热带气旋Rossby波能量频散问题研究进展

史文丽, 费建芳, 黄小刚, 刘磊, 李启华, 杨璐. 2021. 热带气旋Rossby波能量频散问题研究进展. 地球物理学报, 64(3): 752-764, doi: 10.6038/cjg2021N0425
引用本文: 史文丽, 费建芳, 黄小刚, 刘磊, 李启华, 杨璐. 2021. 热带气旋Rossby波能量频散问题研究进展. 地球物理学报, 64(3): 752-764, doi: 10.6038/cjg2021N0425
SHI WenLi, FEI JianFang, HUANG XiaoGang, LIU Lei, LI QiHua, YANG Lu. 2021. Advances in the research of Rossby wave energy dispersion of tropical cyclone. Chinese Journal of Geophysics (in Chinese), 64(3): 752-764, doi: 10.6038/cjg2021N0425
Citation: SHI WenLi, FEI JianFang, HUANG XiaoGang, LIU Lei, LI QiHua, YANG Lu. 2021. Advances in the research of Rossby wave energy dispersion of tropical cyclone. Chinese Journal of Geophysics (in Chinese), 64(3): 752-764, doi: 10.6038/cjg2021N0425

热带气旋Rossby波能量频散问题研究进展

  • 基金项目:

    国家自然科学基金项目(41705042,41775053,41675058,42005007)资助

详细信息
    作者简介:

    史文丽, 女, 博士, 研究方向为中尺度气象学研究.E-mail: xiaolizi.shi@163.com

  • 中图分类号: P433

Advances in the research of Rossby wave energy dispersion of tropical cyclone

  • 热带气旋是发生在热带洋面上的强烈气旋性涡旋.由于地转涡度梯度的存在,热带气旋在移动过程中不断发生Rossby波能量频散,并在热带气旋运动方向的后部激发出反气旋和气旋交替排列的Rossby波能量频散波列.多热带气旋共存和热带气旋的异常运动是当前国际热带气旋研究领域的热点问题,热带气旋Rossby能量频散被证实与多个热带气旋连续生成和异常运动密切相关.本文从热带气旋能量频散及波列特征、主要影响因子、反馈作用等方面,回顾总结了国内外关于热带气旋Rossby波能量频散的相关研究进展,并提出当前亟待解决的一些科学问题.目的是为深入研究热带气旋Rossby波能量频散及其影响提供基础和参考,以期使更多的研究学者关注热带气旋能量频散问题,从而进一步揭示热带气旋生成、发展和异常运动的动力学机理.

  • 加载中
  • 图 1 

    静止基流(U0)、均匀西风(WU)和东风(EU)基流下无辐散正压模式积分48 h, 72 h, 120 h和156 h的流函数场.虚线(实线)表示负(正)等值线,分别表示气旋(反气旋)环流.气旋和反气旋环流中心分别由黑色台风标记和黑色实心圆点表示.当流函数数值大于(小于)1×106 m2·s-1时,等值线间隔为1×106 m2·s-1(0.3×106 m2·s-1)(Shi et al., 2016)

    Figure 1. 

    Streamfunction fields from the nondivergent barotropic model at 48 h, 72 h, 120 h, and 156 h for the quiescent (U0), uniform westerly (WU) and easterly (EU) flow experiments. Negative (positive) contours are dashed (solid) and indicate the cyclones (anticyclones) in the wave train. The centers of the cyclones and anticyclones are labelled by the black typhoon symbols and the black solid dots, respectively. Contours are at a 1×106 m2·s-1 interval for streamfunction larger than 1×106 m2·s-1, and at a 0.3×106 m2·s-1 interval for that smaller than 1×106 m2·s-1 (Shi et al., 2016)

    图 2 

    2000年8月6日至9日经3~8天滤波的QuikSCAT海表风场.“A”为台风杰拉华,“B”为8月9日在杰拉华尾部Rossby波列中新生成台风艾云尼(Li et al., 2003)

    Figure 2. 

    Time sequences of 3~8 d filtered QuickSCAT wind field from 6 to 9 Aug 2000. The letter "A" represents the center location of Jelawat and "B" represents the center location of a new TC named Ewiniar that formed on 9 Aug 2000 in the wake of the Rossby wave train of Jelawat (Li et al., 2003)

  •  

    Anthes R A. 1982. Tropical Cyclones: Their Evolution, Structure and Effects. Boston: American Meteorological Society, 208.

     

    Berger H, Langland R, Velden C S, et al. 2011. Impact of enhanced satellite-derived atmospheric motion vector observations on numerical tropical cyclone track forecasts in the western north Pacific during TPARC/TCS-08. Journal of Applied Meteorology and Climatology, 50(11): 2309-2318. doi: 10.1175/JAMC-D-11-019.1

     

    Bi X X, Chen G H, Zhou W C. 2018. A mechanism study on the sudden track change of super typhoon Goni (2015). Chinese Journal of Atmospheric Sciences (in Chinese), 42(1): 227-238. http://www.researchgate.net/publication/329739446_A_Mechanism_Study_on_the_Sudden_Track_Change_of_Super_Typhoon_Goni_2015

     

    Carr Ⅲ L E, Elsberry R L. 1990. Observational evidence for predictions of tropical cyclone propagation relative to environmental steering. Journal of Atmospheric Sciences, 47(4): 542-546. doi: 10.1175/1520-0469(1990)047<0542:OEFPOT>2.0.CO;2

     

    Carr Ⅲ L E, Elsberry R L. 1995. Monsoonal interactions leading to sudden tropical cyclone track changes. Monthly Weather Review, 123(2): 265-290. doi: 10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2

     

    Carr Ⅲ L E, Elsberry R L. 1997. Models of tropical cyclone wind distribution and beta-effect propagation for application to tropical cyclone track forecasting. Monthly Weather Review, 125(12): 3190-3209. doi: 10.1175/1520-0493(1997)125<3190:MOTCWD>2.0.CO;2

     

    Carr Ⅲ L E, Boothe M A, Elsberry R L. 1997. Observational evidence for alternate modes of track-altering binary tropical cyclone scenarios. Monthly Weather Review, 125(9): 2094-2111. doi: 10.1175/1520-0493(1997)125<2094:OEFAMO>2.0.CO;2

     

    Carr Ⅲ L E, Elsberry R L. 1998. Objective diagnosis of binary tropical cyclone interactions for the western north pacific basin. Monthly Weather Review, 126(6): 1734-1740. doi: 10.1175/1520-0493(1998)126<1734:ODOBTC>2.0.CO;2

     

    Carr Ⅲ L E, Elsberry R L. 2000a. Dynamical tropical cyclone track forecast errors. Part I: Tropical Region error sources. Weather and Forecasting, 15(6): 641-661. doi: 10.1175/1520-0434(2000)015<0641:DTCTFE>2.0.CO;2

     

    Carr Ⅲ L E, Elsberry R L. 2000b. Dynamical tropical cyclone track forecast errors. Part Ⅱ: Midlatitude circulation influences. Weather and Forecasting, 15(6): 662-681. doi: 10.1175/1520-0434(2000)015<0662:DTCTFE>2.0.CO;2

     

    Chan J C L, Gray W M. 1982. Tropical cyclone movement and surrounding flow relationships. Monthly Weather Review, 110(10): 1354-1374. doi: 10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2

     

    Chan J C L, Williams R T. 1987. Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. Journal of Atmospheric Sciences, 44(9): 1257-1265. doi: 10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2

     

    Chang C P, Chen J M, Harr P A, et al. 1996. Northwestward-propagating wave patterns over the tropical western North Pacific during summer. Monthly Weather Review, 124(10): 2245-2266. doi: 10.1175/1520-0493(1996)124<2245:NPWPOT>2.0.CO;2

     

    Chen G H, Tam C Y. 2012. A new perspective on the excitation of low-tropospheric mixed rossby-gravity waves in association with energy dispersion. Journal of Atmospheric Sciences, 69(4): 1397-1403. doi: 10.1175/JAS-D-11-0331.1

     

    Chen L S, Meng Z Y. 2001. An overview on tropical cyclone research progress in China during the past ten years. Chinese Journal of Atmospheric Sciences (in Chinese), 25(3): 420-432. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXK200103012.htm

     

    Chen L S. 2006. The evolution on research and operational forecasting techniques of tropical cyclones. Journal of Applied Meteorological Science (in Chinese), 17(6): 672-681. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYQX200606004.htm

     

    Davidson N E, Hendon H H. 1989. Downstream development in the Southern Hemisphere monsoon during FGGE/WMONEX. Monthly Weather Review, 117(7): 1458-1470. doi: 10.1175/1520-0493(1989)117<1458:DDITSH>2.0.CO;2

     

    Dickinson M, Molinari J. 2002. Mixed Rossby-gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. Journal of Atmospheric Sciences, 59(14): 2183-2196. doi: 10.1175/1520-0469(2002)059<2183:MRGWAW>2.0.CO;2

     

    Duan J J, Wu L G, Ni Z P. 2014. Analysis of unusual changes in Typhoon Aere (2004) and Meari (2004). Acta Meteorologica Sinica (in Chinese), 72(1): 1-11. http://www.cnki.com.cn/Article/CJFDTotal-QXXB201401001.htm

     

    Elsberry R L. 1995. Tropical cyclone motion. Global perspectives on tropical cyclones, WMO/TD-No. 693. Geneva, Switzerland: 106-197.

     

    Elsberry R L, Chen L S, Davidson J, et al. 2013. Advances in understanding and forecasting rapidly changing phenomena in tropical cyclones. Tropical Cyclone Research and Review, 2(1): 13-24. http://www.cqvip.com/QK/73215X/20131/84678282504849514849484850.html

     

    Ferreira R N, Schubert W H. 1997. Barotropic aspects of ITCZ breakdown. Journal of Atmospheric Sciences, 54(2): 261-285. doi: 10.1175/1520-0469(1997)054<0261:BAOIB>2.0.CO;2

     

    Fiorino M, Elsberry R L. 1989. Some aspects of vortex structure related to tropical cyclone motion. Journal of Atmospheric Sciences, 46(7): 975-990. doi: 10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2

     

    Flierl G R, Stern M E, Whitehead J A Jr. 1983. The physical significance of modons: Laboratory experiments and general integral constraints. Dynamics of Atmospheres and Oceans, 7(4): 233-263. doi: 10.1016/0377-0265(83)90007-6

     

    Flierl G R. 1984. Rossby wave radiation from a strongly nonlinear warm eddy. Journal of Physical Oceanography, 14(1): 47-58. doi: 10.1175/1520-0485(1984)014<0047:RWRFAS>2.0.CO;2

     

    Frank W M. 1982. Large-scale characteristics of tropical cyclones. Monthly Weather Review, 110(6): 572-586. doi: 10.1175/1520-0493(1982)110<0572:LSCOTC>2.0.CO;2

     

    Fu B, Li T, Peng M S, et al. 2007. Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Weather and Forecasting, 22(4): 763-780. doi: 10.1175/WAF1013.1

     

    Galarneau T J Jr, Davis C A. 2012. Diagnosing forecast errors in tropical cyclone motion. Monthly Weather Review, 141(2): 405-430, doi:10.1175/MWR-D-12-00071.1.

     

    Ge X Y, Li T, Zhou X Q. 2007. Tropical cyclone energy dispersion under vertical shears. Geophysical Research Letters, 34(23): L23807, doi:10.1029/2007GL031867.

     

    Ge X Y, Li T, Wang Y Q, et al. 2008. Tropical cyclone energy dispersion in a three-dimensional primitive equation model: Upper-tropospheric influence. Journal of Atmospheric Sciences, 65(7): 2272-2289. doi: 10.1175/2007JAS2431.1

     

    Ge X Y, Li T, Peng M S. 2010. Cyclogenesis simulation of typhoon Prapiroon (2000) associated with Rossby wave energy dispersion. Monthly Weather Review, 138(1): 42-54. doi: 10.1175/2009MWR3005.1

     

    Gray W M. 1968. Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96(10): 669-700. doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2

     

    Gray W M. 1975. Tropical cyclone genesis. Dept. of Atmospheric Science Paper 234. Fort Collins, CO: Colorado State University, 121.

     

    Gray W M. 1977. Tropical cyclone genesis in the western North Pacific. Journal of the Meteorological Society of Japan. Ser. Ⅱ, 55(5): 465-482. doi: 10.2151/jmsj1965.55.5_465

     

    Harr P A, Elsberry R L. 1991. Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Monthly Weather Review, 119(6): 1448-1468. doi: 10.1175/1520-0493(1991)119<1448:TCTCAA>2.0.CO;2

     

    Harr P A, Elsberry R L. 1995. Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Monthly Weather Review, 123(5): 1225-1246. doi: 10.1175/1520-0493(1995)123<1225:LSCVOT>2.0.CO;2

     

    Holland G J. 1983. Tropical cyclone motion: environmental interaction plus a beta effect. Journal of Atmospheric Sciences, 40(2): 328-342. doi: 10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2

     

    Holland G J. 1995. Scale interaction in the western Pacific monsoon. Meteorology and Atmospheric Physics, 56(1-2): 57-79. doi: 10.1007/BF01022521

     

    Hu K M, Chan J C L, Huang G, et al. 2018. A train-like extreme multiple tropical cyclogenesis event in the northwest Pacific in 2004. Geophysical Research Letters, 45(2): 8529-8535. http://onlinelibrary.wiley.com/doi/10.1029/2018GL078749

     

    Kehoe R M, Boothe M A, Elsberry R L. 2007. Dynamical tropical cyclone 96- and 120-h track forecast errors in the western North Pacific. Weather and Forecasting, 22(3): 520-538. doi: 10.1175/WAF1002.1

     

    Krouse K D, Sobel A H, Polvani L M. 2008. On the wavelength of the Rossby waves radiated by tropical cyclones. Journal of Atmospheric Sciences, 65(2): 644-654. doi: 10.1175/2007JAS2402.1

     

    Krouse K D, Sobel A H. 2010. An observational study of multiple tropical cyclone events in the western north Pacific. Tellus A: Dynamic Meteorology and Oceanography, 62(3): 256-265. doi: 10.1111/j.1600-0870.2010.00435.x

     

    Kuo H C, Chen J H, Williams R T, et al. 2001. Rossby waves in zonally opposing mean flow: Behavior in northwest Pacific summer monsoon. Journal of Atmospheric Sciences, 58(9): 1035-1050. doi: 10.1175/1520-0469(2001)058<1035:RWIZOM>2.0.CO;2

     

    Kurihara Y, Tuleya R E, Bender M A. 1998. The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Monthly Weather Review, 126(5): 1306-1322. doi: 10.1175/1520-0493(1998)126<1306:TGHPSA>2.0.CO;2

     

    Lander M A. 1996. Specific tropical cyclone track types and unusual tropical cyclone motions associated with a reverse-oriented monsoon trough in the Western North Pacific. Weather and Forecasting, 11(2): 170-186. doi: 10.1175/1520-0434(1996)011<0170:STCTTA>2.0.CO;2

     

    Lau K H, Lau N C. 1990. Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Monthly Weather Review, 118(9): 1888-1913. doi: 10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2

     

    Li T, Fu B, Ge X Y, et al. 2003. Satellite data analysis and numerical simulation of tropical cyclone formation. Geophysical Research Letters, 30(21): 2122-2126. doi: 10.1029/2003GL018556

     

    Li T, Fu B. 2006. Tropical cyclogenesis associated with rossby wave energy dispersion of a preexisting typhoon. Part I: Satellite Data Analyses. Journal of Atmospheric Sciences, 63(5): 1377-1389. doi: 10.1175/JAS3692.1

     

    Li T, Ge X Y, Wang B, et al. 2006. Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part Ⅱ: Numerical simulations. Journal of Atmospheric Sciences, 63(5): 1390-1409. doi: 10.1175/JAS3693.1

     

    Li T. 2012. Synoptic and climatic aspects of tropical Cyclogenesis in Western North Pacific.//Oouchi K, Fudeyasu H eds. Cyclones: Formation, Triggers and Control. Hauppage, N. Y.: Nova Science Publishers, Inc., 61-62.

     

    Li Y J, Li J P. 2012. Propagation of planetary waves in the horizontal non-uniform basic flow. Chinese Journal of Geophysics (in Chinese), 55(2): 361-371, doi:10.6038/j.issn.0001-5733.2012.02.001.

     

    Liang J. 2012. Study of the influences of monsoon gyres on formation and sudden track change of typhoons[Ph. D. thesis] (in Chinese). Nanjing: Nanjing University of Information Science & Technology.

     

    Luo Z X. 1994. Effect of energy dispersion on the structure and motion of tropical cyclone. Acta Meteorologica Sinica (in Chinese), 52(2): 149-156. http://www.cqvip.com/QK/88418X/19941/4001376737.html

     

    Luo Z X. 2011. Energy dispersion of complex non-isolated vortices. Chinese Science Bulletin, 56(25): 2713-2717. doi: 10.1007/s11434-011-4629-2

     

    Luo Z X, Davidson N E, Ping F, et al. 2011. Multiple-Scale interactions affecting tropical cyclone track changes. Advances in Mechanical Engineering, 2011, Article ID 782590, doi: 10.1155/2011/782590.

     

    McDonald N R. 1998. The decay of cyclonic eddies by Rossby wave radiation. Journal of Fluid Mechanics, 361: 237-252. doi: 10.1017/S0022112098008696

     

    Molinari J, Vollaro D, Skubis S, et al. 2000. Origins and mechanisms of eastern Pacific tropical cyclogenesis: A case study. Monthly Weather Review, 128(1): 125-139. doi: 10.1175/1520-0493(2000)128<0125:OAMOEP>2.0.CO;2

     

    Qian C H, Duan Y H, Ma S H, et al. 2012. The current status and future development of China operational typhoon forecasting and its key technologies. Advances in Meteorological Science and Technology (in Chinese), 2(5): 36-43. http://d.wanfangdata.com.cn/Periodical/qxkjjz201205005

     

    Rappaport E N, Franklin J L, Avila L A, et al. 2009. Advances and challenges at the National Hurricane Center. Weather and Forecasting, 24(2): 395-419. doi: 10.1175/2008WAF2222128.1

     

    Ritchie E A, Holland G J. 1997. Scale interactions during the formation of Typhoon Irving. Monthly Weather Review, 125(7): 1377-1396. doi: 10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2

     

    Ritchie E A, Holland G J. 1999. Large-Scale patterns associated with tropical cyclogenesis in the western Pacific. Monthly Weather Review, 127(9): 2027-2043. doi: 10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2

     

    Rogers R, Aberson S, Black M, et al. 2006. The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bulletin of the American Meteorological Society, 87(11): 1523-1538. doi: 10.1175/BAMS-87-11-1523

     

    Schenkel B A. 2016. A climatology of multiple tropical cyclone events. Journal of Climate, 29(13): 4861-4883. doi: 10.1175/JCLI-D-15-0048.1

     

    Schenkel B A. 2017. Are multiple tropical cyclone events similar among basins? Journal of Climate, 30(15): 5805-5813. doi: 10.1175/JCLI-D-17-0088.1

     

    Shapiro L J, Ooyama K V. 1990. Barotropic vortex evolution on a beta plane. Journal of Atmospheric Sciences, 47(2): 170-187. doi: 10.1175/1520-0469(1990)047<0170:BVEOAB>2.0.CO;2

     

    Shi W L, Fei J F, Huang X G, et al. 2014. A numerical study on the combined effect of midlatitude and low-latitude systems on the abrupt track deflection of Typhoon Megi (2010). Monthly Weather Review, 142(7): 2483-2501, doi:10.1175/MWR-D-13-00283.1.

     

    Shi W L, Fei J F, Huang X G, et al. 2016. Rossby wave energy dispersion from tropical cyclone in zonal basic flows. Journal of Geophysical Research: Atmospheres, 121(7): 3120-3138. doi: 10.1002/2015JD024207

     

    Shi W L, Fei J F, Huang X G, et al. 2017. Where will tropical cyclogenesis occur around a preexisting tropical cyclone?. Geophysical Research Letters, 44(1): 578-586. doi: 10.1002/2016GL072157

     

    Smith R K, Ulrich W. 1990. An analytical theory of tropical cyclone motion using a barotropic model. Journal of Atmospheric Sciences, 47(16): 1973-1986. doi: 10.1175/1520-0469(1990)047<1973:AATOTC>2.0.CO;2

     

    Smith R K. 1991. An analytic theory of tropical-cyclone motion in a barotropic shear flow. Quarterly Journal of the Royal Meteorological Society, 117(500): 685-714. doi: 10.1002/qj.49711750003

     

    Su Y, Wu L G. 2011. Analysis of the multi-time scale circulation influences on the track of tropical cyclone Haitang (0505). Scientia Meteorologica Sinica (in Chinese), 31(3): 237-246. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXKX201103002.htm

     

    Tan B K. 2008. Advances of atmospheric of Rossby waves dynamics. Acta Meteorologica Sinica (in Chinese), 66(6): 870-879. http://en.cnki.com.cn/Article_en/CJFDTotal-QXXB200806004.htm

     

    Trenberth K E. 1986. An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics. Journal of Atmospheric Sciences, 43(19): 2070-2087. doi: 10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2

     

    Wang B, Li X F. 1992. The beta drift of three-dimensional vortices: A numerical study. Monthly Weather Review, 120(4): 579-593. doi: 10.1175/1520-0493(1992)120<0579:TBDOTD>2.0.CO;2

     

    Wang B, Li T M. 1994. Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. Journal of Atmospheric Sciences, 51(11): 1386-1400. doi: 10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2

     

    Wang B, Li X F. 1995. Propagation of a tropical cyclone in meridionally varying zonal flow: An energetics analysis. Journal of Atmospheric Sciences, 52(9): 1421-1433. doi: 10.1175/1520-0469(1995)052<1421:POATCI>2.0.CO;2

     

    Wang B, Xie X S. 1996. Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. Journal of Atmospheric Sciences, 53(3): 449-467. doi: 10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2

     

    Wang B, Elsberry R L, Wang Y Q, et al. 1998. Dynamics in tropical cyclone motion: A review. Chinese Journal of Atmospheric Sciences, 22(4): 416-434. http://www.researchgate.net/publication/288950734_dynamics_in_tropical_cyclone_motion_a_review

     

    Wang Y Q, Holland G J. 1996a. The beta drift of baroclinic vortices. Part I: Adiabatic vortices. Journal of Atmospheric Sciences, 53(3): 411-427. doi: 10.1175/1520-0469(1996)053<0411:TBDOBV>2.0.CO;2

     

    Wang Y Q, Holland G J. 1996b. The beta drift of baroclinic vortices. Part Ⅱ: Diabatic vortices. Journal of Atmospheric Sciences, 53(24): 3737-3756. doi: 10.1175/1520-0469(1996)053<3737:TBDOBV>2.0.CO;2

     

    Williams R T, Chan J C L. 1994. Numerical studies of the beta effect in tropical cyclone motion. Part Ⅱ: Zonal mean flow. Journal of Atmospheric Sciences, 51(8): 1065-1076. doi: 10.1175/1520-0469(1994)051<1065:NSOTBE>2.0.CO;2

     

    Wu C C, Chen S G, Yang C C, et al. 2012. Potential vorticity diagnosis of the factors affecting the track of typhoon Sinlaku (2008) and the impact from dropwindsonde data during T-PARC. Monthly Weather Review, 140(8): 2670-2688. doi: 10.1175/MWR-D-11-00229.1

     

    Wu L G, Zong H J, Liang J. 2011. Observational analysis of sudden tropical cyclone track changes in the vicinity of the East China Sea. Journal of Atmospheric Sciences, 68(12): 3012-3031. doi: 10.1175/2010JAS3559.1

     

    Xu X D, Chen L S, Xie Y Y, et al. 1996. The asymmetric and dynamic structure of the "β-TOP" diploe and "ventilation flow" of the target typhoon Flo during TCM-90 field experiment. Acta Meteorologica Sinica (in Chinese), 54(5): 537-543. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXB605.002.htm

     

    Xu X D, Chen L S, Xie Y Y, et al. 1998. The wave train characteristics of typhoon energe dispersion in TCM 90 field experiment. Acta Meteorologica Sinica (in Chinese), 56(2): 129-138. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXB802.000.htm

     

    Xu Y M, Li T, Peng M. 2013. Tropical cyclogenesis in the Western North Pacific as revealed by the 2008-09 YOTC data. Weather and Forecasting, 28(4): 1038-1056. doi: 10.1175/WAF-D-12-00104.1

     

    Xu Y M, Li T, Peng M. 2014. Roles of the synoptic-scale wave train, the intraseasonal oscillation, and high-frequency eddies in the genesis of typhoon Manyi (2001). Journal of Atmospheric Sciences, 71(10): 3706-3722. doi: 10.1175/JAS-D-13-0406.1

     

    Xue J J, Li J Y, Zhang L S, et al. 2012. Characteristics of typhoon disasters in china and risk prevention strategies. Meteorology and Disaster Reduction Research (in Chinese), 35(1): 59-64. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXQO201201011.htm

     

    Yeh T C. 1949. On energy dispersion in the atmosphere. Journal of Atmospheric Sciences, 6(1): 1-16. http://adsabs.harvard.edu/abs/1949JAtS....6....1Y

     

    Yu K, Shen X Y, Zhang C, et al. 2020. Effects of multi-time scale circulation on the sudden track of Typhoon Goni (1515). Journal of the Meteorological Sciences (in Chinese), 40(3): 333-340.

     

    Yuan J N, Li T, Wang D X. 2015. Precursor synoptic-scale disturbances associated with tropical cyclogenesis in the South China Sea during 2000-2011. International Journal of Climatology, 35(12): 3454-3470. doi: 10.1002/joc.4219

     

    Yumoto M, Matsuura T. 2001. Interdecadal variability of tropical cyclone activity in the western North Pacific. Journal of the Meteorological Society of Japan. Ser. Ⅱ, 79(1): 23-25. doi: 10.2151/jmsj.79.23

     

    Zehnder J A, Powell D M, Ropp D L. 1999. The interaction of easterly waves, orography, and the intertropical convergence zone in the genesis of eastern Pacific tropical cyclones. Monthly Weather Review, 127(7): 1566-1585. doi: 10.1175/1520-0493(1999)127<1566:TIOEWO>2.0.CO;2

     

    Zhang J Y, Wu L G, Zhang Q. 2011. Tropical cyclone damages in china under the background of global warming. Journal of Tropical Meteorology (in Chinese), 27(4): 442-454. http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDQX201104002.htm

     

    Zhang Q, Liu S S. 2001. Influence of the sheared basic flows on long equatorial Rossby waves. Acta Meteorologica Sinica (in Chinese), 59(1): 23-30. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXB200101002.htm

     

    Zhu Y T, Li T M, Wang Y Q. 2004. Numerical simulation of tropic cyclogenesis and intensification associated with Rossby-wave energy dispersion (in Chinese).//13th National Workshop on Tropical Cyclones. Daishan: Chinese Meteorological Society.

     

    毕鑫鑫, 陈光华, 周伟灿. 2018. 超强台风"天鹅"(2015)路径突变过程机理研究. 大气科学, 42(1): 227-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201801016.htm

     

    陈联寿, 孟智勇. 2001. 我国热带气旋研究十年进展. 大气科学, 25(3): 420-432. doi: 10.3878/j.issn.1006-9895.2001.03.11

     

    陈联寿. 2006. 热带气旋研究和业务预报技术的发展. 应用气象学报, 17(6): 672-681. doi: 10.3969/j.issn.1001-7313.2006.06.005

     

    段晶晶, 吴立广, 倪钟萍. 2014. 2004年台风"艾利"与"米雷"路径异常变化分析. 气象学报, 72(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201401001.htm

     

    李艳杰, 李建平. 2012. 水平非均匀基流中行星波的传播. 地球物理学报, 55(2): 361-371, doi:10.6038/j.issn.0001-5733.2012.02.001. http://www.geophy.cn//CN/abstract/abstract8412.shtml

     

    梁佳. 2012. 季风涡旋对台风生成和路径突变的影响研究[博士论文]. 南京: 南京信息工程大学.

     

    罗哲贤. 1994. 能量频散对台风结构和移动的作用. 气象学报, 52(2): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB402.002.htm

     

    罗哲贤. 2011. 复杂构型非孤立圆涡的能量频散. 科学通报, 56(31): 2599-2603. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201131009.htm

     

    钱传海, 端义宏, 麻素红等. 2012. 我国台风业务现状及其关键技术. 气象科技进展, 2(5): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201205009.htm

     

    苏源, 吴立广. 2011. 多时间尺度环流对热带气旋海棠(0505)路径的影响. 气象科学, 31(3): 237-246. doi: 10.3969/j.issn.1009-0827.2011.03.001

     

    谭本馗. 2008. 大气Rossby波动力学的研究进展. 气象学报, 66(6): 870-879. doi: 10.3321/j.issn:0577-6619.2008.06.003

     

    徐祥德, 陈联寿, 解以扬等. 1996. TCM-90现场科学试验台风Flo"β陀螺""通风流"非对称动力结构特征. 气象学报, 54(5): 537-543. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB605.002.htm

     

    徐祥德, 陈联寿, 解以扬等. 1998. TCM-90现场试验台风能量频散波列特征. 气象学报, 56(2): 129-138. doi: 10.3321/j.issn:0577-6619.1998.02.001

     

    薛建军, 李佳英, 张立生等. 2012. 我国台风灾害特征及风险防范策略. 气象与减灾研究, 35(1): 59-64. doi: 10.3969/j.issn.1007-9033.2012.01.010

     

    于堃, 沈新勇, 张驰等. 2020. 多时间尺度环流对台风"天鹅"(1515)突变路径的影响. 气象科学, 40(3): 333-340. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202003006.htm

     

    张娇艳, 吴立广, 张强. 2011. 全球变暖背景下我国热带气旋灾害趋势分析. 热带气象学报, 27(4): 442-454. doi: 10.3969/j.issn.1004-4965.2011.04.002

     

    赵强, 刘式适. 2001. 基本流场切变对赤道长Rossby波的影响. 气象学报, 59(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200101002.htm

     

    朱永禔, 李天明, 王玉清. 2004. 基于波能量频散的热带气旋生成发展的数值模拟研究. //第十三届全国热带气旋科学讨论会论文集. 岱山: 中国气象学会.

  • 加载中

(2)

计量
  • 文章访问数:  636
  • PDF下载数:  234
  • 施引文献:  0
出版历程
收稿日期:  2019-12-03
修回日期:  2020-08-20
上线日期:  2021-03-10

目录