878/j.issn.1006-9895.2010.01.08.

     

    Chen X L, Añel J A, Su Z B, et al. 2013. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau. PLoS One, 8(2): e56909, doi:10.1371/journal.pone.0056909.

     

    Chen X L, Škerlak B, Rotach M W, et al. 2016. Reasons for the extremely high-ranging planetary boundary layer over the Western Tibetan Plateau in winter. Journal of the Atmospheric Sciences, 73(5): 2021-2038, doi:10.1175/jas-d-15-0148.1.

     

    Clarke R H, Dyer A J, Brook R R, et al. 1971. The Wangara experiment: Boundary-layer data, Technical paper No. 19. Division of Meteorological Physics. Australia: CSIRO.

     

    Collier C G, Davies F, Bozier K E, et al. 2005. Dual-Doppler lidar measurements for improving dispersion models. Bulletin of the American Meteorological Society, 86(6): 825-838, doi:10.1175/BAMS-86-6-825.

     

    Coulter R L. 1979. A comparison of three methods for measuring mixing-layer height. Journal of Applied Meteorology, 18(11): 1495-1499, doi:10.1175/1520-0450(1979)018〈1495:ACOTMF〉2.0.CO;2.

     

    Cuesta J, Edouart D, Mimouni M, et al. 2008. Multi-platform observations of the seasonal evolution of the Saharan atmospheric boundary layer in Tamanrasset, Algeria, in the framework of the African Monsoon Multidisciplinary Analysis field campaign conducted in 2006. Journal of Geophysical Research: Atmospheres, 113(D23): D00C07, doi:10.1029/2007jd009417.

     

    Deardorff J W. 1972. Numerical investigation of neutral and unstable planetary boundary layers. Journal of the Atmospheric Sciences, 29(1): 91-115, doi:10.1175/1520-0469(1972)029〈0091:NIONAU〉2.0.CO;2.

     

    Deardorff J W. 1972b. Theoretical expression for the countergradient vertical heat flux. Journal of Geophysical Research, 77(30): 5900-5904, doi:10.1029/jc077i030p05900.

     

    Delage Y. 1974. A numerical study of the nocturnal atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society, 100(425): 351-364. doi: 10.1002/qj.49710042507

     

    Dirmeyer P A, Wang Z Y, Mbuh M J, et al. 2014. Intensified land surface control on boundary layer growth in a changing climate. Geophysical Research Letters, 41(4): 1290-1294, doi:10.1002/2013GL058826.

     

    Estournel C, Guedalia D. 1990. Improving the diagnostic relation for the nocturnal boundary layer height. Boundary-Layer Meteorology, 53(1-2): 191-198, doi:10.1007/BF00122471.

     

    Fetzer E J, Teixeira J, Olsen E T, et al. 2004. Satellite remote sounding of atmospheric boundary layer temperature inversions over the subtropical eastern Pacific. Geophysical Research Letters, 31(17): L17102, doi:10.1029/2004gl020174.

     

    Freire L S, Dias N L. 2013. Residual layer effects on the modeling of convective boundary layer growth rates with a slab model using FIFE data. Journal of Geophysical Research: Atmospheres, 118(23): 12869-12878, doi:10.1002/jgrd.50796.

     

    Gamo M. 1996. Thickness of the dry convection and large-scale subsidence above deserts. Boundary-Layer Meteorology, 79(3): 265-278, doi:10.1007/bf00119441.

     

    Garratt J R. 1992. The Atmospheric Boundary Layer. Cambridge: Cambridge University Press, 316.

     

    Garratt J R. 1994. Review: the atmospheric boundary layer. Earth-Science Reviews, 37(1-2): 89-134, doi:10.1016/0012-8252(94)90026-4.

     

    Guo H, Golaz J C, Donner L J, et al. 2010. Multi-variate probability density functions with dynamics for cloud droplet activation in large-scale models: single column tests. Geoscientific Model Development, 3(2): 475-486. doi: 10.5194/gmd-3-475-2010

     

    Guo J P, Zhang X Y, Wu Y R, et al. 2011. Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980-2008. Atmospheric Environment, 45(37): 6802-6811, doi:10.1016/j.atmosenv.2011.03.068.

     

    Guo J P, Miao Y C, Zhang Y, et al. 2016. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmospheric Chemistry and Physics, 16(20): 13309-13319, doi:10.5194/acp-16-13309-2016.

     

    Han B, Lü S H, Ao Y H. 2012. Development of the convective boundary layer capping with a thick neutral layer in Badanjilin: Observations and simulations. Advances in Atmospheric Sciences, 29(1): 177-192, doi:10.1007/s00376-011-0207-4.

     

    Holtslag A A M, Moeng C H. 1991. Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. Journal of the Atmospheric Sciences, 48(14): 1690-1698. doi: 10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2

     

    Holtslag A A M, Boville B A. 1993. Local versus nonlocal boundary-layer diffusion in a global climate model. Journal of Climate, 6(10): 1825-1842, doi:10.1175/1520-0442(1993)006〈1825:LVNBLD〉2.0.CO;2.

     

    Holzworth C G. 1964. Estimates of mean maximum mixing depths in the contiguous United States. Monthly Weather Review, 92(5): 235-242, doi:10.1175/1520-0493(1964)092〈0235:EOMMMD〉2.3.CO;2.

     

    Hong S Y, Pan H L. 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review, 124(10): 2322-2339, doi:10.1175/1520-0493(1996)124〈2322:NBLVDI〉2.0.CO;2.

     

    Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9): 2318-2341, doi:10.1175/MWR3199.1.

     

    Hu F, Hong Z X, Lei X E. 2003. Recent progress of atmospheric boundary layer physics and atmospheric environment research in IAP. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 712-728, doi:10.3878/j.issn.1006-9895.2003.04.18.

     

    Huang J P, Wang T H, Wang W C, et al. 2014. Climate effects of dust aerosols over East Asian arid and semiarid regions. Journal of Geophysical Research: Atmospheres, 119(19): 11398-11416, doi:10.1002/2014JD021796.

     

    Jordan N S, Hoff R M, Bacmeister J T. 2010. Validation of goddard earth observing system-version 5 MERRA planetary boundary layer heights using CALIPSO. Journal of Geophysical Research: Atmospheres, 115(D24): D24218, doi:10.1029/2009jd013777.

     

    Kaimal J C, Wyngaard J C, Haugen D A, et al. 1976. Turbulence structure in the convective boundary layer. Journal of the Atmospheric Sciences, 33(11): 2152-2169, doi:10.1175/1520-0469(1976)033〈2152:TSITCB〉2.0.CO;2.

     

    Karlsson J, Svensson G, Cardoso S, et al. 2010. Subtropical cloud-regime transitions: boundary layer depth and cloud-top height evolution in models and observations. Journal of Applied Meteorology and Climatology, 49(9): 1845-1858, doi:10.1175/2010jamc2338.1.

     

    Konor C S, Boezio G C, Mechoso C R, et al. 2009. Parameterization of PBL processes in an atmospheric general circulation model: description and preliminary assessment. Monthly Weather Review, 137(3): 1061-1082, doi:10.1175/2008mwr2464.1.

     

    Korhonen K, Giannakaki E, Mielonen T, et al. 2014. Atmospheric boundary layer top height in south Africa: measurements with lidar and radiosonde compared to three atmospheric models. Atmospheric Chemistry and Physics, 14(8): 4263-4278, doi:10.5194/acp-14-4263-2014.

     

    Lü Y Q, Ma Y M, Li M S, et al. 2008. Study on characteristic of atmospheric boundary layer over lake namco region, Tibetan Plateau. Plateau Meteorology (in Chinese), 27(6): 1205-1210. http://www.cnki.com.cn/Article/CJFDTotal-GYQX200806004.htm

     

    Li J L, Hong Z X, Sun S F. 2000. An observational experiment on the atmospheric boundary layer in Gerze Area of the Tibetan Plateau. Chinese Journal of Atmospheric Sciences (in Chinese), 24(3): 301-312, doi:10.3878/j.issn.1006-9895.2000.03.02.

     

    Li M S, Ma Y M, Ma W Q, et al. 2011. Structural difference of atmospheric boundary layer between dry and rainy seasons over the central Tibetan Plateau. Journal of Glaciology and Geocryology (in Chinese), 33(1): 72-79, doi:10.3969/j.issn.1000-6826.2014.06.03.

     

    Li Y Q, Gao W L. 2007. Atmospheric boundary layer circulation on the eastern edge of the Tibetan Plateau, China, in summer. Arctic, Antarctic, and Alpine Research, 39(4): 708-713, doi:10.1657/1523-0430(07-504)[li]2.0.co;2.

     

    Liu H Y, Miao M Q. 2001. Preliminary analysis on characteristics of boundary layer in Qinghai-Tibet Plateau. Journal of Nanjing University (Natural Sciences) (in Chinese), 37(3): 348-357, doi:10.3321/j.issn:0469-5097.2001.03.013.

     

    Liu H Z, Feng J W, Wang L, et al. 2013. Overview of recent studies on atmospheric boundary layer physics and atmospheric environment at LAPC. Chinese Journal of Atmospheric Sciences (in Chinese), 37(2): 467-476, doi:10.3878/j.issn.1006-9895.2012.12315.

     

    Liu H Z, Wang L, Du Q. 2018. An overview of recent studies on atmospheric boundary layer physics (2012-2017). Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 823-832, doi:10.3878/j.issn.1006-9895.1802.17274.

     

    Liu S H, Xu Y, Hu F, et al. 2004. Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to simulate the interaction between land surface processes and atmospheric boundary layer in semi-arid regions. Advances in Atmospheric Sciences, 21(2): 245-259, doi:10.1007/bf02915711.

     

    Liu S H, Liu Z X, Zheng H, et al. 2013. Multi-scale atmospheric boundary-layer and land surface physics process models. Scientia Sinica Physica, Mechanica & Astronomica (in Chinese), 43(10): 1332-1355, doi:10.1360/132013-247.

     

    Liu S Y, Liang X Z. 2010. Observed diurnal cycle climatology of planetary boundary layer height. Journal of Climate, 23(21): 5790-5809, doi:10.1175/2010JCLI3552.1.

     

    Lock A P, Brown A R, Bush M R, et al. 2000. A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Monthly Weather Review, 128(9): 3187-3199, doi:10.1175/1520-0493(2000)128〈3187:ANBLMS〉2.0.CO;2.

     

    Louis J F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology, 17(2): 187-202, doi:10.1007/bf00117978.

     

    Marsham J H, Parker D J, Grams C M, et al. 2008. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara. Atmospheric Chemistry and Physics, 8(23): 6679-6993, doi:10.5194/acp-8-6979-2008.

     

    Martins J P A, Teixeira J, Soares P M M, et al. 2010. Infrared sounding of the trade-wind boundary layer: AIRS and the RICO experiment. Geophysical Research Letters, 37(24): L24806, doi:10.1029/2010GL045902.

     

    McCumber M C, Pielke R A. 1981. Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model: 1. Soil layer. Journal of Geophysical Research: Oceans, 86(C10): 9929-9938, doi:10.1029/JC086iC10p09929.

     

    McGrath-Spangler E L, Denning A S. 2012. Estimates of North American summertime planetary boundary layer depths derived from space-borne lidar. Journal of Geophysical Research: Atmospheres, 117(D15): D15101, doi:10.1029/2012JD017615.

     

    Messager C, Parker D J, Reitebuch O, et al. 2010. Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: observations and analyses from the research flights of 14 and 17 July 2006. Quarterly Journal of the Royal Meteorological Society, 136(S1): 107-124, doi:10.1002/qj.469.

     

    Miao Y C, Hu X M, Liu S H, et al. 2015. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality. Journal of Advances in Modeling Earth Systems, 7(4): 1602-1626, doi:10.1002/2015MS000522.

     

    Miao Y C, Guo J P, Liu S H, et al. 2017. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution. Atmospheric Chemistry and Physics, 17(4): 3097-3110, doi:10.5194/acp-17-3097-2017.

     

    Monin A S, Obukhov A M. 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geofiz Inst, 24(151): 163-187. http://www.researchgate.net/publication/320957958_Basic_laws_of_turbulent_mixing_in_the_surface_layer_of_the_atmosphere

     

    Noh Y, Cheon W G, Hong S Y, et al. 2003. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Boundary-Layer Meteorology, 107(2): 401-427, doi:10.1023/a:1022146015946.

     

    Parker D J, Thorncroft C D, Burton R R, et al. 2005. Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Quarterly Journal of the Royal Meteorological Society, 131(608): 1461-1482, doi:10.1256/qj.03.189.

     

    Pielke R A, Mahrer Y. 1975. Representation of the heated planetary boundary layer in mesoscale models with coarse vertical resolution. Journal of the Atmospheric Sciences, 32(12): 2288-2308, doi:10.1175/1520-0469(1975)032〈2288:ROTHPB〉2.0.CO;2.

     

    Pleim J E. 2007. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. Journal of Applied Meteorology and Climatology, 46(9): 1383-1395, doi:10.1175/JAM2539.1.

     

    Qiu J H, Zheng S P, Huang Q R, et al. 2003. Lidar measurements of cloud and aerosol in the upper troposphere in Beijing. Chinese Journal of Atmospheric Sciences (in Chinese), 27(1): 1-7, doi:10.3878/j.issn.1006-9895.2003.01.01.

     

    Raman S, Templeman B, Templeman S, et al. 1990. Structure of the Indian southwesterly pre-monsoon and monsoon boundary layers: Observations and numerical simulation. Atmospheric Environment. Part A. General Topics, 24(4): 723-734, doi:10.1016/0960-1686(90)90273-p.

     

    Reen B P, Stauffer D R, Davis K J. 2014. Land-surface heterogeneity effects in the planetary boundary layer. Boundary-Layer Meteorology, 150(1): 1-31, doi:10.1007/s10546-013-9860-8.

     

    Rihani J F, Chow F K, Maxwell R M. 2015. Isolating effects of terrain and soil moisture heterogeneity on the atmospheric boundary layer: Idealized simulations to diagnose land-atmosphere feedbacks. Journal of Advances in Modeling Earth Systems, 7(2): 915-937, doi:10.1002/2014MS000371.

     

    Rotta J. 1951. Statistische theorie nichthomogener turbulenz. Zeitschrift für Physik, 131(1): 51-77, doi:10.1007/BF01329645.

     

    Sanchez-Mejia Z M, Papuga S A. 2014. Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland. Water Resources Research, 50(1): 306-317, doi:10.1002/2013WR014135.

     

    Seibert P, Beyrich F, Gryning S E, et al. 2000. Review and intercomparison of operational methods for the determination of the mixing height. Atmospheric Environment, 34(7): 1001-1027, doi:10.1016/s1352-2310(99)00349-0.

     

    Seidel D J, Ao C O, Li K. 2010. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. Journal of Geophysical Research: Atmospheres, 115(D16): D16113, doi:10.1029/2009JD013680.

     

    Seidel D J, Zhang Y H, Beljaars A, et al. 2012. Climatology of the planetary boundary layer over the continental United States and Europe. Journal of Geophysical Research: Atmospheres, 117(D17): D17106, doi:10.1029/2012jd018143.

     

    Siebesma A P, Cuijpers J W M. 1995. Evaluation of parametric assumptions for shallow cumulus convection. Journal of the Atmospheric Sciences, 52(6): 650-666, doi:10.1175/1520-0469(1995)052〈0650:eopafs〉2.0.co;2.

     

    Siebesma A P, Soares P M M, Teixeira J. 2007. A combined eddy-diffusivity mass-flux approach for the convective boundary layer. Journal of the Atmospheric Sciences, 64(4): 1230-1248, doi:10.1175/JAS3888.1.

     

    Song Z S, Zhu B Z, Sun G W. 1984. A preliminary study on the thermal mixing layer in the western Tibetan Plateau. //The Collected Works of the Tibetan Plateau Meteorological Scientific Experiment (Series 2) (in Chinese). Beijing: Science Press.

     

    Stull R B. 1988. An Introduction to Boundary Layer Meteorology. Netherlands: Springer, 666.

     

    Sun F L, Ma Y M, Li M S, et al. 2007. Boundary layer effects above a Himalayan valley near Mount Everest. Geophysical Research Letters, 34(8): L08808, doi:10.1029/2007gl029484.

     

    Sun J, Zhou X J, Zhao P. 2005. A new Planetary Boundary Layer model and its application to heavy rain modeling. Chinese Science Bulletin, 50(16): 1756-1766, doi:10.1360/03wd0600.

     

    Sun W Q, Li L J, Wang B. 2016. Reducing the biases in shortwave cloud radiative forcing in tropical and subtropical regions from the perspective of boundary layer processes. Science China Earth Sciences, 59(7): 1427-1439, doi:10.1007/s11430-016-5290-z.

     

    Sušelj K, Teixeira J, Matheou G. 2012. Eddy diffusivity/mass flux and shallow cumulus boundary layer: an updraft PDF multiple mass flux scheme. Journal of the Atmospheric Sciences, 69(5): 1513-1533, doi:10.1175/JAS-D-11-090.1.

     

    Sušelj K, Teixeira J, Chung D. 2013. A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. Journal of the Atmospheric Sciences, 70(7): 1929-1953, doi:10.1175/JAS-D-12-0106.1.

     

    Takemi T, Satomura T. 2000. Numerical experiments on the mechanisms for the development and maintenance of long-lived squall lines in dry environments. Journal of the Atmospheric Sciences, 57(11): 1718-1740, doi:10.1175/1520-0469(2000)057〈1718:neotmf〉2.0.co;2.

     

    Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bulletin of the American Meteorological Society, 62(1): 23-30, doi:10.1175/1520-0477(1981)062〈0023:OEOTIO〉2.0.CO;2.

     

    Tennekes H. 1970. Free convection in the turbulent Ekman layer of the atmosphere. Journal of the Atmospheric Sciences, 27(7): 1027-1034. doi: 10.1175/1520-0469(1970)027<1027:FCITTE>2.0.CO;2

     

    Therry G, Lacarrère P. 1983. Improving the eddy kinetic energy model for planetary boundary layer description. Boundary-Layer Meteorology, 25(1): 63-88, doi:10.1007/bf00122098.

     

    Torres O, Ahn C, Chen Z. 2013. Improvements to the OMI near-UV Aerosol Algorithm using A-train CALIOP and AIRS observations. Atmospheric Measurement Techniques, 6(11): 3257-3270, doi:10.5194/amt-6-3257-2013.

     

    Troen I B, Mahrt L. 1986. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorology, 37(1-2): 129-148, doi:10.1007/bf00122760.

     

    Vogelezang D H P, Holtslag A A M. 1996. Evaluation and model impacts of alternative boundary-layer height formulation. Boundary-Layer Meteorology, 81(3-4): 245-269, doi:10.1007/bf02430331.

     

    Wang Z Z, Li J, Zhong Z Q, et al. 2008. LIDAR exploration of atmospheric boundary layer over downtown of Beijing in summer. Journal of Applied Optics (in Chinese), 29(1): 96-100, doi:10.3969/j.issn.1002-2082.2008.01.023.

     

    Wood R, Bretherton C S. 2004. Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. Journal of Climate, 17(18): 3576-3588, doi:10.1175/1520-0442(2004)017〈3576:bldead〉2.0.co;2.

     

    Wyngaard J C. 1975. Modeling the planetary boundary layer-extension to the stable case. Boundary-Layer Meteorology, 9(4): 441-460, doi:10.1007/BF00223393.

     

    Wyngaard J C, Brost R A. 1984. Top-down and bottom-up diffusion of a scalar in the convective boundary layer. Journal of the Atmospheric Sciences, 41(1): 102-112, doi:10.1175/1520-0469(1984)041〈0102:TDABUD〉2.0.CO;2.

     

    Xu X D, Zhou M Y, Chen J Y, et al. 2002. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau. Science in China Series D: Earth Sciences, 45(7): 577-594, doi:10.1360/02yd9060.

     

    Yamada T, Mellor G. 1975. A simulation of the wangara atmospheric boundary layer data. Journal of the Atmospheric Sciences, 32(12): 2309-2329, doi:10.1175/1520-0469(1975)032〈2309:ASOTWA〉2.0.CO;2.

     

    Yanai M, Li C F. 1994. Mechanism of heating and the boundary layer over the Tibetan Plateau. Monthly Weather Review, 122(2): 305-323. doi: 10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2

     

    Yang Y, Liu X Y, Lu Z H, et al. 2016. Study on depth of atmospheric boundary layer in gobi desert regions of the Bosten lake basin. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 52(5): 829-836, doi:10.13209/j.0479-8023.2015.145.

     

    Ye D Z, Tao S Y, Li M C. 1958. The abrupt change of circulation over northern hemisphere during June and October. Acta Meteorologica Sinica (in Chinese), 29(4): 249-263.

     

    Ye D Z, Gao Y X. 1979. Tibetan Plateau Meteorology (in Chinese). Beijing: Science Press.

     

    Zhang B H, Liu S H, Liu H P, et al. 2012. The effect of MYJ and YSU schemes on the simulation of boundary layer meteorological factors of WRF. Chinese Journal of Geophysics (in Chinese), 55(7): 2239-2248, doi:10.6038/j.issn.0001-5733.2012.07.010.

     

    Zhang G Z, Xu X D, Wang J Z. 2003. A dynamic study of Ekman characteristics by using 1998 SCSMEX and TIPEX boundary layer data. Advances in Atmospheric Sciences, 20(3): 349-356, doi:10.1007/bf02690793.

     

    Zhang Q, Hu Y Q. 2001. Scientific problems and advance of atmospheric boundary layer physics. Advance in Earth Sciences (in Chinese), 16(4): 526-532, doi:10.3321/j.issn:1001-8166.2001.04.013.

     

    Zhang Q, Wei G A, Hou P. 2004. Observation studies of atmosphere boundary layer characteristic over Dunhuang Gobi in early summer. Tibetan Plateau. Plateau Meteorology (in Chinese), 23(5): 587-597, doi:10.3321/j.issn:1000-0534.2004.05.003.

     

    Zhang Q, Wang S. 2008. A study on atmospheric boundary layer structure on a clear day in the arid region in northwest China. Acta Meteorologica Sinica (in Chinese), 66(4): 599-608, doi:10.11676/qxxb2008.057.

     

    Zhang Q, Zhang J, Qiao J, et al. 2011. Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China. Science China Earth Sciences, 54(10): 1586-1594, doi:10.1007/s11430-011-4207-0.

     

    Zhang Q, Qiao L, Yue P, et al. 2019. The energy mechanism controlling the continuous development of a super-thick atmospheric convective boundary layer during continuous summer sunny periods in an arid area. Chinese Science Bulletin (in Chinese), 64(15): 1637-1650, doi:10.1360/N972018-01014.

     

    Zhang W C, Guo J P, Miao Y C, et al. 2016. Planetary boundary layer height from CALIOP compared to radiosonde over China. Atmospheric Chemistry and Physics, 16(15): 9951-9963, doi:10.5194/acp-16-9951-2016.

     

    Zhang W C, Guo J P, Miao Y C, et al. 2017. On the summertime planetary boundary layer with different thermodynamic stability in China: a radiosonde perspective. Journal of Climate, 31(4): 1451-1465, doi:10.1175/jcli-d-17-0231.1.

     

    Zhang Y H, Seidel D J, Zhang S D. 2013. Trends in planetary boundary layer height over Europe. Journal of Climate, 26(24): 10071-10076, doi:10.1175/JCLI-D-13-00108.1.

     

    Zhao C L, Lü S H, Han B, et al. 2016. Relationship between the convective boundary layer and residual layer over Badain Jaran Desert in summer. Plateau Meteorology (in Chinese), 35(4): 1004-1014, doi:10.7522/j.issn.1000-0534.2015.00080.

     

    Zhao J H, Zhang Q, Wang S. 2011. A simulative study of the thermal mechanism for development of the convective boundary layer in the arid zone of northwest China. Acta Meteorologica Sinica (in Chinese), 69(6): 1029-1037, doi:10.11676/qxxb2011.090.

     

    Zhao M, Miao M Q. 1992. The Atmospheric Boundary Layer (in Chinese). Beijing: Science Press.

     

    Zhao P, Li Y Q, Guo X L, et al. 2018. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The Third Tibetan plateau atmospheric scientific experiment. Acta Meteorologica Sinica (in Chinese), 76(6): 833-860, doi:10.11676/qxxb2018.060.

     

    Zhao P, Zhou X J, Chen J M, et al. 2019. Global climate effects of summer Tibetan Plateau. Science Bulletin, 64(1): 1-3, doi:10.1016/i.scib.2018.11.019.

     

    Zhou M Y, Qian F L, Chen Z, et al. 2002. The characteristics of the profiles for wind, temperature and humidity in the baroclinic convective boundary layer on Xizang Plateau. Chinese Journal of Geophysics (in Chinese), 45(6): 773-783. http://onlinelibrary.wiley.com/doi/10.1002/cjg2.297/full

     

    Zhou W, Yang S P, Jiang X, et al. 2018. Estimating planetary boundary layer height over the Tibetan Plateau using COSMIC radio occultation data. Acta Meteorologica Sinica (in Chinese), 76(1): 117-133, doi:10.11676/qxxb2017.079.

     

    Zuo H C, Hu Y Q, L S H, et al. 2004. Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau. Progress in Natural Science (in Chinese), 14(5): 535-540, doi:10.3321/j.issn:1002-008X.2004.05.009.

     

    陈学龙, 马耀明, 胡泽勇等. 2010. 季风爆发前后青藏高原西部改则地区大气结构的初步分析. 大气科学, 34(1): 83-94, doi:10.3878/j.issn.1006-9895.2010.01.08.

     

    胡非, 洪钟祥, 雷孝恩. 2003. 大气边界层和大气环境研究进展. 大气科学, 27(4): 712-728, doi:10.3878/j.issn.1006-9895.2003.04.18.

     

    李家伦, 洪钟祥, 孙菽芬. 2000. 青藏高原西部改则地区大气边界层特征. 大气科学, 24(3): 301-312, doi:10.3878/j.issn.1006-9895.2000.03.02.

     

    李茂善, 马耀明, 马伟强等. 2011. 藏北高原地区干、雨季大气边界层结构的不同特征. 冰川冻土, 33(1): 72-79, doi:10.3969/j.issn.1000-6826.2014.06.03.

     

    刘红燕, 苗曼倩. 2001. 青藏高原大气边界层特征初步分析. 南京大学学报(自然科学版), 37(3): 348-357, doi:10.3321/j.issn:0469-5097.2001.03.013.

     

    刘辉志, 冯健武, 王雷等. 2013. 大气边界层物理研究进展. 大气科学, 37(2): 467-476, doi:10.3878/j.issn.1006-9895.2012.12315.

     

    刘辉志, 王雷, 杜群. 2018. 大气边界层物理研究进展(2012-2017年). 大气科学, 42(4): 823-832, doi:10.3878/j.issn.1006-9895.1802.17274.

     

    刘树华, 刘振鑫, 郑辉等. 2013. 多尺度大气边界层与陆面物理过程模式的研究进展. 中国科学: 物理学力学天文学, 43(10): 1332-1355, doi:10.1360/132013-247.

     

    吕雅琼, 马耀明, 李茂善等. 2008. 青藏高原纳木错湖区大气边界层结构分析. 高原气象, 27(6): 1205-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200806004.htm

     

    邱金桓, 郑斯平, 黄其荣等. 2003. 北京地区对流层中上部云和气溶胶的激光雷达探测. 大气科学, 27(1): 1-7, doi:10.3878/j.issn.1006-9895.2003.01.01.

     

    宋正山, 朱抱真, 孙国武. 1984. 青藏高原西部地区热力混合层的初步研究. //青藏高原气象科学实验文集(二). 北京: 科学出版社.

     

    王珍珠, 李炬, 钟志庆等. 2008. 激光雷达探测北京城区夏季大气边界层. 应用光学, 29(1): 103-107, doi:10.3969/j.issn.1002-2082.2008.01.023.

     

    杨洋, 刘晓阳, 陆征辉等. 2016. 博斯腾湖流域戈壁地区大气边界层高度特征研究. 北京大学学报(自然科学版), 52(5): 829-836, doi:10.13209/j.0479-8023.2015.145.

     

    叶笃正, 陶诗言, 李麦村. 1958. 在六月和十月大气环流的突变现象. 气象学报, 29(4): 249-263. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195804004.htm

     

    叶笃正, 高由禧. 1979. 青藏高原气象学. 北京: 科学出版社.

     

    张碧辉, 刘树华, Liu H P等. 2012. MYJ和YSU方案对WRF边界层气象要素模拟的影响. 地物理学报, 55(7): 2239-2248, doi:10.6038/j.issn.0001-5733.2012.07.010.

     

    张强, 胡隐樵. 2001. 大气边界层物理学的研究进展和面临的科学问题. 地球科学进展, 16(4): 526-532, doi:10.3321/j.issn:1001-8166.2001.04.013.

     

    张强, 卫国安, 侯平. 2004. 初夏敦煌荒漠戈壁大气边界结构特征的一次观测研究. 高原气象, 23(5): 587-597, doi:10.3321/j.issn:1000-0534.2004.05.003.

     

    张强, 王胜. 2008. 西北干旱区夏季大气边界层结构及其陆面过程特征. 气象学报, 66(4): 599-608, doi:10.11676/qxxb2008.057.

     

    张强, 乔梁, 岳平等. 2019. 干旱区夏季晴空期超厚对流边界层发展的能量机制. 科学通报, 64(15): 1637-1650, doi:10.1360/N972018-01014.

     

    赵采玲, 吕世华, 韩博等. 2016. 夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究. 高原气象, 35(4): 1004-1014, doi:10.7522/j.issn.1000-0534.2015.00080.

     

    赵建华, 张强, 王胜. 2011. 西北干旱区对流边界层发展的热力机制模拟研究. 气象学报, 69(6): 1029-1037, doi:10.11676/qxxb2011.090.

     

    赵鸣, 苗曼倩. 1992. 大气边界层. 北京: 气象出版社.

     

    赵平, 李跃清, 郭学良等. 2018. 青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验. 气象学报, 76(6): 833-860, doi:10.11676/qxxb2018.060.

     

    周明煜, 钱粉兰, 陈陟等. 2002. 西藏高原斜压对流边界层风、温、湿廓线特征. 地球物理学报, 45(6): 773-783. doi: 10.3321/j.issn:0001-5733.2002.06.004 http://www.geophy.cn//CN/abstract/abstract3533.shtml

     

    周文, 杨胜朋, 蒋熹等. 2018. 利用COSMIC掩星资料研究青藏高原地区大气边界层高度. 气象学报, 76(1): 117-133, doi:10.11676/qxxb2017.079.

     

    左洪超, 胡隐樵, 吕世华等. 2004. 青藏高原安多地区干、湿季的转换及其边界层特征. 自然科学进展, 14(5): 535-540, doi:10.3321/j.issn:1002-008X.2004.05.009.

  • 加载中

(9)

(3)

计量
  • 文章访问数:  1007
  • PDF下载数:  680
  • 施引文献:  0
出版历程
收稿日期:  2020-02-20
修回日期:  2020-06-29
上线日期:  2021-03-10

目录