海域航空重力快速构建区域大地水准面

王晨阳, 骆遥, 熊盛青, 刘诗华, 刘祖鉴. 2021. 海域航空重力快速构建区域大地水准面. 地球物理学报, 64(3): 907-915, doi: 10.6038/cjg2021O0056
引用本文: 王晨阳, 骆遥, 熊盛青, 刘诗华, 刘祖鉴. 2021. 海域航空重力快速构建区域大地水准面. 地球物理学报, 64(3): 907-915, doi: 10.6038/cjg2021O0056
WANG ChenYang, LUO Yao, XIONG ShengQing, LIU ShiHua, LIU ZuJian. 2021. A fast approach for determining geoid using airborne gravity data of sea area. Chinese Journal of Geophysics (in Chinese), 64(3): 907-915, doi: 10.6038/cjg2021O0056
Citation: WANG ChenYang, LUO Yao, XIONG ShengQing, LIU ShiHua, LIU ZuJian. 2021. A fast approach for determining geoid using airborne gravity data of sea area. Chinese Journal of Geophysics (in Chinese), 64(3): 907-915, doi: 10.6038/cjg2021O0056

海域航空重力快速构建区域大地水准面

  • 基金项目:

    国家重点研发计划项目(2017YFC0602000,2017YFC0601600),中国地质调查项目(DD20191001,DD20191004,DD20189410)共同资助

详细信息
    作者简介:

    王晨阳, 男, 1985年生, 博士研究生, 主要从事航空地球物理技术应用与研究.E-mail: agrswcy@163.com

    通讯作者: 骆遥, 男, 1982年生, 高级工程师, 长期从事地球物理勘探.E-mail: geophy@vip.qq.com
  • 中图分类号: P312

A fast approach for determining geoid using airborne gravity data of sea area

More Information
  • 我国在海域开展了大规模的航空重力勘探,这些资料对构建高精度大地水准面具有重要价值.基于此,本文提出一种利用海域航空重力测量数据快速构建大地水准面的方法.该方法基于移去-恢复法思想,利用位场最小曲率方法对航空重力数据进行高精度向下延拓并获取相应的扰动位,实现航空重力测量快速构建海域大地水准面.与斯托克斯积分计算相比,采用了处理效率更高的频率域位场转换,解决了向下延拓及垂向积分时航空重力异常数据空白及扩边问题,具有较高的位场转换精度.本文应用EGM2008模拟航空重力数据进行模型验证,计算结果与其给出的水准面的精度相当;同时,也选取GRAV-D计划的航空重力数据进行实际验证,计算结果与xGEOID18B水准面模型精度基本一致.模型验证和实际应用验证了本方法的实用性.

  • 加载中
  • 图 1 

    模拟的海域航空重力场(a)及移去后航空重力异常(b)

    Figure 1. 

    The simulated airborne gravity field of sea area (a) and airborne gravity anomaly after removal (b)

    图 2 

    航空重力异常对应的水准面起伏(a)及计算的大地水准面(b)

    Figure 2. 

    Corresponding geoid fluctuations of airborne gravity anomaly (a) and calculated geoid (b)

    图 3 

    航空重力测线(a)及实测航空重力数据(b)

    Figure 3. 

    Airborne gravity survey lines (a) and airborne gravity field data (b)

    图 4 

    航空重力异常(a)及下延至WGS-84椭球面上的异常(b)

    Figure 4. 

    Airborne gravity anomaly (a) and its downward continuation result on the WGS-84 ellipsoid (b)

    图 5 

    由剩余异常计算的位函数(a)及误差(b)

    Figure 5. 

    Gravity potential field calculated by residual anomaly (a) and error (b)

    图 6 

    大地水准面修正量(a)及修正后大地水准面(b)

    Figure 6. 

    Correction of geoid (a) and final geoid determined (b)

    图 7 

    GPS/水准点分布

    Figure 7. 

    GPS/level point distribution

    图 8 

    水准面与EGM2008大地水准面及航空重力确定的大地水准面对比

    Figure 8. 

    Geoid of GPS/level compared with the EGM2008 geoid and the geoid determined by airborne gravity data

  •  

    Brozena J, LaBrecque J, Peters M, et al. 1990. Airborne gravity measurement over sea-ice: the Western Weddell Sea. Geophysical Research Letters, 17(11): 1941-1944. doi: 10.1029/GL017i011p01941

     

    Cooper G. 2004. The stable downward continuation of potential field data. Exploration Geophysics, 35(4): 260-265. doi: 10.1071/EG04260

     

    Grafarend E W. 1994. What is a geoid?//Vanícek P, Christou N T eds. Geoid and its Geophysical Interpretations. Boca Raton: CRC Press.

     

    Heiskanen W A, Moritz H. 1967. Physical Geodesy. San Francisco: Freeman and Company.

     

    Huang M T, Liu M, Deng K L, et al. 2018. Analytical solution of downward continuation for airborne gravimetry based on upward continuation method. Chinese Journal of Geophysics (in Chinese), 61(12): 4746-4757, doi:10.6038/cjg2018L0594.

     

    Huang Z Z, Zhong J N, Zhou W, et al. 2004. Calculation of local geoid. Science of Surveying and Mapping (in Chinese), 29(2): 16-18.

     

    Hwang C, Hsiao Y S, Shih H C. 2006. Data reduction in scalar airborne gravimetry: Theory, software and case study in Taiwan. Computers & Geosciences, 32(10): 1573-1584.

     

    Jiang T. 2013. Regional geoid determination using airborne gravimetry data. Acta Geodaetica et Cartographica Sinica (in Chinese), 42(1): 152-152.

     

    Li W Y, Zhou J X, Xiong S Q, et al. 2010. Tectonic geometry of Tan-Lu faults in the Bohai Sea and its adjacent areas viewed from airborne gravity. Acta Geoscientica Sinica (in Chinese), 31(4): 549-556.

     

    Lin M, Zhu J J, Tian Y M, et al. 2012. On the use of the geoid anomalies for geophysical interpretation over the area of Hunan. Chinese Journal of Geophysics (in Chinese), 55(2): 472-483, doi:10.3969/j.issn.0001-5733.2012.02.011.

     

    Liu J Z, Liang X H, Ye Z R, et al. 2020. Combining multi-source data to construct full tensor of regional airborne gravity gradient disturbance. Chinese Journal of Geophysics (in Chinese), 63(8): 3131-3143, doi:10.6038/cjg2020O0044.

     

    Lourenco J S, Morrison H F. 1973. Vector magnetic anomalies derived from measurements of a single component of the field. Geophysics, 38(2): 359-368. doi: 10.1190/1.1440346

     

    Luo Y, Wu M P. 2016. Minimum curvature method for downward continuation of potential field data. Chinese Journal of Geophysics (in Chinese), 59(1): 240-251, doi:10.6038/cjg20160120.

     

    Nagy D, Fury R J. 1990. Local geoid computation from gravity using the fast Fourier transform technique. Bulletin Geodesique, 64(3): 283-294. doi: 10.1007/BF02519181

     

    Pavlis N K, Holmes S A, Kenyon S C, et al. 2012. The development and evaluation of Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4): B04406, doi:10.1029/2011JB008916.

     

    Sun Z M, Xia Z R, Shi P. 2004. Progress and advance in airborne gravimetry. Progress in Geophysics (in Chinese), 19(3): 492-496. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200403002.htm

     

    Sun Z M, Zhai Z H, Xiao Y. 2014. Airborne Gravimetry in BoHai bay and its role on the refining of the regional marine geoid. Acta Geodaetica et Cartographica Sinica (in Chinese), 43(11): 1101-1108. http://www.researchgate.net/publication/286799819_Airborne_gravimetry_in_Bo_Hai_Bay_and_its_role_on_the_refining_of_the_regional_marine_geoid

     

    Vanichek P, Christou N T. 1994. Geoid and Its Geophysical Interpretations. Florida: CRC Press.

     

    Wei Z Q. 2009. Brief introduction to the geoid. Geospatial Information (in Chinese), 7(1): 1-3. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXKJ200901003.htm

     

    Wu X P. 2006. Title definition of quasi-geoid and some questions encountered in airborne gravimetry. Science of Surveying and Mapping (in Chinese), 31(6): 24-25. http://www.cqvip.com/QK/90556A/200606/23127632.html

     

    Xiong S Q. 2009. The present situation and development of airborne gravity and magnetic survey techniques in China. Progress in Geophysics (in Chinese), 24(1): 113-117.

     

    Xiong S Q, Zhou X H, Guo Z H, et al. 2010. Theory, Method and Application of the Airborne Gravity Prospecting (in Chinese). Beijing: Geological Publishing House.

     

    Xu H Z. 2006. Some problems on the precise determination of regional geoid in China. Geospatial Information (in Chinese), 4(5): 1-3. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXKJ200605000.htm

     

    Zeng H L. 2005. Gravity Field and Gravity Exploration (in Chinese). Beijing: Geological Publishing House.

     

    Zhang L M, Li F. 2005. Research and analysis of quasi-geoid determination. Progress in Geophysics (in Chinese), 20(1): 198-203. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ20050100X.htm

     

    Zhang X J, Chen B, Zhu W P, et al. 2016. Achievements in airborne gravity survey around the Dalian sea area. Geological Survey of China (in Chinese), 3(2): 40-45. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDC201602007.htm

     

    Zhang Y M, Sheng J, Zhang G B. 2006. Status and applications of airborne gravimetry. Progress in Exploration Geophysics (in Chinese), 29(2): 94-97. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTDQ200602004.htm

     

    黄谟涛, 刘敏, 邓凯亮等. 2018. 基于向上延拓的航空重力向下解析延拓解. 地球物理学报, 61(12): 4746-4757, doi:10.6038/cjg2018L0594. http://www.geophy.cn//CN/abstract/abstract14780.shtml

     

    黄志洲, 钟金宁, 周卫等. 2004. 区域性大地水准面的确定. 测绘科学, 29(2): 16-18. doi: 10.3771/j.issn.1009-2307.2004.02.005

     

    蒋涛. 2013. 利用航空重力测量数据确定区域大地水准面. 测绘学报, 42(1): 152-152. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201301025.htm

     

    李文勇, 周坚鑫, 熊盛青等. 2010. 从航空重力看郯庐断裂系(渤海)及其围区构造几何学特征. 地球学报, 31(4): 549-556. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201004008.htm

     

    林淼, 朱建军, 田玉淼等. 2012. 大地水准面异常在湖南地区的地球物理解释. 地球物理学报, 55(2): 472-483, doi:10.3969/j.issn.0001-5733.2012.02.011. http://www.geophy.cn//CN/abstract/abstract8422.shtml

     

    刘金钊, 梁星辉, 叶周润等. 2020. 融合多源数据构建区域航空重力梯度扰动全张量. 地球物理学报, 63(8): 3131-3143, doi:10.6038/cjg2020O0044. http://www.geophy.cn//CN/abstract/abstract15558.shtml

     

    骆遥, 吴美平. 2016. 位场向下延拓的最小曲率方法. 地球物理学报, 59(1): 240-251, doi:10.6038/cjg20160120. http://www.geophy.cn//CN/abstract/abstract12104.shtml

     

    孙中苗, 夏哲仁, 石磐. 2004. 航空重力测量研究进展. 地球物理学进展, 19(3): 492-496. doi: 10.3969/j.issn.1004-2903.2004.03.002

     

    孙中苗, 翟振和, 肖云. 2014. 渤海湾航空重力及其在海域大地水准面精化中的应用. 测绘学报, 43(11): 1101-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201411002.htm

     

    魏子卿. 2009. 大地水准面短议. 地理空间信息, 7(1): 1-3. doi: 10.3969/j.issn.1672-4623.2009.01.001

     

    吴晓平. 2006. 似大地水准面的定义及在空中测量中涉及的问题. 测绘科学, 31(6): 24-25. doi: 10.3771/j.issn.1009-2307.2006.06.004

     

    熊盛青. 2009. 我国航空重磁勘探技术现状与发展趋势. 地球物理学进展, 24(1): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200901012.htm

     

    熊盛青, 周锡华, 郭志宏等. 2010. 航空重力勘探理论方法及应用. 北京: 地质出版社.

     

    许厚泽. 2006. 我国精化大地水准面工作中若干问题的讨论. 地理空间信息, 4(5): 1-3. doi: 10.3969/j.issn.1672-4623.2006.05.001

     

    曾华霖. 2005. 重力场与重力勘探. 北京: 地质出版社.

     

    张利明, 李斐. 2005. 确定(似)大地水准面的方法分析及适用性研究. 地球物理学进展, 20(1): 198-203. doi: 10.3969/j.issn.1004-2903.2005.01.034

     

    张玄杰, 陈斌, 朱卫平等. 2016. 大连周边海域航空重力调查方法及重要成果. 中国地质调查, 3(2): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201602007.htm

     

    张永明, 盛君, 张贵宾. 2006. 航空重力测量技术的现状及应用. 勘探地球物理进展, 29(2): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200602004.htm

  • 加载中

(8)

计量
  • 文章访问数:  1200
  • PDF下载数:  304
  • 施引文献:  0
出版历程
收稿日期:  2020-11-01
修回日期:  2021-01-08
上线日期:  2021-03-10

目录