利用远震P波接收函数研究中国福建地区地壳厚度和泊松比

李海艳, 蔡辉腾, 金星, 姚华建, 李培, 徐嘉隽, 林琛, 任丛荣. 2021. 利用远震P波接收函数研究中国福建地区地壳厚度和泊松比. 地球物理学报, 64(3): 805-822, doi: 10.6038/cjg2021N0431
引用本文: 李海艳, 蔡辉腾, 金星, 姚华建, 李培, 徐嘉隽, 林琛, 任丛荣. 2021. 利用远震P波接收函数研究中国福建地区地壳厚度和泊松比. 地球物理学报, 64(3): 805-822, doi: 10.6038/cjg2021N0431
LI HaiYan, CAI HuiTeng, JIN Xing, YAO HuaJian, LI Pei, XU JiaJun, LIN Chen, REN CongRong. 2021. Analysis of the crustal thickness and Poisson's ratio in Fujian, Southeast China, from teleseismic P-wave receiver functions. Chinese Journal of Geophysics (in Chinese), 64(3): 805-822, doi: 10.6038/cjg2021N0431
Citation: LI HaiYan, CAI HuiTeng, JIN Xing, YAO HuaJian, LI Pei, XU JiaJun, LIN Chen, REN CongRong. 2021. Analysis of the crustal thickness and Poisson's ratio in Fujian, Southeast China, from teleseismic P-wave receiver functions. Chinese Journal of Geophysics (in Chinese), 64(3): 805-822, doi: 10.6038/cjg2021N0431

利用远震P波接收函数研究中国福建地区地壳厚度和泊松比

  • 基金项目:

    国家自然科学基金项目(41790461,51678539),国家重点研发计划(2018YFC1503204),福建省地震局青年项目(Y201901),地震科技星火计划(XH19024Y,XH19023Y)联合资助

详细信息
    作者简介:

    李海艳, 女, 1990年生, 工程师, 主要从事地球深部构造、地震活动性方面的研究工作.E-mail: lihyswallow@163.com

    通讯作者: 蔡辉腾, 男, 1982年生, 正研级工程师, 主要从事主动源探测数据处理及解释工作.E-mail: caihuiteng@126.com
  • 中图分类号: P315

Analysis of the crustal thickness and Poisson's ratio in Fujian, Southeast China, from teleseismic P-wave receiver functions

More Information
  • 地壳厚度和泊松比是反映地壳结构和内部物质组成的重要参数,能够为区域构造和动力学研究提供重要依据.本文基于福建地区分布相对均匀的88个测震台2014—2017年的远震波形数据提取P波接收函数,采用H-κ叠加获得台站下方的地壳厚度和泊松比,并与该地区已有的研究结果进行对比、分析及整合,最终获得了研究区117个观测台站下方的地壳厚度和泊松比,揭示了中国福建地区地壳结构和泊松比变化特征.结果显示:(1)研究区内地壳厚度整体较薄,在27.4~34.3 km之间,平均值为31.4 km.地壳厚度从西北往东南减薄,具有明显条带和块状特征,与地壳主要深大断裂的分布有一定相关性.本文以更为密集的台站结果进一步验证了研究区具有由陆壳向洋壳逐渐减薄的过渡特征,并揭示了地壳新的局部起伏.这也意味着福建地区从内陆到沿海并非线性减薄,存在小尺度横向非均匀性.(2)研究区内泊松比平均值为0.25,范围为0.20~0.30,北部整体偏高,南部整体较低,泊松比分布特征与该区地壳物质组成和矿物含量密切相关.沿海地区泊松比明显高于内陆地区,推测与沿海地区较高的热流值和幔源物质底侵过程有关.(3)地壳厚度与泊松比成负相关,推测在地壳伸展背景下,古太平洋板块俯冲华南大陆,幔源物质进入地壳,在造成莫霍面抬升的同时提高了泊松比.

  • 加载中
  • 图 1 

    研究区域地质构造(a)和台站分布(b)

    Figure 1. 

    Tectonics and seismic stations used in the study

    图 2 

    用于H-κ叠加的远震事件分布图(色标表示震级)

    Figure 2. 

    Teleseismic event locations of H-κ stacking in this study(color code represents magnitude)

    图 3 

    JOJA、NPDK、XMSM、SXFK、HAHF和PHSG台站用于H-κ叠加的径向接收函数

    Figure 3. 

    Radial receiver function for H-κ stacking at some stations (JOJA、NPDK、XMSM、SXFK、HAHF、PHSG)

    图 4 

    H-κ叠加结果展示

    Figure 4. 

    H-κ stacking result at some stations (JOJA、NPDK、XMSM、SXFK、HAHF、PHSG) in this study

    图 5 

    台站下方地壳厚度分布(a)、波速比分布(b)和泊松比分布(c)直方图

    Figure 5. 

    Histogram distribution of crustal thickness (a), velocity ratio distribution (b) and Poisson′s ratio (c) beneath the stations

    图 6 

    地壳厚度和波速比与前人接收函数结果一致性分析

    Figure 6. 

    Consistency analysis of crustal thickness and VP/VS ratio with previous receiver function results

    图 7 

    地壳厚度和波速比与前人接收函数结果对比图

    Figure 7. 

    Comparison of crustal thickness and VP/VS with previous receiver function results

    图 8 

    福建地区的地壳厚度分布

    Figure 8. 

    Variation of crustal thickness in the Fujian Province

    图 9 

    福建地区的泊松比分布图

    Figure 9. 

    Variation of Poisson′s ratio in the Fujian Province

    图 10 

    本研究所得地壳厚度同前人地震测深所得结果对比

    Figure 10. 

    Comparison of crustal thickness with previous seismic sounding profiles results

    图 11 

    地壳厚度与泊松比的相关性

    Figure 11. 

    Correlation of crustal thickness with Poisson′s ratio

    表 1 

    台站下方地壳厚度H、波速比κ及泊松比δ

    Table 1. 

    Crustal thickness H, velocity ratio κ and Poisson′s ratio δ beneath stations

    序号 台站名 经度(°E) 纬度(°N) H/km κ δ
    1 AXCK 117.87 25.22 32.20±0.92 1.68±0.03 0.23
    2 AXCN 118.20 25.07 29.60±0.64 1.77±0.03 0.27
    3 AXDP 117.96 24.89 30.90±0.85 1.84±0.04 0.29
    4 CTCX 117.74 24.69 30.40±0.64 1.76±0.03 0.26
    5 CTTZ 116.35 25.84 32.70±0.64 1.70±0.03 0.24
    6 DHTT 118.12 25.80 31.70±0.55 1.70±0.02 0.24
    7 DHTZ 118.22 25.50 32.80±0.82 1.71±0.03 0.24
    8 DSXP 117.42 23.70 28.30±0.77 1.75±0.03 0.26
    9 DTJX 117.84 25.68 31.90±0.91 1.73±0.04 0.25
    10 FACY 119.67 27.10 33.30±0.93 1.74±0.03 0.25
    11 FDGL 120.24 27.37 32.10±1.14 1.78±0.05 0.27
    12 FDQY 120.25 27.11 32.20±0.97 1.71±0.06 0.24
    13 FQDZ 119.28 25.70 29.20±0.67 1.84±0.03 0.29
    14 FZLQ 119.57 26.10 33.90±1.53 1.69±0.04 0.23
    15 FZRX 119.28 26.35 31.10±0.76 1.80±0.04 0.28
    16 GTSK 118.72 26.37 33.30±1.28 1.71±0.05 0.24
    17 GTYT 118.73 26.59 32.00±1.09 1.73±0.05 0.25
    18 HAHF 117.52 25.01 33.20±0.49 1.67±0.02 0.22
    19 HAJF 118.95 24.97 29.00±0.48 1.73±0.03 0.25
    20 JJJJ 118.59 24.54 28.50±0.66 1.76±0.04 0.26
    21 JLNK 117.48 26.58 33.10±0.96 1.66±0.04 0.22
    22 JNSX 116.92 26.80 33.40±0.84 1.67±0.03 0.22
    23 JOJA 118.33 27.05 30.40±0.80 1.76±0.03 0.26
    24 LCGT 116.89 25.73 32.80±0.55 1.71±0.02 0.24
    25 LCJX 116.72 25.49 33.70±0.56 1.65±0.02 0.21
    26 LJTL 119.92 26.35 30.80±1.06 1.81±0.04 0.28
    27 LYJJ 119.76 26.55 30.30±0.94 1.83±0.04 0.29
    28 LYXP 117.02 25.12 31.40±0.84 1.75±0.05 0.26
    29 MHZQ 119.03 26.09 30.50±0.62 1.81±0.03 0.28
    30 MQDQ 118.90 26.38 32.20±0.73 1.79±0.03 0.27
    31 MQXJ 118.72 26.31 32.60±1.01 1.68±0.04 0.23
    32 MXXF 117.18 26.35 33.60±0.91 1.72±0.03 0.24
    33 NDZW 119.56 26.67 31.80±1.29 1.82±0.06 0.28
    34 NHCN 116.67 26.22 33.30±0.76 1.65±0.03 0.21
    35 NJJS 117.33 24.79 32.30±0.60 1.76±0.03 0.26
    36 NPDK 118.18 26.61 30.40±0.88 1.70±0.04 0.24
    37 PCGL 118.54 28.22 32.00±0.70 1.81±0.03 0.28
    38 PCNP 118.51 27.90 33.10±0.94 1.76±0.03 0.26
    39 PHJF 117.05 24.22 32.30±0.68 1.67±0.03 0.22
    40 PHSG 117.34 24.39 32.10±0.72 1.75±0.03 0.26
    41 PNTK 118.97 26.97 32.80±1.04 1.73±0.04 0.25
    42 PTAQ 119.84 25.45 29.40±0.85 1.85±0.04 0.29
    43 PTDT 119.26 25.26 29.40±0.65 1.78±0.03 0.27
    44 PTLC 119.01 25.44 29.10±0.86 1.79±0.06 0.27
    45 PTMZ 119.11 25.04 28.90±0.53 1.71±0.03 0.24
    46 PTNR 119.47 25.22 29.70±0.59 1.76±0.03 0.26
    47 QGQH 118.90 25.14 28.80±0.81 1.76±0.04 0.26
    48 QZH 118.59 24.94 28.60±0.60 1.72±0.03 0.24
    49 SCLX 117.98 26.96 32.00±1.04 1.66±0.04 0.22
    50 SHLC 116.45 25.03 32.30±0.87 1.69±0.04 0.23
    51 SHXD 116.44 24.82 30.50±0.71 1.77±0.04 0.27
    52 SNQY 119.48 27.40 31.80±0.75 1.81±0.04 0.28
    53 SWDT 117.48 27.33 33.10±0.71 1.66±0.03 0.22
    54 SXFK 117.64 26.39 30.30±0.84 1.76±0.04 0.26
    55 SXJX 118.84 27.60 32.20±0.91 1.75±0.04 0.26
    56 TNSC 117.18 26.90 32.70±0.95 1.69±0.04 0.23
    57 WPPC 116.11 25.06 34.10±0.86 1.65±0.03 0.21
    58 WPXD 116.20 25.43 32.80±0.90 1.71±0.03 0.24
    59 WYXF 118.01 27.74 32.70±0.62 1.77±0.02 0.27
    60 XMJM 117.97 24.65 30.30±0.78 1.70±0.04 0.24
    61 XMSM 118.08 24.45 27.40±0.72 1.83±0.05 0.29
    62 XPSS 120.19 26.92 29.80±0.80 1.81±0.04 0.28
    63 XYSC 118.73 25.61 34.20±0.89 1.64±0.03 0.20
    64 XYXY 118.58 25.58 33.60±1.21 1.71±0.05 0.24
    65 YAHN 117.71 25.96 32.40±0.99 1.72±0.04 0.24
    66 YAXT 117.12 25.72 31.80±0.80 1.74±0.04 0.25
    67 YAYX 117.35 25.99 32.60±0.65 1.71±0.03 0.24
    68 YCSG 118.22 25.33 30.30±0.69 1.77±0.03 0.27
    69 YDXS 116.63 24.69 31.70±0.81 1.68±0.03 0.23
    70 YTFQ 118.87 25.82 32.90±1.03 1.69±0.03 0.23
    71 YTGL 119.09 25.84 34.30±1.21 1.70±0.04 0.24
    72 YTGY 118.47 25.83 33.10±0.82 1.68±0.03 0.23
    73 YXBM 118.11 26.03 31.50±0.74 1.72±0.03 0.24
    74 YXHT 117.39 23.98 28.60±1.91 1.76±0.07 0.26
    75 ZAQD 117.19 23.67 28.10±0.66 1.82±0.03 0.28
    76 ZHNZ 118.86 27.35 31.50±0.63 1.75±0.03 0.26
    77 ZPCH 117.87 24.13 28.20±0.60 1.79±0.03 0.27
    78 ZPLA 117.74 23.93 28.20±0.68 1.76±0.04 0.26
    79 ZPXH 117.65 25.40 31.80±0.75 1.74±0.03 0.25
    80 ZZJH 117.63 24.46 30.40±0.66 1.72±0.03 0.24
    下载: 导出CSV
  •  

    Ai Y S, Chen Q F, Zeng F, et al. 2007. The crust and upper mantle structure beneath southeastern China. Earth and Planetary Science Letters, 260(3-4): 549-563. doi: 10.1016/j.epsl.2007.06.009

     

    Akpan O, Nyblade A, Okereke C, et al. 2016. Crustal structure of Nigeria and Southern Ghana, West Africa from P-wave receiver functions. Tectonophysics, 676: 250-260. doi: 10.1016/j.tecto.2016.02.005

     

    Bostock M G. 1998. Mantle stratigraphy and evolution of the Slave Province. Journal of Geophysical Research: Solid Earth, 103(B9): 21183-21200. doi: 10.1029/98JB01069

     

    Cai H T, Hao K C, Jin X, et al. 2015. A three-dimensional Vp, Vs, and Vp/Vs crustal structure in Fujian, Southeast China, from active- and passive-source experiments. Journal of Asian Earth Sciences, 111: 517-527. doi: 10.1016/j.jseaes.2015.06.014

     

    Cai H T, Jin X, Wang S X. 2015. Establishment of crust 1D velocity structure based on artificial earthquake sounding data. Journal of Geodesy and Geodynamics (in Chinese), 35(2): 267-272. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201502023.htm

     

    Cai H T, Jin X, Wang S X, et al. 2016. The crust structure and velocity structure characteristics beneath Ninghua-Datian-Hui'an. Chinese Journal of Geophysics (in Chinese), 59(1): 157-168, doi:10.6038/cjg20160113.

     

    Chen J F, Jahn B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284(1-2): 101-133. doi: 10.1016/S0040-1951(97)00186-8

     

    Chen W S, Yang H C, Wang X, et al. 2002. Tectonic setting and exhumation history of the Pingtan-Dongshan Metamorphic Belt along the coastal area, Fujian Province, Southeast China. Journal of Asian Earth Sciences, 20(7): 829-840. doi: 10.1016/S1367-9120(01)00066-9

     

    Chen Y L, Niu F L, Liu R F, et al. 2010. Crustal structure beneath China from receiver function analysis. Journal of Geophysical Research: Solid Earth, 115(B3): B03307, doi:10.1029/2009JB006386.

     

    Chopra S, Chang T M, Saikia S, et al. 2014. Crustal structure of the Gujarat region, India: New constraints from the analysis of teleseismic receiver functions. Journal of Asian Earth Sciences, 96: 237-254. doi: 10.1016/j.jseaes.2014.09.023

     

    Christensen N I. 1996. Poisson's ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2): 3139-3156. doi: 10.1029/95JB03446

     

    Dong C W, Yan Q, Zhang D R, et al. 2010. Late Mesozoic extension in the coastal area of Zhejiang and Fujian provinces: a petrologic indicator from the Dongji Island mafic dike swarms. Acta Petrologica Sinica (in Chinese), 26(4): 1195-1203.

     

    Dong S W, Li J H, Cawood P A, et al. 2020. Mantle influx compensates crustal thinning beneath the Cathaysia Block, South China: Evidence from SINOPROBE reflection profiling. Earth and Planetary Science Letters, 544: 116360. doi: 10.1016/j.epsl.2020.116360

     

    Fujian Institute of Geological Survey. 2016. Regional Geology of China, Fujian Province (in Chinese). Beijing: Geological Publishing House, 21-23.

     

    Guo X R, Xie Z Z, Yan P, et al. 2019. The exploration on the deep crustal structure in the Fujian-Western Taiwan Strait and study on the littoral fault zone. South China Journal of Seismology (in Chinese), 39(2): 34-42. http://en.cnki.com.cn/Article_en/CJFDTotal-HNDI201902006.htm

     

    Guo Z, Chen Y J, Ning J Y, et al. 2015. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data. Earth and Planetary Science Letters, 416: 1-11. doi: 10.1016/j.epsl.2015.01.044

     

    Guo Z, Gao X, Li T, et al. 2018. Crustal and uppermost mantle structures of the South China from joint analysis of receiver functions and Rayleigh wave dispersions. Physics of the Earth and Planetary Interiors, 278: 16-25. doi: 10.1016/j.pepi.2018.03.001

     

    Gurrola H, Baker G E, Minster J B. 1995. Simultaneous time-domain deconvolution with application to the computation of receiver functions. Geophysical Journal International, 120(3): 537-543. doi: 10.1111/j.1365-246X.1995.tb01837.x

     

    He R Z, Shang X F, Yu C Q, et al. 2014. A unified map of Moho depth and Vp/Vs ratio of continental China by receiver function analysis. Geophysical Journal International, 199(3): 1910-1918. doi: 10.1093/gji/ggu365

     

    He Z Y, Xu X S. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: response to the geodynamics of paleo-Pacific plate subduction. Chemical Geology, 328: 208-221. doi: 10.1016/j.chemgeo.2011.09.014

     

    Hu J F, Yang H Y, Li G Q, et al. 2015. A review on the analysis of the crustal and upper mantle structure using receiver functions. Journal of Asian Earth Sciences, 111: 589-603. doi: 10.1016/j.jseaes.2015.06.007

     

    Hu S B, He L J, Wang J Y. 2000. Heat flow in the continental area of China: a new data set. Earth and Planetary Science Letters, 179(2): 407-419. doi: 10.1016/S0012-821X(00)00126-6

     

    Huang H, Mi N, Xu M J, et al. 2010. S-wave velocity structures of the crust and uppermost mantle, and, Possion's ratios in Fujian province. Geological Journal of China Universities (in Chinese), 16(4): 465-474. http://www.researchgate.net/publication/281601093_S-wave_velocity_structures_of_the_crust_and_uppermost_mantle_and_Poisson_ratios_in_Fujian_Province

     

    Huang H B, Guo X W, Xia S H, et al. 2014. Crustal thickness and Poisson's ratio in the coastal areas of South China. Chinese Journal of Geophysics (in Chinese), 57(12): 3896-3906, doi:10.6038/cjg20141204.

     

    Huang R, Zhu L P, Xu Y X. 2014. Crustal structure of Hubei Province of China from teleseismic receiver functions: Evidence for lower crust delamination. Tectonophysics, 636: 286-292. doi: 10.1016/j.tecto.2014.09.001

     

    Huang T K. 1978. An outline of the tectonic characteristics of China. Acta Geologica Sinica, 71(3): 611-635. http://ci.nii.ac.jp/naid/110007091742

     

    Ji S C, Wang Q, Yang W C. 2009. Correlation between crustal thickness and Poisson's ratio in the North China Craton and its implication for lithospheric thinning. Acta Geologica Sinica (in Chinese), 83(3): 324-330. http://www.researchgate.net/publication/289069434_Correlation_between_crustal_thickness_and_poisson's_ratio_in_the_North_China_craton_and_its_implication_for_lithospheric_thinning

     

    Ji S C, Wang Q, Salisbury M H. 2009. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson's ratio. Tectonophysics, 463(1-4): 15-30. doi: 10.1016/j.tecto.2008.09.007

     

    Jin Z, Li S Y, Cai H T, et al. 2018. 3D P-wave velocity structure of crust in Fujian and the southern Taiwan Strait derived from air-gun seismic data. Chinese Journal of Geophysics (in Chinese), 61(7): 2776-2787, doi:10.6038/cjg2018L0379.

     

    Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2): 429-465. doi: 10.1111/j.1365-246X.1991.tb06724.x

     

    Kuo Y W, Wang C Y, Hao K C, et al. 2015. Crustal structures from the Wuyi-Yunkai orogen to the Taiwan orogen: The onshore-offshore wide-angle seismic experiments of the TAIGER and ATSEE projects. Tectonophysics, 692: 164-180.

     

    Langston C A. 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research: Solid Earth, 84(B9): 4749-4762. doi: 10.1029/JB084iB09p04749

     

    Li C Q, Shen X Z, Qin M Z. 2014. The effect of P wave velocity on the H-k stacking results of receiver functions. Acta Seismologica Sinica (in Chinese), 36(3): 480-490. http://www.researchgate.net/publication/286547700_The_effect_of_P_wave_velocity_on_the_H-k_stacking_results_of_receiver_functions

     

    Li J, Jin X, Bao T, et al. 2011. The wave velocity structure of upper shell in Fujian estimated by the noise records. Earthquake Research in China (in Chinese), 27(3): 226-234. http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=ZGZD201103004&dbcode=CJFD&year=2011&dflag=pdfdown

     

    Li J H, Zhang Y Q, Dong S W, et al. 2014a. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth-Science Reviews, 134: 98-136. doi: 10.1016/j.earscirev.2014.03.008

     

    Li P, Jin X, Wang S X, et al. 2015. Crustal velocity structure of the Shaowu-Nanping-Pingtan transect through Fujian from deep seismic sounding-tectonic implications. Science China: Earth Sciences (in Chinese), 45(11): 1757-1767. doi: 10.1007/s11430-015-5191-6

     

    Li P, Cai H T, Jin X, et al. 2019. Basement structure beneath the southeastern margin in Chinese continent. Chinese Journal of Geophysics (in Chinese), 62(8): 2991-3003, doi:10.6038/cjg2019M0136.

     

    Li Q S, Gao R, Wu F T, et al. 2013. Seismic structure in the southeastern China using teleseismic receiver functions. Tectonophysics, 606: 24-35. doi: 10.1016/j.tecto.2013.06.033

     

    Li X B, Song X D, Zheng S H, et al. 2019a. A 1D P-wave velocity model of Fujian Province, China and earthquake locations from controlled explosions. Chinese Journal of Geophysics (in Chinese), 62(5): 1716-1733, doi:10.6038/cjg2019M0277.

     

    Li X B, Xiong Z, Fan X P, et al. 2019b. The 3-D velocity structure of crust and uppermost mantle and its tectonic implications in Fujian province. Seismology and Geology (in Chinese), 41(5): 1206-1222. http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201905009.htm

     

    Li X H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. doi: 10.1016/S1367-9120(99)00060-7

     

    Li Y H, Wu Q J, Tian X B, et al. 2009. Crustal structure in the Yunnan region determined by modeling receiver functions. Chinese Journal of Geophysics (in Chinese), 52(1): 67-80. http://www.researchgate.net/publication/299077714_Crustal_structure_in_the_Yunnan_region_determined_by_modeling_receiver_functions

     

    Li Z, Qiu J S, Yang X M. 2014b. A review of the geochronology and geochemistry of Late Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China: Implications for magma evolution related to slab break-off and rollback in the Cretaceous. Earth-Science Reviews, 128: 232-248. doi: 10.1016/j.earscirev.2013.09.007

     

    Li Z N, Zheng Y, Xiong X, et al. 2014. Research on crustal three dimensional velocity structure in Fujian-Taiwan region and its tectonic implications. Journal of Seismological Research (in Chinese), 37(1): 29-38. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201401005.htm

     

    Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1

     

    Liao Q L, Wang Z M, Wang P L, et al. 1988. Explosion seismic study of the crustal structure in Fuzhou-Quanzhou-Shantou region. Acta Geophysica Sinica (in Chinese), 31(3): 270-280. http://en.cnki.com.cn/article_en/cjfdtotal-dqwx198803003.htm

     

    Liao Q L, Wang Z M, Qiu T X, et al. 1990. Preliminary research of the crustal structure in Fuzhou basin and its adjacent area. Acta Geophysica Sinica (in Chinese), 33(2): 163-173. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199002007.htm

     

    Ligorría J P, Ammon C J. 1999. Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5): 1395-1400. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=89/5/1395

     

    Mao J R, Li Z L, Ye H M. 2014. Mesozoic tectono-magmatic activities in South China: Retrospect and prospect. Science China Earth Sciences, 57(12): 2853-2877. doi: 10.1007/s11430-014-5006-1

     

    Ren J S, Chen T Y, Niu B G, et al. 1990. Tectonic Evolution of the Continental Lithosphere and Metallogeny in Eastern China and Adjacent Areas (in Chinese). Beijing: Sciences Press, 67-72.

     

    Shu L S, Zhou X M. 2002. Late Mesozoic tectonism of southeast China. Geological Review (in Chinese), 48(3): 249-260. http://www.researchgate.net/publication/284418750_Late_Mesozoic_tectonism_of_Southeast_China

     

    Shu L S, Faure M, Yu J H, et al. 2011. Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research, 187(3-4): 263-276. doi: 10.1016/j.precamres.2011.03.003

     

    Wan T F, Zhao Q L. 2012. The genesis of tectono-magmatism in eastern China. Science China Earth Sciences, 55(3): 347-354. doi: 10.1007/s11430-011-4361-4

     

    Wang P Z, Chen Y A, Cao B T, et al. 1993. Crust-upper-mantle structure and deep structural setting of Fujian Province. Geological of Fujian (in Chinese), 12(2): 79-158. http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJDZ199302000.htm

     

    Wang S, Zhang D, Wu G G, et al. 2017. Late Paleozoic to Mesozoic extension in southwestern Fujian Province, South China: Geochemical, geochronological and Hf isotopic constraints from basic-intermediate dykes. Geoscience Frontiers, 8(3): 529-540. doi: 10.1016/j.gsf.2016.05.005

     

    Wei D G, Jie Y J, Huang T G. 1997. Regional geological structure of Fujian. Regional Geology of China (in Chinese), 16(2): 163-170. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD702.006.htm

     

    Wei Z G, Chu R S, Chen L, et al. 2016. Analysis of H-k stacking of receiver functions beneath crust with complex structure: taking the Anatolia Plate as an example. Chinese Journal of Geophysics (in Chinese), 59(11): 4048-4062, doi:10.6038/cjg20161110.

     

    Wong J, Sun M, Xing G F, et al. 2009. Geochemical and zircon U-Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite: extension at 125-100 Ma and its tectonic significance for South China. Lithos, 112(3-4): 289-305. doi: 10.1016/j.lithos.2009.03.009

     

    Xiong S B, Jin D M, Sun K Z, et al. 1991. Some characteristics of deep structure of the Zhangzhou geothermal field and it's neighbourhood in the Fujian province. Acta Geophysica Sinica (in Chinese), 34(1): 55-63. http://www.researchgate.net/publication/285761818_Some_characteristics_of_deep_structure_of_the_Zhangzhou_geothermal_field_and_it's_neighbourhood_in_the_Fujian_province

     

    Xu Q, Zhao J M, Cui Z X, et al. 2009. Structure of the crust and upper mantle beneath the southeastern Tibetan Plateau by P and S receiver functions. Chinese Journal of Geophysics (in Chinese), 52(12): 3001-3008, doi:10.3969/j.issn.0001-5733.2009.12.009.

     

    Xu X S, O'Reilly S Y, Griffin W L, et al. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158(1-2): 51-78. doi: 10.1016/j.precamres.2007.04.010

     

    Yang H Y, Hu J F, Li G Q, et al. 2011. Analysis of the crustal thickness and Poisson's ratio in eastern Tibet from teleseismic receiver functions. Geophysical Journal International, 186(3): 1380-1388. doi: 10.1111/j.1365-246X.2011.05118.x

     

    Ye Z, Li Q S, Gao R, et al. 2013. Seismic receiver functions revealing crust and upper mantle structure beneath the continental margin of southeastern China. Chinese Journal of Geophysics (in Chinese), 56(9): 2947-2958, doi:10.6038/cjg20130909.

     

    Ye Z, Li Q S, Gao R, et al. 2014. A thinned lithosphere beneath coastal area of southeastern China as evidenced by seismic receiver functions. Science China Earth Sciences, 57(11): 2835-2844. doi: 10.1007/s11430-014-4863-y

     

    Yuan L W, Zheng S H. 2009. Moho depths beneath broad-band stations in Fujian area Inversed by teleseismic receiver function. South China Journal of Seismology (in Chinese), 29(3): 85-97. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDI200903013.htm

     

    Yuan Y S, Ma Y S, Hu S B, et al. 2006. Present-day geothermal characteristics in South China. Chinese Journal of Geophysics (in Chinese), 49(4): 1118-1126. http://onlinelibrary.wiley.com/doi/10.1002/cjg2.922/full

     

    Zandt G, Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson's ratio. Nature, 374(6518): 152-154. doi: 10.1038/374152a0

     

    Zhang G W, Guo A L, Wang Y J, et al. 2013. Tectonics of South China continent and its implications. Science China: Earth Sciences (in Chinese), 43(10): 1553-1582. http://www.cnki.com.cn/Article/CJFDTotal-JDXG201311002.htm

     

    Zhang L N, Luo Y, Chen Z Y, et al. 2018. Surface wave group velocity tomography imaging for Fujian area from ambient noise. Earthquake (in Chinese), 38(3): 134-143. http://www.cnki.com.cn/Article/CJFDTotal-ZDZW201901005.htm

     

    Zhang P, Zhu L B, Chen H P, et al. 2014. Crustal structure in China from teleseismic receiver function. Acta Seismologica Sinica (in Chinese), 36(5): 850-861. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201405009.htm

     

    Zhang P Z, Deng Q D, Zhang G M, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China Series D: Earth Sciences, 46(2): 13-24. http://d.wanfangdata.com.cn/Periodical_zgkx-ed2003z2002.aspx

     

    Zhang Y Q, Xu X B, Jia D, et al. 2009. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic. Earth Science Frontiers (in Chinese), 16(1): 234-247. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901033.htm

     

    Zhang Y Q, Dong S W, Li J H, et al. 2012. The new progress in the study of Mesozoic tectonics of South China. Acta Geoscientica Sinica (in Chinese), 33(5): 257-279.

     

    Zhang Y Y, Yao H J, Yang H Y, et al. 2018. 3-D crustal shear-wave velocity structure of the Taiwan Strait and Fujian, SE China, revealed by ambient noise tomography. Journal of Geophysical Research: Solid Earth, 123(9): 8016-8031. doi: 10.1029/2018JB015938

     

    Zhao Y L, Duan Y H, Zou C Q, et al. 2015. Study of the receiver function profile from Jiujiang, Jiangxi Province to Ninghua, Fujian Province. Acta Seismologica Sinica (in Chinese), 37(5): 722-732. http://www.researchgate.net/publication/284737300_Study_of_the_receiver_function_profile_from_Jiujiang_Jiangxi_Province_to_Ninghua_Fujian_Province

     

    Zhao Y L, Duan Y H, Wei W H, et al. 2017. Crustal thickness and Poisson's ratio in Jiangxi and Fujian province in eastern areas of south China. Journal of Geodesy and Geodynamics (in Chinese), 37(3): 261-266. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201703009.htm

     

    Zheng H W, Gao R, Li T D, et al. 2013. Collisional tectonics between the Eurasian and Philippine Sea plates from tomography evidences in Southeast China. Tectonophysics, 606: 14-23. doi: 10.1016/j.tecto.2013.03.018

     

    Zhou L Q, Xie J Y, Shen W S, et al. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophysical Journal International, 189(3): 1565-1583. doi: 10.1111/j.1365-246X.2012.05423.x

     

    Zhou X M, Li W X. 2000. Origin of late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269-287. doi: 10.1016/S0040-1951(00)00120-7

     

    Zhou X M, Sun T, Shen W Z, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004

     

    Zhu J F, Xu X W, Zhang X K, et al. 2005. Joint exploration of crustal structure in Fuzhou basin and its vicinities by deep seismic reflection and high-resolution refraction as well as wide-angle reflection/refraction. Science China Earth Sciences (in Chinese), 48(7): 925-938. doi: 10.1360/04yd0321

     

    Zhu J F, Fang S M, Zhang X K. 2006a. Exploration and Study of Deep Crustal Structure in the Quanzhou Basin and Its Adjacent Area. Earthquake Research in China (in Chinese), 22(3): 249-258.

     

    Zhu J F, Fang S M, Zhang X K, et al. 2006b. Exploration and research of deep crustal structure in the Zhangzhou Basin and its vicinity. Earthquake Research in China (in Chinese), 22(4): 405-417.

     

    Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969-2980. doi: 10.1029/1999JB900322

     

    Zhu L P. 2000. Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves. Earth and Planetary Science Letters, 179(1): 183-190. doi: 10.1016/S0012-821X(00)00101-1

     

    蔡辉腾, 金星, 王善雄. 2015. 基于人工地震测深数据建立地壳一维速度结构. 大地测量与地球动力学, 35(2): 267-272. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201502023.htm

     

    蔡辉腾, 金星, 王善雄等. 2016. 宁化-大田-惠安地壳构造与速度结构特征. 地球物理学报, 59(1): 157-168, doi:10.6038/cjg20160113. http://www.geophy.cn//CN/abstract/abstract12097.shtml

     

    董传万, 闫强, 张登荣等. 2010. 浙闽沿海晚中生代伸展构造的岩石学标志: 东极岛镁铁质岩墙群. 岩石学报, 26(4): 1195-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004018.htm

     

    福建省地质调查研究院. 2016. 中国区域地质志·福建志. 北京: 地质出版社, 21-23.

     

    郭晓然, 谢志招, 闫培等. 2019. 福建-台湾海峡深部地壳结构探测与滨海断裂带性质研究. 华南地震, 39(2): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI201902006.htm

     

    黄海波, 郭兴伟, 夏少红等. 2014. 华南沿海地区地壳厚度与泊松比研究. 地球物理学报, 57(12): 3896-3906, doi:10.6038/cjg20141204. http://www.geophy.cn//CN/abstract/abstract11021.shtml

     

    黄晖, 米宁, 徐鸣洁等. 2010. 福建地区地壳上地幔S波速度结构与泊松比. 高校地质学报, 16(4): 465-474. doi: 10.3969/j.issn.1006-7493.2010.04.006

     

    嵇少丞, 王茜, 杨文采. 2009. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义. 地质学报, 83(3): 324-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903001.htm

     

    金震, 李山有, 蔡辉腾等. 2018. 利用气枪地震资料对福建及台湾海峡南部地壳三维P波速度结构研究. 地球物理学报, 61(7): 2776-2787, doi:10.6038/cjg2018L0379. http://www.geophy.cn//CN/abstract/abstract14589.shtml

     

    李翠芹, 沈旭章, 秦满忠. 2014. P波速度对接收函数H-k搜索叠加结果的影响分析. 地震学报, 36(3): 480-490. doi: 10.3969/j.issn.0253-3782.2014.03.013

     

    李军, 金星, 鲍挺等. 2011. 利用噪声记录估计福建地区中上地壳体波速度结构. 中国地震, 27(3): 226-234. doi: 10.3969/j.issn.1001-4683.2011.03.002

     

    李培, 金星, 王善雄等. 2015. 福建邵武-南平-平潭深地震测深剖面的地壳速度结构及其构造意义. 中国科学: 地球科学, 45(11): 1757-1767. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201511012.htm

     

    李培, 蔡辉腾, 金星等. 2019. 中国大陆东南缘主要构造带基底结构. 地球物理学报, 62(8): 2991-3003, doi:10.6038/cjg2019M0136. http://www.geophy.cn//CN/abstract/abstract15120.shtml

     

    李细兵, 宋晓东, 郑斯华等. 2019a. 利用人工爆破资料研究福建一维P波速度结构和地震定位. 地球物理学报, 62(5): 1716-1733, doi:10.6038/cjg2019M0277. http://www.geophy.cn//CN/abstract/abstract14973.shtml

     

    李细兵, 熊振, 范小平等. 2019b. 福建地区地壳上地幔顶部三维速度结构及构造意义. 地震地质, 41(5): 1206-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201905009.htm

     

    李永华, 吴庆举, 田小波等. 2009. 用接收函数方法研究云南及其邻区地壳上地幔结构. 地球物理学报, 52(1): 67-80. http://www.geophy.cn//CN/abstract/abstract871.shtml

     

    李祖宁, 郑勇, 熊熊等. 2014. 福建-台湾地区地壳构造及其显示的动力学构造研究. 地震研究, 37(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201401005.htm

     

    廖其林, 王振明, 王屏路等. 1988. 福州-泉州-汕头地区地壳结构的爆炸地震研究. 地球物理学报, 31(3): 270-280. doi: 10.3321/j.issn:0001-5733.1988.03.004 http://www.geophy.cn//CN/abstract/abstract4817.shtml

     

    廖其林, 王振明, 邱陶兴等. 1990. 福州盆地及其周围地区地壳深部结构与构造的初步研究. 地球物理学报, 33(2): 163-173. doi: 10.3321/j.issn:0001-5733.1990.02.005 http://www.geophy.cn//CN/abstract/abstract4652.shtml

     

    任纪舜, 陈廷愚, 牛宝贵等. 1990. 中国东部及邻区大陆岩石圈的构造演化与成矿. 北京: 科学出版社, 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX199101018.htm

     

    舒良树, 周新民. 2002. 中国东南部晚中生代构造作用. 地质论评, 48(3): 249-260. doi: 10.3321/j.issn:0371-5736.2002.03.004

     

    王培宗, 陈耀安, 曹宝庭等. 1993. 福建地区地壳-上地幔结构及深部构造背景的研究. 福建地质, 12(2): 79-158.

     

    韦德光, 揭育金, 黄廷淦. 1997. 福建地区区域地质构造特征. 中国区域地质, 16(2): 162-170

     

    危自根, 储日升, 陈凌等. 2016. 复杂地壳接收函数H-k叠加——以安纳托利亚板块为例. 地球物理学报, 59(11): 4048-4062, doi:10.6038/cjg20161110. http://www.geophy.cn//CN/abstract/abstract13189.shtml

     

    熊绍柏, 金东敏, 孙克忠等. 1991. 福建漳州地热田及其邻近地区的地壳深部构造特征. 地球物理学报, 34(1): 55-63. doi: 10.3321/j.issn:0001-5733.1991.01.006 http://www.geophy.cn//CN/abstract/abstract4565.shtml

     

    徐强, 赵俊猛, 崔仲雄等. 2009. 利用接收函数研究青藏高原东南缘的地壳上地幔结构. 地球物理学报, 52(12): 3001-3008, doi:10.3969/j.issn.0001-5733.2009.12.009. http://www.geophy.cn//CN/abstract/abstract1247.shtml

     

    叶卓, 李秋生, 高锐等. 2013. 中国大陆东南缘地震接收函数与地壳和上地幔结构. 地球物理学报, 56(9): 2947-2958, doi:10.6038/cjg20130909. http://www.geophy.cn//CN/abstract/abstract9747.shtml

     

    叶卓, 李秋生, 高锐等. 2014. 中国东南沿海岩石圈减薄的地震接收函数证据. 中国科学: 地球科学, 44(11): 2451-2460. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201411009.htm

     

    袁丽文, 郑斯华. 2009. 用远震接收函数反演福建地区宽频带台站下方莫霍界面深度. 华南地震, 29(3): 85-97. doi: 10.3969/j.issn.1001-8662.2009.03.011

     

    袁玉松, 马永生, 胡圣标等. 2006. 中国南方现今地热特征. 地球物理学报, 49(4): 1118-1126. doi: 10.3321/j.issn:0001-5733.2006.04.025 http://www.geophy.cn//CN/abstract/abstract62.shtml

     

    张国伟, 郭安林, 王岳军等. 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm

     

    张丽娜, 罗艳, 陈智勇等. 2018. 福建及其邻区背景噪声面波群速度层析成像. 地震, 38(3): 134-143. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201803013.htm

     

    张攀, 朱良保, 陈浩朋等. 2014. 用接收函数方法研究中国境内地壳结构. 地震学报, 36(5): 850-861. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201405009.htm

     

    张培震, 邓起东, 张国民等. 2003. 中国大陆的强震活动与活动地块. 中国科学(D辑), 2003, 33(S1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm

     

    张岳桥, 徐先兵, 贾东等. 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026

     

    张岳桥, 董树文, 李建华等. 2012. 华南中生代大地构造研究新进展. 地球学报, 33(5): 257-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203001.htm

     

    赵延娜, 段永红, 邹长桥等. 2015. 江西九江-福建宁化接收函数剖面研究. 地震学报, 37(5): 722-732. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201505002.htm

     

    赵延娜, 段永红, 魏运浩等. 2017. 华南大陆东部赣闽地区地壳厚度与泊松比研究. 大地测量与地球动力学, 37(3): 261-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201703009.htm

     

    朱金芳, 徐锡伟, 张先康等. 2005. 福州盆地及邻区地壳精细结构的深地震反射与高分辨率折射及宽角反射/折射联合探测研究. 中国科学D辑: 地球科学, 35(8): 738-749. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200508005.htm

     

    朱金芳, 方盛明, 张先康等. 2006a. 泉州盆地及其邻区地壳深部结构的探测与研究. 中国地震, 22(3): 249-258. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200603004.htm

     

    朱金芳, 方盛明, 张先康等. 2006b. 漳州盆地及其邻区地壳深部结构的探测与研究. 中国地震, 22(4): 405-417. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200604007.htm

  • 加载中

(11)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2019-12-04
修回日期:  2020-10-15
上线日期:  2021-03-10

目录