三峡库区秭归与巴东交界MS4.0地震矩张量及应力环境研究

吴海波, 王杰, 邹正波, 陈俊华. 2021. 三峡库区秭归与巴东交界MS4.0地震矩张量及应力环境研究. 地球物理学报, 64(2): 484-497, doi: 10.6038/cjg2021N0281
引用本文: 吴海波, 王杰, 邹正波, 陈俊华. 2021. 三峡库区秭归与巴东交界MS4.0地震矩张量及应力环境研究. 地球物理学报, 64(2): 484-497, doi: 10.6038/cjg2021N0281
WU HaiBo, WANG Jie, ZOU ZhengBo, CHEN JunHua. 2021. Moment tensors and the stress environment of MS4.0 earthquakes in the junction area between Zigui and Badong, Three Gorges Reservoir. Chinese Journal of Geophysics (in Chinese), 64(2): 484-497, doi: 10.6038/cjg2021N0281
Citation: WU HaiBo, WANG Jie, ZOU ZhengBo, CHEN JunHua. 2021. Moment tensors and the stress environment of MS4.0 earthquakes in the junction area between Zigui and Badong, Three Gorges Reservoir. Chinese Journal of Geophysics (in Chinese), 64(2): 484-497, doi: 10.6038/cjg2021N0281

三峡库区秭归与巴东交界MS4.0地震矩张量及应力环境研究

  • 基金项目:

    中国地震局地震研究所所长基金面上项目(IS201826180)资助

详细信息
    作者简介:

    吴海波, 男, 1978年生, 高级工程师, 主要从事数字地震学与地球内部结构反演等研究.E-mail:wuhaibo7777@163.com

  • 中图分类号: P315

Moment tensors and the stress environment of MS4.0 earthquakes in the junction area between Zigui and Badong, Three Gorges Reservoir

  • 三峡库区湖北秭归与巴东交界地区2013年以来发生5次MS4.0以上地震.本文基于湖北、重庆等省属13个测震台站宽频带波形数据,采用kiwi软件包和rapidinv12程序反演了这些地震的全矩张量解,结果显示所有地震双力偶解均为走滑兼逆断性质,两个节面走向、倾角、滑动角与PT轴走向和倾俯角的一致性均较好,主压应力P轴NWW走向,倾角近水平,主张应力T轴NNE走向.与三峡库区现今构造应力场比较,这5次地震主压应力P轴与主张应力T轴的平均方向与其大体一致,并且节面1平均走向也与附近主要断裂:高桥断裂和周家山-牛口断裂走向大体一致,反映了这些地震受到区域现今构造应力环境的控制与影响.通过对地震矩张量的ISO+DC+CLVD分解显示,所有地震的ISO成分均低于10%,纯双力偶DC成分偏少而CLVD成分较多,主要与震源区地下浅层介质复杂的各向异性、多重剪切错动或液态下拉张错动有关.结合震源区局部特殊的岩层岩性结构和水文地质环境,分析认为库水长时期的侵蚀溶蚀与加卸荷载作用,有利于引起局部岩层强度降低,在特殊水位时段将触发岩层失稳而滑动破裂,这5次地震中CLVD成分较多正是这一复杂过程的重要体现.

  • 加载中
  • 图 1 

    三峡库区地质构造简图(据湖北省1:20万地质图改编)

    Figure 1. 

    Geological structure sketch of Three Gorges Reservoir area

    图 2 

    秭归巴东交界地区地震分布图

    Figure 2. 

    Seismic distribution map in the border area of Zigui and Badong

    图 3 

    2017年6月16日ML4.8(MS4.3)与2018年10月11日ML4.9(MS4.5)地震序列比较

    Figure 3. 

    Comparison of the seismic sequences of ML4.8(MS4.3) on June 16, 2017 and ML4.9 (MS4.5) on October 11, 2018

    图 4 

    参与矩张量反演的台站

    Figure 4. 

    Stations used in moment tensor inversion

    图 5 

    三峡库区及近邻地壳速度结构

    Figure 5. 

    Crustal velocity structure in the Three Gorges Reservoir and its adjacent area

    图 6 

    WAZ台P、S波形与噪声波形功率谱密度比较

    Figure 6. 

    Comparison of power spectral density of P and S waveforms and noise waveforms at WAZ station

    图 7 

    事件1最近10个台站观测与理论振幅以及深度、节面产状拟合曲线

    Figure 7. 

    Observed and theoretical amplitudes at 10 nearest stations, and depth and parameters of nodal planes of event one

    图 8 

    事件1最近10个台站观测与理论波形以及矩心位置和时间函数

    Figure 8. 

    Observed and theoretical waveform at 10 nearest stations, moment center position and time function of event one

    图 9 

    P轴与T轴投影图

    Figure 9. 

    Projection maps of P-axis and T-axis

    图 10 

    三峡水库蓄水以来ML≤2地震频次图

    Figure 10. 

    ML≤2 earthquake frequency map since Three Gorges Reservoir impoundment

    图 11 

    水库水位变化与地震活动对应关系

    Figure 11. 

    The relationship of the change of reservoir water level and seismic activity

    表 1 

    5次地震HYPO2000定位结果

    Table 1. 

    HYPO2000 location results of five earthquakes

    序号 发震日期 发震时刻 经度/°N 纬度/°E 震级/MS 深度/km 水平误差/km 垂直误差/km
    1 2013-12-16 13:04:52.1 110.42 31.07 5.1 2.8 0.36 0.49
    2 2017-06-16 19:48:12.3 110.41 31.04 4.3 3.6 0.34 0.49
    3 2017-06-18 17:39:21.1 110.45 31.04 4.1 3.1 0.37 0.47
    4 2018-10-11 15:06:31.8 110.46 31.04 4.5 3.0 0.36 0.45
    5 2018-10-11 17:10:03.4 110.46 31.03 4.1 3.0 0.37 0.45
    下载: 导出CSV

    表 2 

    三峡库区及近邻地区地壳速度结构模型

    Table 2. 

    Crustal velocity structure in the Three Gorges Reservoir and its adjacent area

    顶层深度/km VP/(km·s-1) VS/(km·s-1) ρ/(g·cm-3) QP
    0.0 4.80 2.77 2.46 71
    2.0 5.50 3.18 2.55 71
    8.0 6.15 3.55 2.82 241
    14.0 6.30 3.64 2.87 387
    20.0 6.50 3.75 2.93 387
    28.0 6.90 3.98 3.04 416
    38.0 7.90 4.56 3.30 600
    下载: 导出CSV

    表 3 

    不同滤波频段拟合差值

    Table 3. 

    Misfit of different filtering frequency bands

    事件 日期 震级/MW 滤波频段振幅谱拟合差值misfit
    0.02~0.033 Hz 0.025~0.05 Hz 0.035~0.1 Hz 0.05~0.2 Hz 0.0167~1 Hz
    1 2018-10-11 4.2 0.613 0.479 0.369 0.541 0.562
    2 2018-10-11 3.7 0.883 0.850 0.482 0.585 0.621
    下载: 导出CSV

    表 4 

    节面产状、矩心深度与相对位置反演结果

    Table 4. 

    Inversion results of parameters of nodal planes, focal depth and relative position

    事件 节面1/(°) 节面2/(°) P轴/(°) T轴/(°) Misfit MW 矩心深度/km 相对位置/km
    走向, 倾角, 滑动角 走向, 倾角, 滑动角 走向, 俯角 走向, 俯角
    1 68, 49, 161 171, 76, 43 294, 17 38, 40 0.365 4.7 4.5 0.5W, 0.5N
    69, 49, 169 166, 82, 42 291, 21 36, 34 5.5 赵凌云等,2014
    2 62, 52, 152 170, 68, 42 293, 10 33, 44 0.374 4.2 4.4 2.0E, 1.5N
    67, 44, 177 160, 88, 45 292, 15 31, 28 4.1 4.0 李井岗等,2018
    3 60, 53, 162 161, 76, 38 286, 15 27, 37 0.324 4.1 4.0 0.5E, 1.0N
    62, 63, 173 155, 83, 27 287, 7 20, 23 4.0 2.0 李井岗等,2018
    4 59, 53, 166 158, 79, 38 283, 17 25, 34 0.369 4.2 4.5 0.5E, 1.5N
    5 58, 55, 159 160, 73, 37 286, 11 25, 38 0.482 3.7 4.1 1.5E, 1.0N
    下载: 导出CSV

    表 5 

    全矩张量反演结果与分解

    Table 5. 

    Inversion results and decomposition of full moment tensor

    事件 Mrr/Mtt/Mpp/Mrt/Mrp/Mtp M0/×1015Nm ISO, DC, CLVD/%
    1 -2.13/4.34/0.33/-5.82/-4.04/-5.96 17.30 7, 57, 43
    2 2.38/-5.75/-0.11/5.46/4.41/ 4.31 3.08 9, 54, 46
    3 4.46/-6.97/-1.58/5.20/ 5.09/4.74 2.09 9, 51, 49
    4 6.83/-5.77/-0.19/4.72/4.76/4.93 3.50 2, 61, 39
    5 -6.09/ 4.50/-1.54/-4.55/-4.64/-3.64 0.63 9, 53, 47
    注:MrrMttMppMrtMrpMtp为地震矩张量六个独立分量.
    下载: 导出CSV
  •  

    Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods. New York: Freeman W H & Co..

     

    Bhattacharya S N. 2007. Moment tensor solutions and triggering environment for earthquakes in Koyna-Warna water Reservoirs region, India. Pure and Applied Geophysics, 164(5):909-928, doi:10.1007/s00024-007-0199-2.

     

    Brumbaugh D S. 1979. Classical focal mechanism techniques for body waves. Geophysical Survey, 3(4):297-329, doi:10.1007/BF01449754.

     

    Cai X G, Yao C, Chen X F. 2011. Seismic moment tensor in anisotropic ATI media:shear faulting. Chinese Journal of Geophysics (in Chinese), 54(7):1772-1782, doi:10.3969/j.issn.0001-5733.2011.07.011.

     

    Cesca S, Buforn E, Dahm T. 2006. Amplitude spectra moment tensor inversion of shallow earthquakes in Spain. Geophysical Journal International, 166(2):839-854, doi:10.1111/j.1365-246X.2006.03073.x.

     

    Cesca S, Heimann S, Stammler K, et al. 2010. Automated procedure for point and kinematic source inversion at regional distances. Journal of Geophysical Research:Solid Earth, 115(B6):B06304, doi:10.1029/2009JB006450.

     

    Cesca S, Grigoli F, Heimann S, et al. 2014. The 2013 September-October seismic sequence offshore Spain:a case of seismicity triggered by gas injection?. Geophysical Journal International, 198(2):941-953, doi:10.1093/gji/ggu172.

     

    Chapman C H, Leaney W S. 2012. A new moment-tensor decomposition for seismic events in anisotropic media. Geophysical Journal International, 188(1):343-370. doi: 10.1111/j.1365-246X.2011.05265.x

     

    Chen Q, Nur A. 1992. Pore fluid pressure effects in anisotropic rocks:Mechanisms of induced seismicity and weak faults. Pure and Applied Geophysics, 139(3):463-479. doi: 10.1007/BF00879947

     

    Chen S J, Yao Y S, Zeng Z X, et al. 2005. Study on numerical simulation of tectonic stress field before and after reservoir impounding in the head area of the Three Gorges. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 24(S2):5611-5618. http://www.cqvip.com/qk/96026X/2005A02/21394076.html

     

    Chen X B, Chen B Y, Zhang S W, et al. 1994. The research on characteristics of the deep tectonics in Three Gorges and Nearby area (in Chinese). Beijing:Seismological Press.

     

    Chen Y, Huang T F, Liu E R. 2009. Rock Physics (in Chinese). Hefei:University of Science and Technology of China Press, 209-220.

     

    Ding Y Z, Pan J X, Xiao A Y, et al. 1983. Tectonic environment of reservoir induced earthquake in the Xinfengjiang reservoir area. Seismology and Geology (in Chinese), 5(3):63-74. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ198303009.htm

     

    Dreger D, Woods B. 2002. Regional distance seismic moment tensors of nuclear explosions. Tectonophysics, 356(1-3):139-156. doi: 10.1016/S0040-1951(02)00381-5

     

    Du R L, Qiao X J, Yang S M, et al. 2004. Results of the crustal deformation by GPS survey and horizontal strain rate fields in the Three Gorges Area. Geomatics and Information Science of Wuhan University (in Chinese), 29(9):768-772, doi:10.3969/j.issn.1671-8860.2004.09.004.

     

    Foulger G R. 1988. Hengill triple junction, SW Iceland 2. anomalous earthquake focal mechanisms and implications for process within the geothermal reservoir and at accretionary plate boundaries. Journal of Geophysical Research:Solid Earth, 93(B11):13507-13523. doi: 10.1029/JB093iB11p13507

     

    Gao X M, Wang S J, Yin Z S, et al. 1994. Study on tectonic stress field and source faulting types in the Yangtze Gorges and its vicinity. Crustal Deformation and Earthquake (in Chinese), 14(2):1-12. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB402.000.htm

     

    Gilbert F. 1971. Excitation of the normal modes of the Earth by earthquake sources. Geophysical Journal of the Royal Astronomical Society, 22(2):223-226. doi: 10.1111/j.1365-246X.1971.tb03593.x

     

    Gupta H K. 2002. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth-Science Reviews, 58(3-4):279-310. doi: 10.1016/S0012-8252(02)00063-6

     

    He L P, Sun X L, Yang H F, et al. 2018. Upper crustal structure and earthquake mechanism in the Xinfengjiang water Reservoir, Guangdong, China. Journal of Geophysical Research:Solid Earth, 123(23):3799-3813, doi:10.1029/2017JB015404.

     

    Jost M L, Herrmann R B. 1989. A student's guide to and review of moment tensors. Seimological Research Letters, 60(2):37-57. doi: 10.1785/gssrl.60.2.37

     

    Julian B R, Miller A D, Foulger G R. 1998. Non-double-couple earthquakes 1. Theory. Reviews of Geophysics, 36(4):525-549. doi: 10.1029/98RG00716

     

    Li J G, Zhang L F, Liao W L, et al. 2018. Earthquakes in the fold structure——the genesis of the M4.3 earthquake sequence in the Three Gorges Reservoir area in 2017. Chinese Journal of Geophysics (in Chinese), 61(9):3701-3712, doi:10.6038/cjg2018L0756.

     

    Li Q, Zhao X, Cai J A, et al. 2009. P wave velocity structure of upper and middle crust beneath the Three Gorges reservoir dam and adjacent region. Science in China Series D:Earth Sciences, 52(4):567-578. doi: 10.1007/s11430-009-0047-6

     

    Li R C. 1986. Current tensile stress field in the west Hubei and Jianghan. Acta Geophysica Sinica (in Chinese), 29(3):302-306. http://www.cnki.com.cn/Article/CJFDTotal-DQWX198603009.htm

     

    Li X G, Yao Y S, Zeng Z X, et al. 2006. Analysis of the formation system of the present tectonic stress field in the head area of the Three Gorges Reservoir. Journal of Geomechanics (in Chinese), 12(2):174-181. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200602008.htm

     

    Miller A D, Foulger G R, Julian B R. 1998. Non-double-couple earthquakes 2. observations. Reviews of Geophysics, 36(4):551-568. doi: 10.1029/98RG00717

     

    Ni J C, Chen Y T, Wang M, et al. 1991. Moment tensor inversion of some aftershocks of the April 18, 1985, Luquan, Yunnan, China, earthquake. Acta Seismologica Sinica (in Chinese), 13(4):412-419. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB199104001.htm

     

    Rao N P, Shashidhar D. 2016. Periodic variation of stress field in the Koyna-Warna reservoir triggered seismic zone inferred from focal mechanism studies. Tectonophysics, 679:29-40, doi:10.1016/j.tecto.2016.04.036.

     

    Schubert G, Turcotte D L, Olson P. 2001. Mantle convection in the Earth and Planets. Cambridge:Cambridge University Press, 29-38.

     

    Shen C Y, Sun S A, Liu S M, et al. 2004. Dynamic variations of gravity field in head area of three gorges reservoir in recent years. Journal of Geodesy and Geodynamics (in Chinese), 24(1):6-13. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB200402001.htm

     

    Talwani P, Acree S. 1985. Pore pressure diffusion and the mechanism of reservoir-induced seismicity. Pure and Applied Geophysics, 122(6):947-965. doi: 10.1007/BF00876395

     

    Thomsen L. 1986. Weak elastic anisotropy. Geophysics, 51(10):1954-1966. doi: 10.1190/1.1442051

     

    Vavryčuk V. 2005. Focal mechanisms in anisotropic media. Geophysical Journal International, 161(2):334-346. doi: 10.1111/j.1365-246X.2005.02585.x

     

    Walter F, Clinton J F, Deichmann N, et al. 2009. Moment tensor inversions of icequakes on gornergletscher, Switzerland. Bulletin of the Seismological Society of America, 99(2A):852-870. doi: 10.1785/0120080110

     

    Wang D, Yao Y S, Xue J R, et al. 2007. Focal mechanism of key monitoring area of Three Gorges Reservoir before and after impoundment. Journal of Geodesy and Geodynamics (in Chinese), 27(5):103-107. http://www.oalib.com/paper/1553462

     

    Wang J, Wang Q L, Huang S, et al. 2018. Decollement structures and seismic activity of Badong area in Hubei province. Journal of Geodesy and Geodynamics (in Chinese), 38(3):225-232. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201803002.htm

     

    Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green's functions. Bulletin of the Seismological Society of America, 89(3):733-741. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=89/3/733

     

    Wu H B, Shen X L, Wang J, et al. 2018. Three-dimensional velocity structure of upper crust in the Three Gorges Reservoir area derived from double-difference tomography. Chinese Journal of Geophysics (in Chinese), 61(7):2802-2814, doi:10.6038/cjg2018L0345.

     

    Yi G X, Long F, Wen X Z, et al. 2015. Seismogenic structure of the M6.3 Kangding earthquake sequence on 22 Nov. 2014, Southwestern China. Chinese Journal of Geophysics (in Chinese), 58(4):1205-1219, doi:10.6038/cjg20150410.

     

    Yuan D W, Mei Y T, Qin X L, et al. 1996. The Study of Crust Stability in the Damsite and Surrounding area of the Three Gorges Project (in Chinese). Wuhan:China University Geosciences Press.

     

    Zhang G W, Lei J S. 2015. Mechanism of the 2011 Tengchong, Yunnan, MS5.2 double earthquakes. Chinese Journal of Geophysics (in Chinese), 58(4):1194-1204, doi:10.6038/cjg20150409.

     

    Zhao L Y, Zhang H, Chen J H, et al. 2014, Focal mechanism solutions and seismogenic structure of the Badong MS5.1 earthquake of 2013 using the CAP method. China Earthquake Engineering Journal (in Chinese), 35(4):1014-1018. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ201404041.htm

     

    蔡晓刚, 姚陈, 陈晓非. 2011.各向异性ATI介质剪切位错源地震矩张量.地球物理学报, 54(7):1772-1782, doi:10.3969/j.issn.0001-5733.2011.07.011. http://www.geophy.cn//CN/abstract/abstract8059.shtml

     

    陈蜀俊, 姚运生, 曾佐勋等. 2005.三峡库首区蓄水前后构造应力场三维数值模拟研究.岩石力学与工程学报, 24(S2):5611-5618. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2060.htm

     

    陈学波, 陈步云, 张四维等. 1994.长江三峡工程坝区及外围深部构造特征研究.北京:地震出版社.

     

    陈颙, 黄庭芳, 刘恩儒. 2009.岩石物理学.合肥:中国科学技术大学出版社, 209-220.

     

    丁原章, 潘建雄, 肖安予等. 1983.新丰江水库诱发地震的构造条件.地震地质, 5(3):63-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198303009.htm

     

    杜瑞林, 乔学军, 杨少敏等. 2004.长江三峡GPS处理结果和应变背景场.武汉大学学报·信息科学版, 29(9):768-772, doi:10.3969/j.issn.1671-8860.2004.09.004.

     

    高锡铭, 王少江, 殷志山等. 1994.长江三峡及邻区构造应力场和震源错动类型的研究.地壳形变与地震, 14 (2):1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB402.000.htm

     

    李井冈, 张丽芬, 廖武林等. 2018.褶皱构造中的地震-2017年三峡库区巴东M4.3地震序列成因讨论.地球物理学报, 61(9):3701-3712, doi:10.6038/cjg2018L0756. http://www.geophy.cn//CN/abstract/abstract14672.shtml

     

    李强, 赵旭, 蔡晋安等. 2009.三峡水库坝址及邻区中上地壳P波速度结构.中国科学D辑:地球科学, 39(4):427-436. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200904005.htm

     

    李蓉川. 1986.鄂西江汉地区的现代引张应力场.地球物理学报, 29(3):302-306. doi: 10.3321/j.issn:0001-5733.1986.03.010 http://www.geophy.cn//CN/abstract/abstract5009.shtml

     

    李细光, 姚运生, 曾佐勋等. 2006.三峡库首区现今构造应力场的形成体制分析.地质力学学报, 12(2):174-181. doi: 10.3969/j.issn.1006-6616.2006.02.009

     

    倪江川, 陈运泰, 王鸣等. 1991.云南劝禄地震部分余震矩张量反演.地震学报, 13(4):412-319. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199104001.htm

     

    申重阳, 孙少安, 刘少明等. 2004.长江三峡库首区近期重力场动态变化.大地测量与地球动力学, 24(1):6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200402001.htm

     

    王墩, 姚运生, 薛军蓉等. 2007.三峡水库重点监视区蓄水前后震源机制研究.大地测量与地球动力学, 27(5):103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200705024.htm

     

    王杰, 王秋良, 黄颂等. 2018.湖北巴东地区滑脱构造与地震活动特征.大地测量与地球动力学, 38(3):225-232. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201803002.htm

     

    吴海波, 申学林, 王杰等. 2018.三峡库区上地壳三维速度结构的双差层析成像研究.地球物理学报, 61(6):2802-2814, doi:10.6038/cjg2018L0345. http://www.geophy.cn//CN/abstract/abstract14591.shtml

     

    易桂喜, 龙锋, 闻学泽等. 2015. 2014年11月22日康定M6.3级地震序列发震构造分析.地球物理学报, 58(4):1205-1219, doi:10.6038/cjg20150410. http://www.geophy.cn//CN/abstract/abstract11385.shtml

     

    袁登维, 梅应堂, 秦兴黎等. 1996.长江三峡工程坝区及外围地壳稳定性研究.武汉:中国地质大学出版社.

     

    张广伟, 雷建设. 2015. 2011年云南腾冲5.2级双震发震机理.地球物理学报, 58(4):1194-1204, doi:10.6038/cjg20150409. http://www.geophy.cn//CN/abstract/abstract11384.shtml

     

    赵凌云, 张辉, 陈俊华等. 2014.基于CAP方法的2013湖北巴东5.1级地震震源机制与发震构造研究.地震工程学报, 35(4):1014-1018. doi: 10.3969/j.issn.1000-0844.2014.04.1014

  • 加载中

(11)

(5)

计量
  • 文章访问数:  498
  • PDF下载数:  229
  • 施引文献:  0
出版历程
收稿日期:  2019-07-03
修回日期:  2020-12-22
上线日期:  2021-02-10

目录