Efficient 3D vector finite element modeling for TEM based on absorbing boundary condition
-
摘要:
瞬变电磁法的三维有限元正演通常采用齐次边界条件,为满足该边界条件,需要构建较大尺寸的模型,这降低了正演问题的求解速度.针对该问题,本文采用吸收边界条件代替齐次边界条件,以缩小模型体积,加快正演速度:首先,从时间域麦克斯韦方程组出发,推导了基于库伦规范的矢量势的微分控制方程,结合一阶吸收边界条件推导了相应的的弱形式方程;在此基础上采用一阶四面体矢量单元进行单元分析、Newmark法进行时间离散,实现了瞬变电磁法的快速三维正演.通过均匀半空间模型的解析解,H型地电断面的CR1Dmod解和相应模型有限元解的对比,验证了本文算法的正确性.均匀半空间模型分别采用吸收边界条件和齐次边界条件的正演结果对比表明:吸收边界条件确实可以提高三维正演的精度或者缩小模型尺寸、加快计算速度.
Abstract:The homogeneous boundary condition is commonly used in the 3D FEM forward modeling of TEM. In order to satisfy the approximation of this boundary condition, it is necessary to construct a large-scale model, which reduces the solving speed of the forward problem. Aiming at the problem, in this paper, absorbing boundary condition was used to reduce the size of the model and accelerate the solution speed instead of homogeneous boundary condition. Firstly, the differential equation of magnetic vector potential based on Coulomb's gauge was derived from Maxwell's equations in time domain, combining the first-order absorbing boundary condition, the corresponding weak form equation was deduced and simplified. Then, by using the first-order tetrahedral vector element to carry out element analysis, Newmark method for time discretization, an efficient TEM 3D modeling method was realized. The proposed algorithm was validated by comparing the analytical solution of homogeneous half space, the CR1Dmod solution of H-type geoelectric section, with their corresponding finite element solution. The further comparison between the modeling results of absorbing boundary condition and homogeneous boundary condition showed that the absorbing boundary condition could improve the accuracy of 3D modeling or reduce the size of the model and accelerate the solution speed.
-
Key words:
- TEM /
- Forward modeling /
- Vector finite element /
- Absorbing boundary condition
-
-
-
Ansari S, Farquharson C G. 2014. 3D finite-element forward modeling of electromagnetic data using vector and scalar potentials and unstructured grids. Geophysics, 79(4): E149-E165. doi: 10.1190/geo2013-0172.1
Bai D H, Maxwell Meju. 2001. The effect of two types of turn-off current on TEM responses and the correction techniques. Seismology and Geology, 23(2): 118-124. http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ200102018.htm
Borner R U, Ernst O G, Spitzer K. 2008. Fast 3D simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection. Geophysics Journal International, 173(3): 766-780. doi: 10.1111/j.1365-246X.2008.03750.x
Commer M, Newman G. 2004. A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources. Geophysics, 69(5): 1192-1202. doi: 10.1190/1.1801936
Di Q Y, Tian F, Suo Y, et al. 2021. Linkage of deep lithospheric structures to intraplate earthquakes: A perspective from multi-source and multi-scale geophysical data in the South China Block. Earth-Science Reviews, 214(1): 103504, doi:10.1016/j.earscirev.2021.103504.
Jin J, Zunoubi M R, Donepudi K C, et al. 1999. Frequency-domain and time-domain finite-element solution of Maxwell's equations using spectral Lanczos decomposition method. Computer Methods in Applied Mechanics and Engineering, 169: 279-296. doi: 10.1016/S0045-7825(98)00158-3
Jin J M. 2014. The Finite Element Method in Electromagnetics. Hoboken, New Jersey: Wiley.
Kuo J T, Cho D H. 1980. Transient time-domain electromagnetics. Geophysics, 45(2): 271-291. doi: 10.1190/1.1441082
Li H. 2016. Three-dimensional transient electromagnetic forward modeling in the direct time-domain by vector finite element[M.S. thesis]. Xi'an: Chang'an University.
Li J H. 2011. 3D numerical simulation for transient electromagnetic field excited by large source loop based on vector finite element method[Ph. D. thesis]. Changsha: Central South University.
Li J H, Farquharson C G, Hu X Y, et al. 2016. A vector finite element solver of three-dimensional modelling for a long grounded wire source based on total electric field. Chinese J. Geophys. (in Chinese), 59(4): 1521-1534, doi:10.6038/cjg20160432.
Li J H, Hu X Y, Chen B, et al. 2017. 3D electromagnetic modeling with vector finite element for a complex-shaped loop source. OGP, 52(6): 1324-1332, doi:10.13810/j.cnki.issn.1000-7210.2017.06.024.
Li J H, Hu X Y, Zeng S H, et al. 2013, Three-dimensional forward calculation for loop source transient electromagnetic method based on electric field Helmholtz equation. Chinese J. Geophys. (in Chinese), 56(12), 4256-4267 doi:10.6038/cjg20131228.
Li R X, Wang H, Xi Z Z, et al. 2016. The 3D transient electromagnetic forward modeling of volcanogenic massive sulfide ore deposits. Chinese J. Geophys. (in Chinese), 59(12), 4505-4512 doi:10.6038/cjg20161213.
Li R X, Wang H, Xi Z Z, et al. 2016. Fast 3D forward modeling of transient electromagnetic. Journal of Central South University (Science and Technology), 47(10): 3477-3482. doi:10.11817/j.issn.1672-7207.2016.10.026.
Liu Y J, Hu X Y, Peng R H, et al. 2019. 3D forward modeling and analysis of the loop-source transient electromagnetic method based on the finite-volume method for an arbitrarily anisotropic medium. Chinese J. Geophys. (in Chinese), 62(05), 1954-1968 doi:10.6038/cjg2019M0532.
Piao H R. 1990. Principles of Electromagnetic Sounding. Beijing: Geological Publishing House.
Pridmore D F, Hohmann G W. 1981. An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics, 46(5): 1009-1024. http://ci.nii.ac.jp/naid/10002948499
Rathod H T, Nagaraja K V, Venkatesudu B, et al. 2004. Gauss Legendre quadrature over a triangle. Journal of the Indian Institute of Science, 84(5): 183-188. http://www.ams.org/mathscinet-getitem?mr=2168195
Ren Z Y, Tang J T. 2009. Finite element modeling of 3-D DC resistivity using locally refined unstructured meshes. Chinese J. Geophys. (in Chinese), 52(10): 2627-2634, doi:10.3969/j.issn.0001-5733.2009.10.023.
Sanfilipo W A, Hohmann G W. 1985. Integral equation solution for the transient electromagnetic response of a three-dimensional body in a conductive half-space. Geophysics, 50(5): 798-809. doi: 10.1190/1.1441954
Sihong Z, Hu X Y, Li J H, et al. 2019. Effects of full transmitting-current waveforms on transient electromagnetics: Insights from modeling the Albany graphite deposit. Geophysics, 84(4): 255-268. doi: 10.1190/geo2018-0573.1
Sugeng F. 1998. Modeling the 3D TDEM response using the 3D full-domain finite-element method based on the hexahedral edge-element technique. Exploration Geophysics, 29(4): 615-619. http://www.publish.csiro.au/EG/EG998615
Sun H F, Cheng M, Wu Q L, et al. 2018. A multi-scale grid scheme in three-dimensional transient electromagnetic modeling using FDTD. Chinese J. Geophys. (in Chinese), 61(12): 5096-5104, doi:10.6038/cjg2018L0659.
Sun H F, Liu S B, Yang Y. 2021. Crank-Nicolson FDTD 3D forward modeling for the transient electromagnetic field. Chinese J. Geophys. (in Chinese), 64(01), 343-354 doi:10.6038/cjg2021O0229.
Um E S, Harris J M, Alumbaugh D L. 2010. 3D time-domain simulation of electromagnetic diffusion phenomena: a finite-element electric-field approach. Geophysics, 75(4): 115-126. doi: 10.1190/1.3473694
Wang C Q, Zhu X L. 2011. Transient Electromagnetic Field-Theory and Calculation. Beijing: Peking University Press.
Wang T, Hohmann G W. 1993. A finite-difference, time-domain solution for three-dimensional electromagnetic modeling. Geophysics, 58(6): 797-809. doi: 10.1190/1.1443465
Wang X C. 2003. Finite element method. Beijing: Tsinghua University Press.
Webb J P, Kanellopoulos V N. 1989. Absorbing boundary conditions for the finite element solution of the vector wave equation. Microwave Opt. Tech. Lett. , 2(10): 370-372. doi: 10.1002/mop.4650021010
Xue G Q, Li X, Di Q Y. 2008. Research Progress in TEM Forward Modeling and Inversion Calculation. Progress in Geophysics, 23(04): 1165-1172. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200804023.htm
Yin C C, Huang W, Pen F. 2013. The full-time electromagnetic modeling for time-domain airborne electromagnetic systems. Chinese J. Geophys. (in Chinese), 56(9): 3153-3162, doi:10.6038/cjg20130928.
Yin C C, Liu B. 1994. Three dimensional forward modeling of transient electromagnetic method and characteristics of IP effect. Chinese J. Geophys. (in Chinese), 37(Supp. 1), 486-492.
Yu X, Wang X B, Li X J, et al. 2017. Three-dimensional finite difference forward modeling of the transient electromagnetic method in the time domain. Chinese J. Geophys. (in Chinese), 60(02): 810-819. doi:10.6038/cjg20170231.
Yun L, Wang X B, Wang Y. 2013. Numerical modeling of the 2D time-domain transient electromagnetic secondary field of the line source of the current excitation. Applied Geophysics. 10(2): 134-144. doi: 10.1007/s11770-013-0376-2
Zhang B, Yin C C, Liu Y H, et al. 2016. 3D modeling on topographic effect for frequency/time domain airborne EM systems. Chinese J. Geophys. (in Chinese), 59(4): 1506-1520, doi:10.6038/cjg20160431.
Zhdanov M S, Lee S K, Yoshioka K. 2006. Integral Equation Method for 3D Modeling of Electromagnetic Fields in Complex Structures with Inhomogeneous Background Conductivity. Geophysics, 71(6): 333-345. doi: 10.1190/1.2358403
Zhou J M, Liu W T, Li X, et al. 2018. Research on the 3D mimetic finite volume method for loop-source TEM response in biaxial anisotropic formation. Chinese J. Geophys. (in Chinese), 61(01), 368-378 Doi:10.6038/cjg2018K0598.
Zunoubi M R, Jin J, Donepudi K C, et al. 1999. A spectral Lanczos decomposition method for solving 3-D low-frequency electromagnetic diffusion by the finite-element method. IEEE Transactions on Antennas and Propagation, 47(2): 242-248. doi:10.6038/cjg2018K0598.
白登海, Maxwell Meju. 2001. 瞬变电磁法中两种关断电流对响应函数的影响及其应对策略. 地震地质, 23(2): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200102018.htm
李贺. 2016. 直接时间域矢量有限元瞬变电磁三维正演模拟[硕士论文]. 西安: 长安大学.
李建慧. 2011. 基于矢量有限单元法的大回线源瞬变电磁法三维数值模拟[博士论文]. 长沙: 中南大学.
李建慧, Farquharson C G, 胡祥云等. 2016. 基于电场总场矢量有限元法的接地长导线源三维正演. 地球物理学报, 59(4): 1521-1534, doi:10.6038/cjg20160432.
李建慧, 胡祥云, 陈斌等. 2017. 复杂形态回线源激发电磁场的矢量有限元解. 石油地球物理勘探, 52(6): 1324-1332, doi:10.13810/j.cnki.issn.1000-7210.2017.06.024.
李建慧, 胡祥云, 曾思红等. 2013. 基于电场Helmholtz方程的回线源瞬变电磁法三维正演. 地球物理学报, (12): 4256-4267. doi:10.6038/cjg20131228
李瑞雪, 王鹤, 席振铢等. 2016. 深海热液硫化物矿体3D瞬变电磁正演. 地球物理学报, 59(12): 4505-4512. doi:10.6038/cjg20161213.
李瑞雪, 王鹤, 席振铢等. 2016. 瞬变电磁快速三维正演. 中南大学学报(自然科学版), 47(10): 3477-3482. doi:10.11817/j.issn.1672-7207.2016.10.026
朴化荣. 1990. 电磁测深法原理. 北京: 地质出版社.
任政勇, 汤井田. 2009. 基于局部加密非结构化网格的三维电阻率法有限元数值模拟. 地球物理学报, 52(10): 2627-2634, doi:10.3969/j.issn.0001-5733.2009.10.023.
孙怀凤, 柳尚斌, 杨洋. 2021. 瞬变电磁Crank-Nicolson FDTD三维正演. 地球物理学报, 64(01), 343-354 doi:10.6038/cjg2021O0229.
孙怀凤, 程铭, 吴启龙等. 2018. 瞬变电磁三维FDTD正演多分辨网格方法. 地球物理学报, 61(12): 5096-5104. doi:10.6038/cjg2018L0659.
刘亚军, 胡祥云, 彭荣华等. 2019. 回线源瞬变电磁法有限体积三维任意各向异性正演及分析. 地球物理学报, 62(5): 1954-1968. doi:10.6038/cjg2019M0532
王长清, 祝西里. 2011. 瞬变电磁场——理论和计算. 北京: 北京大学出版社.
王勖成. 2003. 有限单元法. 北京: 清华大学出版社.
薛国强, 李貅, 底青云. 2008. 瞬变电磁法正反演问题研究进展. 地球物理学进展, 23(4): 1165-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200804023.htm
殷长春, 黄威, 贲放. 2013. 时间域航空电磁系统瞬变全时响应正演模拟. 地球物理学报, (9): 3153-3162, doi:10.6038/cjg20130928.
殷长春, 刘斌. 1994. 瞬变电磁法三维问题正演及激电效应特征研究. 地球物理学报, 37(增Ⅰ): 486-492. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S2.053.htm
张博, 殷长春, 刘云鹤等. 2016. 起伏地表频域/时域航空电磁系统三维正演模拟研究. 地球物理学报, 59(4): 1506-520, doi:10.6038/cjg20160431.
余翔, 王绪本, 李新均等. 2017. 时域瞬变电磁法三维有限差分正演技术研究. 地球物理学报, 60(2): 810-819, doi:10.6038/cjg20170231.
周建美, 刘文韬, 李貅等. 2018. 双轴各向异性介质中回线源瞬变电磁三维拟态有限体积正演算法. 地球物理学报, 61(1): 368-378, doi:10.6038/cjg2018K0598.
-

下载: