Multiple-porosity variable critical porosity model and pore structure characterization
-
摘要:
碳酸盐岩、致密砂岩和页岩等储层具有孔隙类型多样、孔隙结构复杂和非均质性强等特征,属于典型的多重孔隙储层,孔隙结构表征是多重孔隙储层预测和流体识别的关键.现有的孔隙结构表征方法大多利用孔隙纵横比或者构建一种新参数来描述孔隙结构.岩石临界孔隙度模型是一种常用的岩石物理模型,具有一定的物理意义和地质含义.本文推导了岩石临界孔隙度与岩石孔隙结构(孔隙纵横比)之间的关系,进而利用极化(形状)因子建立临界孔隙度与弹性参数之间的关系,构建了能够包含多种孔隙类型的多孔可变临界孔隙度模型.利用多孔可变临界孔隙度模型由储层的弹性参数反演不同孔隙类型的体积含量.实验室测量数据和实际测井数据表明,多孔可变临界孔隙度模型能够适用于多重孔隙储层岩石物理建模和孔隙结构表征.
-
关键词:
- 多孔可变临界孔隙度模型 /
- 孔隙结构表征 /
- 孔隙类型 /
- 孔隙结构
Abstract:Carbonate, tight sandstone and shale reservoirs are characterized by variety of pore types, complicated pore structures and strong heterogeneity, which belong to the multiple-porosity reservoirs. Their pore structure characterization is the key to reservoir prediction and fluid identification. The existing pore structure characterization methods mostly use the pore aspect ratio or construct a new parameter to describe the pore structure. The critical porosity model is a commonly used rock physics model, which has certain physical and geological meanings. This paper derives the relationship between the critical porosity of rocks and the pore structure (i.e. the pore aspect ratio) of rocks, uses the polarization (shape) factor to establish the relationship between critical porosity and elastic parameters, and proposes a new model named the multiple-porosity variable critical porosity model. Based on this novel model, the volume content of different pore types can be inverted by elastic properties. Tests on experimental data and well logging data show this multiple-porosity variable critical porosity model can be used for modeling complex reservoirs and characterizing pore structures.
-
-
-
Anselmetti F S, Eberli G P. 1993. Controls on sonic velocity in carbonates rocks. Pure and Applied Geophysics, 141(2):287-323. http://www.springerlink.com/content/w14328w174433020/
Baechle G T, Weger R J, Eberli G P, et al. 2005. Changes of shear moduli in carbonate rocks:Implications for Gassmann applicability. The Leading Edge, 24(5):507-510. doi: 10.1190/1.1926808
Baechle G T, Colpaert A, Eberli G P, et al. 2008. Effects of microporosity on sonic velocity in carbonate rocks. The Leading Edge, 27(8):1012-1018. doi: 10.1190/1.2967554
Baechle G T, Eberli G P, Wegar R J, et al. 2009. Changes in dynamic shear moduli of carbonate rocks with fluid substitution. Geophysics, 74(3):E135-E147. doi: 10.1190/1.3111063
Berryman J G. 1980. Long-wavelength propagation in composite elastic media I. Spherical inclusions. The Journal of the Acoustical Society of America, 68(6):1809-1819. doi: 10.1121/1.385171
Eshelby J D. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 241(1226):376-396. http://www.researchgate.net/publication/247833431_the_determination_of_the_elastic_field_of_an_ellipsoidal_inclusion_and_related_problems
Gassmann F. 1951. Vber die Elastizität poroser Medien. Veirteljahrsschrift der Naturforschen:den Gesellschaft in Zürich, 96:1-23.
Han D, Nur A, Morgan D. 1986. Effect of porosity and clay content on wave velocity in sandstones. Geophysics, 51, 2093-2107. doi: 10.1190/1.1442062
Jiang L, Wen X T, He Z H, et al. 2011. Pore structure model simulation and porosity prediction in reef-flat reservoir. Chinese Journal of Geophysics (in Chinese), 54(6):1624-1633, doi:10.3969/j.issn.0001-5733.2011.06.022.
Kumar M, Han D. 2005. Pore shape effect on elastic properties of carbonate rocks.//Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 1477-1480.
Kuster G T, Toks z M N. 1974. Velocity and attenuation of seismic waves in two-phase media; Part I, theoretical formulations. Geophysics, 39(5):587-606. doi: 10.1190/1.1440450
Li H B, Zhang J J. 2010. Modulus ratio of dry rock based on differential effective medium theory. Geophysics, 75(2):N43-N50. doi: 10.1190/1.3360312
Li H B, Zhang J J. 2011. Elastic moduli of dry rocks containing spheroidal pores based on differential effective medium theory. Journal of Applied Geophysics, 75(4):671-678. doi: 10.1016/j.jappgeo.2011.09.012
Li H B, Zhang J J. 2012. Analytical approximations of bulk and shear moduli for dry rock based on the differential effective medium theory. Geophysical Prospecting, 60(2):281-292. doi: 10.1111/j.1365-2478.2011.00980.x
Li H B, Zhang J J, Yao F C. 2013. Inversion of effective pore aspect ratios for porous rocks and its applications. Chinese Journal of Geophysics (in Chinese), 56(2):608-615, doi:10.6038/cjg20130224.
Li J Y, Chen X H. 2013. A rock-physical modeling method for carbonate reservoirs at seismic scale. Applied Geophysics, 10(1):1-13. doi: 10.1007/s11770-013-0364-6
Lønøy A. 2006. Making sense of carbonate pore system. AAPG Bulletin, 90(9):1381-1405. doi: 10.1306/03130605104
Lucia T J. 1995. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bulletin, 79(9):1275-1300. http://www.researchgate.net/publication/255032028_Rock-FabricPetrophysical_Classification_of_Carbonate_Pore_Space_for_Reservoir_Characterization
Markov M, Kazatchenko E, Mousatov A, et al. 2012. Generalized differential effective medium method for simulating effective elastic properties of two dimensional percolating composites. Journal of Applied Physics, 112(2):026101, doi:10.1063/1.4739459.
Markov M, Kazatchenko E, Mousatov A, et al. 2013. Novel approach for simulating the elastic properties of porous rocks including the critical porosity phenomena. Geophysics, 78(4):L37-L44. doi: 10.1190/geo2012-0260.1
Nur A. 1992. Critical porosity and the seismic velocities in rocks. Eos Transactions American Geophysical Union, 73(1):43-66. http://ci.nii.ac.jp/naid/10007568942
Sayers C M. 2008. The elastic properties of carbonates. The Leading Edge, 27(8):1020-1024. doi: 10.1190/1.2967555
Sun S Z, Wang H Y, Liu Z S, et al. 2012. The theory and application of DEM-Gassmann rock physics model for complex carbonate reservoirs. The Leading Edge, 31(2):152-158. doi: 10.1190/1.3686912
Sun Y F. 2004. Pore structure effects on elastic wave propagation in rocks:AVO modelling. Journal of Geophysics and Engineering, 1(4):268-276. doi: 10.1088/1742-2132/1/4/005
Wu T T. 1966. The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures, 2, 1-8. doi: 10.1016/0020-7683(66)90002-3
Wyllie M R J, Gregory A R, Gardner L W. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics, 21(1):41-70. doi: 10.1190/1.1438217
Xu S Y, White R E. 1995. A new velocity model for clay-sand mixtures. Geophysical Prospecting, 43(1):91-118. doi: 10.1111/j.1365-2478.1995.tb00126.x
Xu S Y, Payne M A. 2009. Modeling elastic properties in carbonate rocks. The Leading Edge, 28(1):66-74. doi: 10.1190/1.3064148
Zhao L X, Nasser M, Han D H. 2013. Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs. Geophysical Prospecting, 61(4):827-841. doi: 10.1111/1365-2478.12043
Zhang J J, Yin X Y, Zhang G Z. 2020. Rock physics modelling of porous rocks with multiple pore types:a multiple porosity variable critical porosity model. Geophysical Prospecting, 68(3):955-967. doi: 10.1111/1365-2478.12898
蒋炼, 文晓涛, 贺振华等. 2011.礁滩储层内部孔隙结构模型模拟与孔隙度预测.地球物理学报, 54(6):1624-1633, doi:10.3969/j.issn.0001-5733.2011.06.022. http://www.geophy.cn//CN/abstract/abstract7996.shtml
李宏兵, 张佳佳, 姚逢昌. 2013.岩石的等效孔隙纵横比反演及其应用.地球物理学报, 56(2):608-615, doi:10.6038/cjg20130224. http://www.geophy.cn//CN/abstract/abstract9306.shtml
-