多孔可变临界孔隙度模型及储层孔隙结构表征

张佳佳, 曾庆才, 印兴耀, 李红兵, 姜仁, 黄家强, 张连群, 张广智, 谷一鹏. 2021. 多孔可变临界孔隙度模型及储层孔隙结构表征. 地球物理学报, 64(2): 724-734, doi: 10.6038/cjg2021M0675
引用本文: 张佳佳, 曾庆才, 印兴耀, 李红兵, 姜仁, 黄家强, 张连群, 张广智, 谷一鹏. 2021. 多孔可变临界孔隙度模型及储层孔隙结构表征. 地球物理学报, 64(2): 724-734, doi: 10.6038/cjg2021M0675
ZHANG JiaJia, ZENG QingCai, YIN XingYao, LI HongBing, JIANG Ren, HUANG JiaQiang, ZHANG LianQun, ZHANG GuangZhi, GU YiPeng. 2021. Multiple-porosity variable critical porosity model and pore structure characterization. Chinese Journal of Geophysics (in Chinese), 64(2): 724-734, doi: 10.6038/cjg2021M0675
Citation: ZHANG JiaJia, ZENG QingCai, YIN XingYao, LI HongBing, JIANG Ren, HUANG JiaQiang, ZHANG LianQun, ZHANG GuangZhi, GU YiPeng. 2021. Multiple-porosity variable critical porosity model and pore structure characterization. Chinese Journal of Geophysics (in Chinese), 64(2): 724-734, doi: 10.6038/cjg2021M0675

多孔可变临界孔隙度模型及储层孔隙结构表征

  • 基金项目:

    国家油气重大专项(2016ZX05047-002),国家自然科学基金(41874146,41674130),中央高校基础研究业务费专项基金(18CX02061A)和中国石油科技创新基金(2016D-5007-0301)等资助

详细信息
    作者简介:

    张佳佳, 男, 1986生, 博士, 副教授, 主要从事地震岩石物理与叠前储层预测工作.E-mail:zhangjj@upc.edu.cn

    通讯作者: 曾庆才, 男, 1969生, 博士, 高级工程师, 主要从事物探资料分析、处理和解释方法研究.E-mail:zqc69@petrochina.com.cn
  • 中图分类号: P631

Multiple-porosity variable critical porosity model and pore structure characterization

More Information
  • 碳酸盐岩、致密砂岩和页岩等储层具有孔隙类型多样、孔隙结构复杂和非均质性强等特征,属于典型的多重孔隙储层,孔隙结构表征是多重孔隙储层预测和流体识别的关键.现有的孔隙结构表征方法大多利用孔隙纵横比或者构建一种新参数来描述孔隙结构.岩石临界孔隙度模型是一种常用的岩石物理模型,具有一定的物理意义和地质含义.本文推导了岩石临界孔隙度与岩石孔隙结构(孔隙纵横比)之间的关系,进而利用极化(形状)因子建立临界孔隙度与弹性参数之间的关系,构建了能够包含多种孔隙类型的多孔可变临界孔隙度模型.利用多孔可变临界孔隙度模型由储层的弹性参数反演不同孔隙类型的体积含量.实验室测量数据和实际测井数据表明,多孔可变临界孔隙度模型能够适用于多重孔隙储层岩石物理建模和孔隙结构表征.

  • 加载中
  • 图 1 

    岩石临界孔隙度示意图(据Nur,1992)

    Figure 1. 

    Schematic diagram of critical porosity of rock (from Nur, 1992)

    图 2 

    岩石孔隙纵横比示意图

    Figure 2. 

    Schematic diagram of pore aspect ratio of rock

    图 3 

    单一孔隙类型砂岩的临界孔隙度值

    Figure 3. 

    Critical porosity values for sandstone with single pore type

    图 4 

    三种孔隙类型碳酸盐岩的临界孔隙度值

    Figure 4. 

    Critical porosity values for carbonate with three pore types

    图 5 

    利用单孔可变临界孔隙度模型模拟砂岩弹性模量

    Figure 5. 

    Simulating sandstone elastic modulus with single-porosity variable critical porosity model

    图 6 

    利用双孔可变临界孔隙度模型模拟碳酸盐岩纵波速度

    Figure 6. 

    Simulating P-wave velocity of carbonate rocks with the dual-porosity variable critical porosity model

    图 7 

    利用多孔可变临界孔隙度模型反演碳酸盐岩储层硬孔孔隙度和软孔孔隙度

    Figure 7. 

    Inversion of porosity of different pore types of carbonate reservoir based on multiple-porosity variable critical porosity model

    图 8 

    利用多孔可变临界孔隙度模型反演致密砂岩软孔隙的体积含量

    Figure 8. 

    Inversion of volume content of soft pore of tight sandstone based on multiple-porosity variable critical porosity model

  •  

    Anselmetti F S, Eberli G P. 1993. Controls on sonic velocity in carbonates rocks. Pure and Applied Geophysics, 141(2):287-323. http://www.springerlink.com/content/w14328w174433020/

     

    Baechle G T, Weger R J, Eberli G P, et al. 2005. Changes of shear moduli in carbonate rocks:Implications for Gassmann applicability. The Leading Edge, 24(5):507-510. doi: 10.1190/1.1926808

     

    Baechle G T, Colpaert A, Eberli G P, et al. 2008. Effects of microporosity on sonic velocity in carbonate rocks. The Leading Edge, 27(8):1012-1018. doi: 10.1190/1.2967554

     

    Baechle G T, Eberli G P, Wegar R J, et al. 2009. Changes in dynamic shear moduli of carbonate rocks with fluid substitution. Geophysics, 74(3):E135-E147. doi: 10.1190/1.3111063

     

    Berryman J G. 1980. Long-wavelength propagation in composite elastic media I. Spherical inclusions. The Journal of the Acoustical Society of America, 68(6):1809-1819. doi: 10.1121/1.385171

     

    Eshelby J D. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 241(1226):376-396. http://www.researchgate.net/publication/247833431_the_determination_of_the_elastic_field_of_an_ellipsoidal_inclusion_and_related_problems

     

    Gassmann F. 1951. Vber die Elastizität poroser Medien. Veirteljahrsschrift der Naturforschen:den Gesellschaft in Zürich, 96:1-23.

     

    Han D, Nur A, Morgan D. 1986. Effect of porosity and clay content on wave velocity in sandstones. Geophysics, 51, 2093-2107. doi: 10.1190/1.1442062

     

    Jiang L, Wen X T, He Z H, et al. 2011. Pore structure model simulation and porosity prediction in reef-flat reservoir. Chinese Journal of Geophysics (in Chinese), 54(6):1624-1633, doi:10.3969/j.issn.0001-5733.2011.06.022.

     

    Kumar M, Han D. 2005. Pore shape effect on elastic properties of carbonate rocks.//Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 1477-1480.

     

    Kuster G T, Toks z M N. 1974. Velocity and attenuation of seismic waves in two-phase media; Part I, theoretical formulations. Geophysics, 39(5):587-606. doi: 10.1190/1.1440450

     

    Li H B, Zhang J J. 2010. Modulus ratio of dry rock based on differential effective medium theory. Geophysics, 75(2):N43-N50. doi: 10.1190/1.3360312

     

    Li H B, Zhang J J. 2011. Elastic moduli of dry rocks containing spheroidal pores based on differential effective medium theory. Journal of Applied Geophysics, 75(4):671-678. doi: 10.1016/j.jappgeo.2011.09.012

     

    Li H B, Zhang J J. 2012. Analytical approximations of bulk and shear moduli for dry rock based on the differential effective medium theory. Geophysical Prospecting, 60(2):281-292. doi: 10.1111/j.1365-2478.2011.00980.x

     

    Li H B, Zhang J J, Yao F C. 2013. Inversion of effective pore aspect ratios for porous rocks and its applications. Chinese Journal of Geophysics (in Chinese), 56(2):608-615, doi:10.6038/cjg20130224.

     

    Li J Y, Chen X H. 2013. A rock-physical modeling method for carbonate reservoirs at seismic scale. Applied Geophysics, 10(1):1-13. doi: 10.1007/s11770-013-0364-6

     

    Lønøy A. 2006. Making sense of carbonate pore system. AAPG Bulletin, 90(9):1381-1405. doi: 10.1306/03130605104

     

    Lucia T J. 1995. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bulletin, 79(9):1275-1300. http://www.researchgate.net/publication/255032028_Rock-FabricPetrophysical_Classification_of_Carbonate_Pore_Space_for_Reservoir_Characterization

     

    Markov M, Kazatchenko E, Mousatov A, et al. 2012. Generalized differential effective medium method for simulating effective elastic properties of two dimensional percolating composites. Journal of Applied Physics, 112(2):026101, doi:10.1063/1.4739459.

     

    Markov M, Kazatchenko E, Mousatov A, et al. 2013. Novel approach for simulating the elastic properties of porous rocks including the critical porosity phenomena. Geophysics, 78(4):L37-L44. doi: 10.1190/geo2012-0260.1

     

    Nur A. 1992. Critical porosity and the seismic velocities in rocks. Eos Transactions American Geophysical Union, 73(1):43-66. http://ci.nii.ac.jp/naid/10007568942

     

    Sayers C M. 2008. The elastic properties of carbonates. The Leading Edge, 27(8):1020-1024. doi: 10.1190/1.2967555

     

    Sun S Z, Wang H Y, Liu Z S, et al. 2012. The theory and application of DEM-Gassmann rock physics model for complex carbonate reservoirs. The Leading Edge, 31(2):152-158. doi: 10.1190/1.3686912

     

    Sun Y F. 2004. Pore structure effects on elastic wave propagation in rocks:AVO modelling. Journal of Geophysics and Engineering, 1(4):268-276. doi: 10.1088/1742-2132/1/4/005

     

    Wu T T. 1966. The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures, 2, 1-8. doi: 10.1016/0020-7683(66)90002-3

     

    Wyllie M R J, Gregory A R, Gardner L W. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics, 21(1):41-70. doi: 10.1190/1.1438217

     

    Xu S Y, White R E. 1995. A new velocity model for clay-sand mixtures. Geophysical Prospecting, 43(1):91-118. doi: 10.1111/j.1365-2478.1995.tb00126.x

     

    Xu S Y, Payne M A. 2009. Modeling elastic properties in carbonate rocks. The Leading Edge, 28(1):66-74. doi: 10.1190/1.3064148

     

    Zhao L X, Nasser M, Han D H. 2013. Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs. Geophysical Prospecting, 61(4):827-841. doi: 10.1111/1365-2478.12043

     

    Zhang J J, Yin X Y, Zhang G Z. 2020. Rock physics modelling of porous rocks with multiple pore types:a multiple porosity variable critical porosity model. Geophysical Prospecting, 68(3):955-967. doi: 10.1111/1365-2478.12898

     

    蒋炼, 文晓涛, 贺振华等. 2011.礁滩储层内部孔隙结构模型模拟与孔隙度预测.地球物理学报, 54(6):1624-1633, doi:10.3969/j.issn.0001-5733.2011.06.022. http://www.geophy.cn//CN/abstract/abstract7996.shtml

     

    李宏兵, 张佳佳, 姚逢昌. 2013.岩石的等效孔隙纵横比反演及其应用.地球物理学报, 56(2):608-615, doi:10.6038/cjg20130224. http://www.geophy.cn//CN/abstract/abstract9306.shtml

  • 加载中

(8)

计量
  • 文章访问数:  667
  • PDF下载数:  302
  • 施引文献:  0
出版历程
收稿日期:  2020-07-20
修回日期:  2020-12-02
上线日期:  2021-02-10

目录