中间层与低热层二氧化碳体积混合比的年际变化特征研究

刘栋, 董雁冰, 毛宏霞, 包醒东, 魏合理. 2021. 中间层与低热层二氧化碳体积混合比的年际变化特征研究. 地球物理学报, 64(2): 429-440, doi: 10.6038/cjg2021N0451
引用本文: 刘栋, 董雁冰, 毛宏霞, 包醒东, 魏合理. 2021. 中间层与低热层二氧化碳体积混合比的年际变化特征研究. 地球物理学报, 64(2): 429-440, doi: 10.6038/cjg2021N0451
LIU Dong, DONG YanBing, MAO HongXia, BAO XingDong, WEI HeLi. 2021. Interannual variations of carbon dioxide volume mixing ratio in the mesosphere and lower thermosphere. Chinese Journal of Geophysics (in Chinese), 64(2): 429-440, doi: 10.6038/cjg2021N0451
Citation: LIU Dong, DONG YanBing, MAO HongXia, BAO XingDong, WEI HeLi. 2021. Interannual variations of carbon dioxide volume mixing ratio in the mesosphere and lower thermosphere. Chinese Journal of Geophysics (in Chinese), 64(2): 429-440, doi: 10.6038/cjg2021N0451

中间层与低热层二氧化碳体积混合比的年际变化特征研究

  • 基金项目:

    光学辐射重点实验室基金项目(JCKYS2019204012),国家自然科学基金项目(41505023)资助

详细信息
    作者简介:

    刘栋, 男, 1991年生, 博士, 研究方向为中高层大气物理, 环境光学特性建模及其应用.E-mail:ldwl2009@126.com

    通讯作者: 董雁冰, 男, 1959年生, 博士生导师, 研究方向为环境光学特性建模, 环境遥感.E-mail:michaeld207@sohu.com
  • 中图分类号: P351

Interannual variations of carbon dioxide volume mixing ratio in the mesosphere and lower thermosphere

More Information
  • 利用17年的SABER(Sounding of the Atmosphere using Broadband Emission Radiometry)Level2C数据研究了中间层与低热层大气(MLT,Mesosphere and Lower Thermosphere)CO2 VMR(Volume Mixing Ratio)的年际变化特征.使用多元线性回归模型对双月平均时间序列拟合,定量地提取各变化特征.结果表明,SABER CO2 VMR长期趋势在中间层保持在5.5%/decade左右,在中间层顶和低热层降低至4.5%/decade左右;结果与模式预测在统计意义上相符.长期趋势没有显著的纬度差异,但在各纬度上都具有明显的季节依赖,MLT CO2 VMR长期趋势的季节性改变源自低层大气长期趋势季节性改变.SABER CO2 VMR对QBO(Quasi-Biannual Oscillation)和ENSO(El Niño-Southern Oscillation)在绝大多数区域没有统计显著的响应;对太阳活动11年循环以负响应为主,在部分区域出现的微弱正响应目前没有合适的物理机制解释.

  • 加载中
  • 图 1 

    SABER CO2 VMR全年所有廓线的当地时分布(以2013年数据为例)

    Figure 1. 

    The local time of one-year SABER CO2 VMR profiles (the case of 2013)

    图 2 

    典型纬度带的月平均CO2 VMR的时间-高度分布

    Figure 2. 

    The time-altitude sections of bimonthly mean CO2 VMR in the typical latitude bins

    图 3 

    三种年际扰动的指示因子的月平均时间序列

    Figure 3. 

    The monthly reference time series of the three interannual variations

    图 4 

    80 km、90 km、100 km处的CO2 VMR时间序列(以2.5°N—2.5°S纬度带为例)

    Figure 4. 

    The time series of CO2 VMR at 80 km, 90 km and 100 km (the case of 2.5°N—2.5°S)

    图 5 

    拟合重构时间序列与实测值时间序列的相关系数的纬度-高度分布

    Figure 5. 

    The latitude-altitude section of the correlation coefficients between reconstructed time series and observed time series

    图 6 

    全球平均的长期趋势对比

    Figure 6. 

    The comparison of global average annual mean trends

    图 7 

    长期趋势纬度高度分布的比较

    Figure 7. 

    The comparison of latitude-altitude section of the long-term trends

    图 8 

    长期趋势的季节依赖分布(20°N纬度带的结果)

    Figure 8. 

    The seasonal dependence of long-term trends (the case of 20°N latitude band)

    图 9 

    Mauna Loa地面观测站测量的CO2 VMR(2002— 2018)提取的长期趋势季节依赖(黑线);一年的月平均CO2 VMR(蓝线)

    Figure 9. 

    The seasonal dependence of long-term trend extracted from observed CO2 VMR at Mauna Loa ground station; black line denotes the trends; blue line denotes the one-year monthly CO2 VMR at this station

    图 10 

    CO2 VMR (a)对30 hPa QBO;(b)对10 hPa QBO的响应系数的纬度-高度分布,阴影区域表示结果在2σ置信度上是统计不显著的

    Figure 10. 

    The latitude-altitude sections of the response to interannual variations of CO2 VMR. The shade region denotes that the responses are insignificant statistically at confidence level. (a) to QBO at 30 hPa; (b) to QBO at 10 hPa

    图 11 

    类似于图 10,CO2 VMR对ENSO的响应系数的纬度-高度分布

    Figure 11. 

    Same as Figure 10, but for ENSO

    图 12 

    类似于图 10,CO2 VMR对太阳活动11年循环的响应系数的纬度-高度分布

    Figure 12. 

    Same as Figure 10, but for 11-year solar cycle

  •  

    Baldwin M P, Gray L J, Dunkerton T J, et al. 2001. The quasi-biennial oscillation. Reviews of Geophysics, 39(2):179-229. doi: 10.1029/1999RG000073

     

    Beagley S R, Boone C D, Fomichev V I, et al. 2010. First multi-year occultation observations of CO2 in the MLT by ACE satellite:observations and analysis using the extended CMAM. Atmospheric Chemistry and Physics, 9(3):1133-1153. http://www.oalib.com/paper/1366345

     

    Beig G. 2011. Long-term trends in the temperature of the mesosphere/lower thermosphere region:2. solar response. Journal of Geophysical Research:Space Physics, 116(A2):A00H12, doi:10.1029/2011JA016766.

     

    Bernath P F, McElroy C T, Abrams M C, et al. 2005. Atmospheric Chemistry Experiment (ACE):Mission overview. Geophysical Research Letters, 32(5):L15S01, doi:10.1029/2005GL022386.

     

    Bischof W, Borchers R, Fabian P, et al. 1985. Increased concentration and vertical distribution of carbon dioxide in the stratosphere. Nature, 316(6030):708-710. doi: 10.1038/316708a0

     

    Emmert J T, Stevens M H, Bernath P F, et al. 2012. Observations of increasing carbon dioxide concentration in earth's thermosphere. Nature Geoscience, 5(12):868-871. doi: 10.1038/ngeo1626

     

    Etheridge, D. M, Steele, L. P, Langenfelds, R. L, et al. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research, 101(D2):4115-4128, doi:10.1029/95JD03410.

     

    Fischer H, Birk M, Blom C, et al. 2008. MIPAS:an instrument for atmospheric and climate research. Atmospheric Chemistry and Physics, 8(8):2151-2188. doi: 10.5194/acp-8-2151-2008

     

    Garcia R R, López-Puertas M, Funke B, et al. 2014. On the distribution of CO2 and CO in the mesosphere and lower thermosphere. Journal of Geophysical Research:Atmospheres, 119(9):5700-5718. doi: 10.1002/2013JD021208

     

    Garcia R R, López-Puertas M, Funke B, et al. 2016. On the secular trend of COx and CO2 in the lower thermosphere. Journal of Geophysical Research:Atmospheres, 121(7):3634-3644. doi: 10.1002/2015JD024553

     

    Goody R M, Yung Y L. 1989. Atmospheric Radiation:Theoretical Basis. 2nd ed. Oxford:Oxford University Press.

     

    Jurado-Navarro A Á, López-Puertas M, Funke B, et al. 2016. Global distributions of CO2 volume mixing ratio in the middle and upper atmosphere from daytime MIPAS high-resolution spectra. Atmospheric Measurement Techniques, 9(12):6081-6100. doi: 10.5194/amt-9-6081-2016

     

    López-Puertas M, Taylor F W. 2001. Non-LTE Radiative Transfer in the Atmosphere. Singapore:World Scientific.

     

    López-Puertas M, López-Valverde M Á, Garcia R R, et al. 2000. A review of CO2 and CO abundances in the middle atmosphere.//Siskind D E, Eckermann S D, Summers M E eds. Atmospheric Science Across the Stratopause. Washington D C: Geophysical Monograph Series.

     

    Li T, Calvo N, Yue J, et al. 2013. Influence of El Niño-Southern oscillation in the mesosphere. Geophysical Research Letters, 40(12):3292-3296. doi: 10.1002/grl.50598

     

    Liu X, Yue J, Xu J Y, et al. 2017. Variations of global gravity waves derived from 14 years of saber temperature observations. Journal of Geophysical Research:Atmospheres, 122(12):6231-6249. doi: 10.1002/2017JD026604

     

    Marsh D R, Mills M J, Kinnison D E, et al. 2013. Climate change from 1850 to 2005 simulated in CESM1 (WACCM). Journal of Climate, 26(19):7372-7391. doi: 10.1175/JCLI-D-12-00558.1

     

    Mlynczak M G, Mertens C J, Garcia R R, et al. 1999. A detailed evaluation of the stratospheric heat budget:2. Global radiation balance and diabatic circulations. Journal of Geophysical Research:Atmospheres, 104(D6):6039-6066. doi: 10.1029/1998JD200099

     

    Mlynczak M G, Hunt L A, Thomas M B, et al. 2010. Observationsof infrared radiative cooling in the thermosphere on daily to multiyear timescales from the timed/saber instrument. Journal of Geophysical Research:Space Physics, 115(A3):A03309, doi:10.1029/2009JA014713.

     

    Mlynczak M G, Daniels T, Hunt L A, et al. 2020. Radiometric stability of the SABER instrument. Earth and Space Science, 7(2):e2019EA001011, doi:10.1029/2019EA001011.

     

    Offermann D, Grossmann K U. 1973. Thermospheric density and composition as determined by a mass spectrometer with cryo ion source. Journal of Geophysical Research, 78(34):8296-8304. doi: 10.1029/JA078i034p08296

     

    Qian L Y, Burns A G, Solomon S C, et al. 2017. Carbon dioxide trends in the mesosphere and lower thermosphere. Journal of Geophysical Research:Space Physics, 122(4):4474-4488. doi: 10.1002/2016JA023825

     

    Randel W J, Cobb J B. 1994. Coherent variations of monthly mean total ozone and lower stratospheric temperature. Journal of Geophysical Research:Atmospheres, 99(D3):5433-5447. doi: 10.1029/93JD03454

     

    Randel W J, Wu F. 1996. Isolation of the ozone QBO in SAGE Ⅱ data by singular-value decomposition. Journal of Atmospheric Sciences, 53(17):2546-2559. doi: 10.1175/1520-0469(1996)053<2546:IOTOQI>2.0.CO;2

     

    Randel W J, Garcia R R, Calvo N, et al. 2009. ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophysical Research Letters, 36(15):L15822, doi:10.1029/2009GL039343.

     

    Rezac L, Kutepov A, Russell Ⅲ J M, et al. 2015a. Simultaneous retrieval of T(p) and CO2 VMR from two-channel non-LTE limb radiances and application to daytime SABER/TIMED measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 130-131:23-42. doi: 10.1016/j.jastp.2015.05.004

     

    Rezac L, Jian Y, Yue J, et al. 2015b. Validation of the global distribution of CO2 volume mixing ratio in the mesosphere and lower thermosphere from SABER. Journal of Geophysical Research:Atmospheres, 120(23):12067-12081. http://smartsearch.nstl.gov.cn/paper_detail.html?id=9aae335a998dff647d5c478a04348741

     

    Rezac L, Yue J, Jian Y X, et al. 2018. On long-term SABER CO2 trends and effects due to non-uniform space and time sampling. Journal of Geophysical Research:Space Physics, 134(9):7958-7967. http://onlinelibrary.wiley.com/doi/10.1029/2018JA025892

     

    Richter J H, Sassi F, Garcia R R. 2010. Toward a physically based gravity wave source parameterization in a general circulation model. Journal of Atmospheric Sciences, 67(1):136-156. doi: 10.1175/2009JAS3112.1

     

    Roble R G, Dickinson R E. 1989. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophysical Research Letters, 16(12):1441-1444. doi: 10.1029/GL016i012p01441

     

    Smith A K, Garcia R R, Marsh D R, et al. 2011. WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. Journal of Geophysical Research:Atmospheres, 116(D20):D20115, doi:10.1029/2011JD016083.

     

    Tapping K F. 2013. The 10.7 cm solar radio flux (F10.7). Space Weather, 11(7):394-406. doi: 10.1002/swe.20064

     

    Trinks H, Fricke K H. 1978. Carbon dioxide concentrations in the lower thermosphere. Journal of Geophysical Research:Space Physics, 83(A8):3883-3886. doi: 10.1029/JA083iA08p03883

     

    Wolter K, Timlin M S. 2011. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). International Journal of Climatology, 31(7):1074-1087. doi: 10.1002/joc.2336

     

    Yi W, Xue X, Chen J, et al. 2019, Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER. Earth and Planetary Physics, 3:136-146. doi:10.26464/epp2019013.

     

    Yue J, Russell Ⅲ J, Jian Y X, et al. 2015. Increasing carbon dioxide concentration in the upper atmosphere observed by SABER. Geophysical Research Letters, 42(17):7194-7199. doi: 10.1002/2015GL064696

  • 加载中

(12)

计量
  • 文章访问数:  391
  • PDF下载数:  149
  • 施引文献:  0
出版历程
收稿日期:  2019-12-26
修回日期:  2020-12-30
上线日期:  2021-02-10

目录