基于三重震相波形非线性反演的俯冲带410-km间断面起伏研究

李嘉琪, 宁杰远, 蔡晨, 鲍铁钊. 2021. 基于三重震相波形非线性反演的俯冲带410-km间断面起伏研究. 地球物理学报, 64(2): 507-524, doi: 10.6038/cjg2021N0226
引用本文: 李嘉琪, 宁杰远, 蔡晨, 鲍铁钊. 2021. 基于三重震相波形非线性反演的俯冲带410-km间断面起伏研究. 地球物理学报, 64(2): 507-524, doi: 10.6038/cjg2021N0226
LI JiaQi, NING JieYuan, CAI Chen, BAO TieZhao. 2021. Topography of the 410-km discontinuity in and around subduction zone from nonlinear inversion of triplicated waveforms. Chinese Journal of Geophysics (in Chinese), 64(2): 507-524, doi: 10.6038/cjg2021N0226
Citation: LI JiaQi, NING JieYuan, CAI Chen, BAO TieZhao. 2021. Topography of the 410-km discontinuity in and around subduction zone from nonlinear inversion of triplicated waveforms. Chinese Journal of Geophysics (in Chinese), 64(2): 507-524, doi: 10.6038/cjg2021N0226

基于三重震相波形非线性反演的俯冲带410-km间断面起伏研究

  • 基金项目:

    国家自然科学基金(41874071,41374047)资助

详细信息
    作者简介:

    李嘉琪, 男, 1992年生, 2014年于北京大学地球与空间科学学院获得理学学士学位, 现为北京大学地球与空间科学学院博士生, 主要从事地震学研究.E-mail:ljq315@pku.edu.cn

    通讯作者: 宁杰远, 男, 教授, 1963年出生, 主要从事地震学与地球动力学方面的研究.E-mail:njy@pku.edu.cn
  • 中图分类号: P315

Topography of the 410-km discontinuity in and around subduction zone from nonlinear inversion of triplicated waveforms

More Information
  • 利用NECESSArray宽频带地震台阵记录的P波三重震相波形资料,采用遗传算法,对千岛俯冲板块内部及附近410-km间断面的结构进行了非线性反演.其中,选取了发生在俯冲带的发震时刻为2009年10月10日21时24分(GMT时间)震级为Mw5.9的地震;其三重震相的射线回折点处射线路径的方向与俯冲板块的走向大致一致,克服了间断面在俯冲板块内部沿俯冲方向起伏剧烈、不易识别的困难,设计以震中为顶点、方位角范围分别为275°~280°、269°~274°、264°~266°的北、中、南三个扇形区域,用于研究410-km间断面逐渐靠近俯冲板块直至处在其中的起伏情况;"先对齐、后反演"的具体计算方案极大地减小了浅部结构不确定性对反演结果的影响;同时,整体归一化策略充分利用了台阵的振幅信息,有效地加强了对深部结构的约束.反演结果显示,"410-km间断面"在北区抬升了10~20 km,在中区抬升了20~30 km,在南区抬升了60~70 km,与橄榄石-瓦兹利石平衡态相变界面的矿物物理学预测结果一致;其波速跃变在北区为10%,在中区为10%,在南区为7%.扣除了前人在层析成像显示的地震源区及目标区速度异常的影响后,约4%的波速跃变可能由橄榄石-瓦兹利石的相变所产生,与IASP91模型的速度跃变值相当.目前的研究结果表明俯冲带内部似乎不存在大量的亚稳态橄榄石.基于更多资料并对波形细节进行拟合,可望刻画俯冲板块内部410-km间断面的精细结构,给出关于这一问题的确定性回答.

  • 加载中
  • 图 1 

    研究区域与所用地震、台站分布

    Figure 1. 

    Research region and the distribution of stations and events

    图 2 

    震源机制解体波波形反演图

    Figure 2. 

    Focal depth inversion from depth phases

    图 3 

    410-km间断面对应的三重震相示意图.

    Figure 3. 

    Overview of triplications from the 410-km discontinuity

    图 4 

    小生境遗传算法反演模拟数据测试图

    Figure 4. 

    Synthetic tests for Niche Genetic Algorithm

    图 5 

    单台归一化振幅与全局归一化振幅的比较

    Figure 5. 

    Comparison between trace normalization and array normalization

    图 6 

    三重震相走时拾取图

    Figure 6. 

    Travel time analysis for triplication

    图 7 

    该地区层析成像结果图

    Figure 7. 

    Tomography results in this region

    图 8 

    浅部一维不准确结构对反演的影响

    Figure 8. 

    Synthetic tests for inaccurate 1-D structure at shallow depth

    图 9 

    浅部二维非均匀模型及反演结果图

    Figure 9. 

    Synthetic tests for inaccurate 2-D structure at shallow depth

    图 10 

    垂直分量实际观测波形与理论波形图

    Figure 10. 

    Vertical-component displacement seismograms corresponding to ray paths in the (a) northern, (b) middle and (c) southern regions

    图 11 

    间断面抬升及间断面两侧速度差增大情形正演测试图

    Figure 11. 

    Modeling tests on how the model influences the cross-over point O

    图 12 

    波形反演结果图

    Figure 12. 

    P-wave velocity inversion results obtained in this study in the three cross sections (a) north, (b) middle and (c) south

    图 13 

    模型trade-off反演测试图

    Figure 13. 

    Synthetic tests for the trade-off of the model parameters

  •  

    Anderson D L. 1967. Phase changes in the upper mantle. Science, 157(3793):1165-1173. doi: 10.1126/science.157.3793.1165

     

    Bina C R, Helffrich G. 1994. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research:Solid Earth, 99(B8):15853-15860. doi: 10.1029/94JB00462

     

    Brudzinski M R, Chen W P. 2003. A petrologic anomaly accompanying outboard earthquakes beneath Fiji-Tonga:Corresponding evidence from broadband P and S waveforms. Journal of Geophysical Research:Solid Earth, 108(B6):2299, doi:10.1029/2002JB002012.

     

    Chu R S, Schmandt B, Helmberger D V. 2012. Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms. Geochemistry, Geophysics, Geosystems, 13(2):Q0AK04, doi:10.1029/2011GC003818.

     

    Collier J D, Helffrich G R. 1997. Topography of the "410" and "660" km seismic discontinuities in the Izu-Bonin subduction zone. Geophysical Research Letters, 24(12):1535-1538. doi: 10.1029/97GL01383

     

    Crotwell H P, Owens T J, Ritsema J. 1999. The TauP Toolkit:Flexible seismic travel-time and ray-path utilities. Seismological Research Letters, 70(2):154-160. doi: 10.1785/gssrl.70.2.154

     

    Dziewonski A M, Woodhouse J H. 1983. An experiment in systematic study of global seismicity:Centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981. Journal of Geophysical Research:Solid Earth, 88(B4):3247-3271. doi: 10.1029/JB088iB04p03247

     

    Flanagan M P, Shearer P M. 1998. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. Journal of Geophysical Research:Solid Earth, 103(B2):2673-2692. doi: 10.1029/97JB03212

     

    Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39(3):291-323. doi: 10.1029/1999RG000068

     

    Gao W, Matzel E, Grand S P. 2006. Upper mantle seismic structure beneath eastern Mexico determined from P and S waveform inversion and its implications. Journal of Geophysical Research:Solid Earth, 111(B8):B08307, doi:10.1029/2006JB004304.

     

    Geller R J, Takeuchi N. 1995. A new method for computing highly accurate DSM synthetic seismograms. Geophysical Journal International, 123(2):449-470. doi: 10.1111/j.1365-246X.1995.tb06865.x

     

    Grand S P, Helmberger D V. 1984. Upper mantle shear structure of North America. Geophysical Journal International, 76(2):399-438. doi: 10.1111/j.1365-246X.1984.tb05053.x

     

    Helffrich G R, Stein S, Wood B J. 1989. Subduction zone thermal structure and mineralogy and their relationship to seismic wave reflections and conversions at the slab/mantle interface. Journal of Geophysical Research:Solid Earth, 94(B1):753-763. doi: 10.1029/JB094iB01p00753

     

    Jiang G M, Zhao D P. 2011. Metastable olivine wedge in the subducting Pacific slab and its relation to deep earthquakes. Journal of Asian Earth Sciences, 42(6):1411-1423. doi: 10.1016/j.jseaes.2011.08.005

     

    Jiang G M, Zhao D P, Zhang G B. 2015. Detection of metastable olivine wedge in the western Pacific slab and its geodynamic implications. Physics of the Earth and Planetary Interiors, 238:1-7. doi: 10.1016/j.pepi.2014.10.008

     

    Johnson L R. 1967. Array measurements of P velocities in the upper mantle. Journal of Geophysical Research, 72(24):6309-6325. doi: 10.1029/JZ072i024p06309

     

    Kang D, Shen W S, Ning J Y, et al. 2016. Seismic evidence for lithospheric modification associated with intracontinental volcanism in Northeastern China. Geophysical Journal International, 204(1):215-235. doi: 10.1093/gji/ggv441

     

    Katsura T, Ito E. 1989. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures:Precise determination of stabilities of olivine, modified spinel, and spinel. Journal of Geophysical Research:Solid Earth, 94(B11):15663-15670. doi: 10.1029/JB094iB11p15663

     

    Katsura T, Yamada H, Nishikawa O, et al. 2004. Olivine-wadsleyite transition in the system (Mg, Fe)2SiO4. Journal of Geophysical Research:Solid Earth, 109(B2):B02209, doi:10.1029/2003JB002438.

     

    Kawakatsu H, Yoshioka S. 2011. Metastable olivine wedge and deep dry cold slab beneath southwest Japan. Earth and Planetary Science Letters, 303(1-2):1-10. doi: 10.1016/j.epsl.2011.01.008

     

    Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2):429-465. doi: 10.1111/j.1365-246X.1991.tb06724.x

     

    Kirby S H, Durham W B, Stern L A. 1991. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science, 252(5003):216-225. doi: 10.1126/science.252.5003.216

     

    Koper K D, Wysession M E, Wiens D A. 1999. Multimodal function optimization with a niching genetic algorithm:A seismological example. Bulletin of the Seismological Society of America, 89(4):978-988. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=89/4/978

     

    LeFevre L V, Helmberger D V. 1989. Upper mantle P velocity structure of the Canadian shield. Journal of Geophysical Research:Solid Earth, 94(B12):17749-17765. doi: 10.1029/JB094iB12p17749

     

    Lidaka T, Suetsugu D. 1992. Seismological evidence for metastable olivine inside a subducting slab. Nature, 356(6370):593-595. doi: 10.1038/356593a0

     

    Li D Z, Helmberger D, Clayton R W, et al. 2014. Global synthetic seismograms using a 2-d finite-difference method. Geophysical Journal International, 197(2), 1166-1183. doi: 10.1093/gji/ggu050

     

    McCaffrey R, Abers G. 1988. SYN3: A program for inversion of teleseismic body wave forms on microcomputers. St. Cloud, Fl: Southeastern Center for Electrical Engineering Education, Inc.

     

    Niu F L, Levander A, Ham S, et al. 2005. Mapping the subducting Pacific slab beneath southwest Japan with Hi-net receiver functions. Earth and Planetary Science Letters, 239(1-2):9-17. doi: 10.1016/j.epsl.2005.08.009

     

    Omori S, Komabayashi T, Maruyama S. 2004. Dehydration and earthquakes in the subducting slab:Empirical link in intermediate and deep seismic zones. Physics of the Earth and Planetary Interiors, 146(1-2):297-311. doi: 10.1016/j.pepi.2003.08.014

     

    Revenaugh J, Jordan T H. 1991. Mantle layering from ScS reverberations:2. The transition zone. Journal of Geophysical Research:Solid Earth, 96(12):19763-19780. http://adsabs.harvard.edu/abs/1991JGR....9619763R

     

    Sung C M, Burns R G. 1976. Kinetics of the olivine→ spinel transition:Implications to deep-focus earthquake genesis. Earth and Planetary Science Letters, 32(2):165-170. doi: 10.1016/0012-821X(76)90055-8

     

    Tajima F, Grand S P. 1995. Evidence of high velocity anomalies in the transition zone associated with southern Kurile subduction zone. Geophysical Research Letters, 22(23):3139-3142. doi: 10.1029/95GL03314

     

    Tao K, Grand S P, Niu F L. 2018. Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography. Geochemistry, Geophysics, Geosystems, 19(8):2732-2763. doi: 10.1029/2018GC007460

     

    Thirot J L, Montagner J P, Vinnik L. 1998. Upper-mantle seismic discontinuities in a subduction zone (Japan) investigated from P to S converted waves. Physics of the Earth and Planetary Interiors, 108(1):61-80. doi: 10.1016/S0031-9201(98)00075-2

     

    Tonegawa T, Hirahara K, Shibutani T. 2005. Detailed structure of the upper mantle discontinuities around the Japan subduction zone imaged by receiver function analyses. Earth, Planets and Space, 57(1):5-14. doi: 10.1186/BF03351801

     

    Vidale J E, Benz H M. 1992. Upper-mantle seismic discontinuitiesand the thermal structure of subduction zones. Nature, 356(6371):678-683. doi: 10.1038/356678a0

     

    Wang B S, Niu F L. 2010. A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China. Journal of Geophysical Research:Solid Earth, 115(B6):B06308, doi:10.1029/2009JB006608.

     

    Wang R J. 1999. A Simple orthonormalization method for stable and efficient computation of Green's functions. Bulletin of the Seismological Society of America, 89(3):733-741. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=89/3/733

     

    Wang T, Chen L. 2009. Distinct velocity variations around the base of the upper mantle beneath northeast Asia. Physics of the Earth and Planetary Interiors, 172(3-4):241-256. doi: 10.1016/j.pepi.2008.09.021

     

    Wright C, Kuo B Y. 2007. Evidence for an elevated 410 km discontinuity below the Luzon, Philippines region and transition zone properties using seismic stations in Taiwan and earthquake sources to the south. Earth, Planets and Space, 59(6):523-539. doi: 10.1186/BF03352715

     

    Ye L L, Li J, Tseng T L, et al. 2011. A stagnant slab in a water-bearing mantle transition zone beneath northeast China:Implications from regional SH waveform modelling. Geophysical Journal International, 186(2):706-710. doi: 10.1111/j.1365-246X.2011.05063.x

     

    Yu C Q, Zheng Y C, Shang X F. 2017. Crazyseismic:A MATLAB GUI-based software package for passive seismic data preprocessing. Seismological Research Letters, 88(2A):410-415. doi: 10.1785/0220160207

     

    Zhang R Q, Wu Q J, Li Y H, et al. 2008. Upper mantle SH velocity structure beneath Qiangtang Terrane by modeling triplicated phases. Chinese Science Bulletin, 53(20):3211-3218. http://www.cqvip.com/QK/86894X/200820/28405812.html

     

    Zhang R Q, Wu Q J, Li Y H, et al. 2012. Lateral variations in SH velocity structure of the transition zone beneath Korea and adjacent regions. Journal of Geophysical Research:Solid Earth, 117(B9):B09315, doi:10.1029/2011JB008900.

     

    蒋志勇, 臧绍先, 周元泽. 2003.鄂霍次克海下间断面的起伏及俯冲带的穿透.科学通报, 48(4):320-327. doi: 10.3321/j.issn:0023-074X.2003.04.003

     

    李嘉琪, 王曙光, 蔡晨等. 2016.一种定量地消除波速横向变化影响的三叉震相一维波速结构反演计算方案.北京大学学报(自然科学版), 52(3):420-426. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201603006.htm

     

    李少华, 王彦宾, 梁子斌等. 2012.甘肃东南部地壳速度结构的区域地震波形反演.地球物理学报, 55(4):1186-1197, doi:10.6038/j.issn.0001-5733.2012.04.015. http://www.geophy.cn//CN/abstract/abstract8614.shtml

  • 加载中

(13)

计量
  • 文章访问数:  366
  • PDF下载数:  236
  • 施引文献:  0
出版历程
收稿日期:  2019-06-04
修回日期:  2020-11-24
上线日期:  2021-02-10

目录