储层地震物理模拟的震源指向性及介质非均质性影响分析

司文朋, 杨勤勇, 邢廷栋, 薛诗桂. 2021. 储层地震物理模拟的震源指向性及介质非均质性影响分析. 地球物理学报, 64(2): 628-636, doi: 10.6038/cjg2021O0001
引用本文: 司文朋, 杨勤勇, 邢廷栋, 薛诗桂. 2021. 储层地震物理模拟的震源指向性及介质非均质性影响分析. 地球物理学报, 64(2): 628-636, doi: 10.6038/cjg2021O0001
SI WenPeng, YANG QinYong, XING TingDong, XUE ShiGui. 2021. Influence of source directivity and medium heterogeneity on seismic physical simulation of reservoirs. Chinese Journal of Geophysics (in Chinese), 64(2): 628-636, doi: 10.6038/cjg2021O0001
Citation: SI WenPeng, YANG QinYong, XING TingDong, XUE ShiGui. 2021. Influence of source directivity and medium heterogeneity on seismic physical simulation of reservoirs. Chinese Journal of Geophysics (in Chinese), 64(2): 628-636, doi: 10.6038/cjg2021O0001

储层地震物理模拟的震源指向性及介质非均质性影响分析

  • 基金项目:

    国家重大专项(2016ZX05014-001-001)和中国石化科技攻关项目(P17019-1)共同资助

详细信息
    作者简介:

    司文朋,男,1987年生,博士,副研究员,目前主要从事地震物理模拟实验技术及应用、复杂储层地震响应特征及流体识别等方面的研究. E-mail:siwenpeng@126.com

  • 中图分类号: P631

Influence of source directivity and medium heterogeneity on seismic physical simulation of reservoirs

  • 随着地震物理模拟的研究目标由地质构造发展为不同类型的油气储层,明确震源指向性及介质非均质性对实验结果的影响,对提高物理模拟数据的可信性及准确性具有重要意义.利用激光测振新方法对震源指向性进行了实验测试,得到了更加精确的指向性结果,形成了模拟数据振幅补偿方法.制作了具有不同尺度特征的非均质样品,在50 kHz至1000 kHz超声频段下对纵波速度及能量进行了测试,明确了不同的波长/介质尺度比(λ/a)范围内纵波速度及干扰波与有效波能量比的变化特征.结果表明,在地震物理模拟超声频段下射线速度向散射速度的转折点出现在λ/a≈2处;散射速度向等效介质速度的转折点出现在λ/a≈100处.当满足λ/a>200条件时,干扰波与有效波能量比小于5%时,可认为满足储层模拟的等效介质条件.

  • 加载中
  • 图 1 

    换能器指向性激光测振实验构建

    Figure 1. 

    Set up of transducer directivity measurement by laser vibration method

    图 2 

    换能器指向性测试

    Figure 2. 

    Measurement of transducer directivity

    图 3 

    物理模型实验数据校正前后AVO特征对比

    Figure 3. 

    AVO characteristics comparison before and after physical model data correction

    图 4 

    不同颗粒尺度非均质样品

    Figure 4. 

    Heterogeneous samples with different particle sizes

    图 5 

    物理模拟超声频段下均质样品速度随频率变化情况

    Figure 5. 

    Change of velocity of homogeneous sample with frequency in physical simulation ultrasonic frequency band

    图 6 

    不同主频下非均质样品速度测试结果

    Figure 6. 

    Test results of sample velocity with different scales under different main frequency

    图 7 

    不同频率下不同尺度样品速度变化

    Figure 7. 

    The velocity change of different scale samples under different frequencies

    图 8 

    非均质样品激光测振多点观测

    Figure 8. 

    Multi point observation of laser vibration measurement for heterogeneous samples

    图 9 

    250 kHz主频下非均质样品有效波与干扰波波形对比

    Figure 9. 

    Comparison of effective wave and interference of heterogeneous sample wave under 250 kHz main frequency

    图 10 

    物理模拟超声频段下速度变化与λ/a值关系对比

    Figure 10. 

    Comparison of velocity change and λ/a value in physical simulation ultrasonic frequency band

    图 11 

    物理模拟超声频段下干扰波/有效波能量比与λ/a关系图

    Figure 11. 

    Energy ratio of interference wave/effective wave and λ/a of inhomogeneous sample in the physical simulation ultrasonic frequency band

    表 1 

    不同尺度非均质样品组分含量

    Table 1. 

    Component content of heterogeneous samples with different scales

    模拟材料 体积分数/% 纵波速度/(m·s-1) 密度/(g·cm-3)
    环氧树脂 20 2460 1.18
    石英砂 80 4980 2.52
    下载: 导出CSV
  •  

    Buddensiek M L, Krawczyk C M, Kukowski N, et al. 2009. Performance of piezoelectric transducers in terms of amplitude and waveform. Geophysics, 74(2):T33-T45. doi: 10.1190/1.3072619

     

    Di B R, Xu X C, Wei J X. 2008. A seismic modeling analysis of wide and narrow 3D observation systems for channel sand bodies. Applied Geophysics, 5(4):294-300. doi: 10.1007/s11770-008-0022-6

     

    Gao F, Wei J X, Di B R, et al. 2018. A method of seismic physical modeling for quantitative simulation of formation attenuation. Chinese Journal of Geophysics (in Chinese), 61(12):5019-5033, doi:10.6038/cjg2018L0671.

     

    Li F Y, Wei J X, Di B R, et al. 2016. Seismic physical model of carbonate cavern reservoirs. Oil Geophysical Prospecting (in Chinese), 51(2):272-280.

     

    Li Q, Di B R, Wei J X. 2014. Carbonate reservoir cave volume estimation with seismic physical simulation. Oil Geophysical Prospecting (in Chinese), 49(6):1147-1156.

     

    Liu D F, Zhao Q, Xue S G, et al. 2015. Exploration of the reservoir fluid geological model material in seismic physical model. Progress in Geophysics (in Chinese), 30(2):636-640, doi:10.6038/pg20150221.

     

    Mahmoudian F, Margrave G F, Wong J, et al. 2015. Azimuthal amplitude variation with offset analysis of physical modeling data acquired over an azimuthally anisotropic medium. Geophysics, 80(1):C21-C35. doi: 10.1190/geo2014-0070.1

     

    Pei Y C, Yang Q Y, Zhao Q, et al. 2016. Research on silica micro-powders modified 3-D seismic physical model materials. Progress in Geophysics (in Chinese), 31(1):455-460, doi:10.6038/pg20160154.

     

    Pi J L, Teng J W, Liu Y S. 2018. Preliminary study on the numerical-physical simulation of seismic channel waves. Chinese Journal of Geophysics (in Chinese), 61(6):2481-2493, doi:10.6038/cjg2018K0529.

     

    Qu S L, Zhu S W, Zhao Q, et al. 2012. Analysis of seismic reflection characters for carbonate Karst reservoir. Chinese Journal of Geophysics (in Chinese), 55(6):2053-2061, doi:10.6038/j.issn.0001-5733.2012.06.027.

     

    Sherlock D, Mckenna J, Evans B. 2003. Time-lapse 3-D seismic physical modelling. Exploration Geophysics, 31(1-2):310-314.

     

    Shuey R T. 1985. A simplification of the Zoeppritz equations. Geophysics, 50(4):609-614. doi: 10.1190/1.1441936

     

    Si W P, Di B R, Wei J X. 2017. Seismic physical modeling and gas saturation prediction of partially-saturated gas sand reservoir. Chinese Journal of Geophysics (in Chinese), 60(4):1547-1556, doi:10.6038/cjg20170427.

     

    Sivaji C, Nishizawa O, Kitagawa G, et al. 2002. A physical-model study of the statistics of seismic waveform fluctuations in random heterogeneous media. Geophysical Journal International, 148(3):575-595. doi: 10.1046/j.1365-246x.2002.01606.x

     

    Stewart R R, Dyaur N, Omoboya B, et al. 2013. Physical modeling of anisotropic domains:Ultrasonic imaging of laser-etched fractures in glass. Geophysics, 78(1):D11-D19. doi: 10.1190/geo2012-0075.1

     

    Tang X M, Toksöz M N, Cheng C H. 1990. Elastic wave radiation and diffraction of a piston source. The Journal of the Acoustical Society of America, 87(5):1894-1902. doi: 10.1121/1.399316

     

    Tang X M, Zhu Z Y, Toksöz M N. 1992. Radiation patterns of compressional and shear transducers at the surface of an elastic half-space. The Journal of the Acoustical Society of America, 95(1):71.

     

    Wandler A, Evans B, Link C. 2007. AVO as a fluid indicator:A physical modeling study. Geophysics, 72(1):C9-C17. doi: 10.1190/1.2392817

     

    Wang L L, Wei J X, Huang P, et al. 2018. Seismic prediction method of multiscale fractured reservoir. Applied Geophysics, 15(2):240-252. doi: 10.1007/s11770-018-0667-8

     

    Wang S X, Li X Y, Di B R, et al. 2013. Reservoir fluid substitution effects on seismic profile interpretation:A physical modeling experiment. Geophysical Research Letters, 37(10):L10306, doi:10.1029/2010GL043090.

     

    Wei J X, Di B R, Wang L H. 2008. Seismic physical modeling for cavern reservoir. Geophysical Prospecting for Petroleum (in Chinese), 47(2):156-160.

     

    Wei X, Yang Z F, Yan X F. 2019. Multi-scale issue in seismic exploration and its research progress. Progress in Geophysics (in Chinese), 34(6):2353-2360, doi:10.6038/pg2019DD0239.

     

    Wu M S, Di B R, Wei J X, et al. 2014. Large-scale complex physical modeling and precision analysis. Applied Geophysics, 11(2):245-251. doi: 10.1007/s11770-014-0434-4

     

    Xu C, Di B R, Wei J X. 2014. Fluid identification of carbonate cave reservoir based on seismic physical modeling. Geophysical Prospecting for Petroleum (in Chinese), 53(1):116-124.

     

    Yin H Z, Mavko G, Mukerji T, et al. 1995. Scale effects on dynamic wave propagation in heterogeneous media. Geophysical Research Letters, 22(23):3163-3166. doi: 10.1029/95GL03174

     

    Yin Z H, Li X Y, Di B R, et al. 2011. Effects of offset-depth ratio on fracture detection: a physical modeling study.//81st Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.

     

    Zhao Q, Qu S L, Xue S G, et al. 2010. Study on the seismic response characteristics on the physical model of carbonate cave. Geophysical Prospecting for Petroleum (in Chinese), 49(4):351-358, 400.

     

    高峰, 魏建新, 狄帮让等. 2018.地层衰减定量模拟的地震物理模拟方法.地球物理学报, 61(12):5019-5033, doi:10.6038/cjg2018L0671. http://www.geophy.cn//CN/abstract/abstract14803.shtml

     

    李凡异, 魏建新, 狄帮让等. 2016.碳酸盐岩孔洞储层地震物理模型研究.石油地球物理勘探, 51(2):272-280. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201602009.htm

     

    李倩, 狄帮让, 魏建新. 2014.碳酸盐岩储层孔洞体积的地震物理模拟估算.石油地球物理勘探, 49(6):1147-1156. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201406023.htm

     

    刘东方, 赵群, 薛诗桂等. 2015.地震物理模型中储层流体地质模型材料的探索.地球物理学进展, 30(2):636-640, doi:10.6038/pg20150221.

     

    裴宇翀, 杨勤勇, 赵群等. 2016.硅微粉改性新型三维地震物理模型材料特性研究.地球物理学进展, 31(1):455-460, doi:10.6038/pg20160154.

     

    皮娇龙, 滕吉文, 刘有山. 2018.地震槽波的数学-物理模拟初探.地球物理学报, 61(6):2481-2493, doi:10.6038/cjg2018K0529. http://www.geophy.cn//CN/abstract/abstract14560.shtml

     

    曲寿利, 朱生旺, 赵群等. 2012.碳酸盐岩孔洞型储集体地震反射特征分析.地球物理学报, 55(6):2053-2061, doi:10.6038/j.issn.0001-5733.2012.06.027. http://www.geophy.cn//CN/abstract/abstract8714.shtml

     

    司文朋, 狄帮让, 魏建新. 2017.部分饱和砂岩储层地震物理模拟及含气饱和度预测分析.地球物理学报, 60(4):1547-1556, doi:10.6038/cjg20170427. http://www.geophy.cn//CN/abstract/abstract13621.shtml

     

    魏建新, 狄帮让, 王立华. 2008.孔洞储层地震物理模拟研究.石油物探, 47(2):156-160. doi: 10.3969/j.issn.1000-1441.2008.02.010

     

    未晛, 杨志芳, 晏信飞. 2019.地震勘探中的多尺度问题及其研究进展.地球物理学进展, 34(6):2353-2360, doi:10.6038/pg2019DD0239.

     

    徐超, 狄帮让, 魏建新. 2014.基于地震物理模拟的碳酸盐岩溶洞储层流体识别.石油物探, 53(1):116-124. doi: 10.3969/j.issn.1000-1441.2014.01.016

     

    赵群, 曲寿利, 薛诗桂等. 2010.碳酸盐岩溶洞物理模型地震响应特征研究.石油物探, 49(4):351-358, 400. doi: 10.3969/j.issn.1000-1441.2010.04.004

  • 加载中

(11)

(1)

计量
  • 文章访问数:  370
  • PDF下载数:  284
  • 施引文献:  0
出版历程
收稿日期:  2020-01-01
修回日期:  2020-11-12
上线日期:  2021-02-10

目录